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Abstract. In this paper we study the network design game when the
underlying network is a ring. In a network design game we have a set of
players, each of them aims at connecting nodes in a network by installing
links and sharing the cost of the installation equally with other users.
The ring design game is the special case in which the potential links of
the network form a ring. It is well known that in a ring design game the
price of anarchy may be as large as the number of players. Our aim is to
show that, despite the worst case, the ring design game always possesses
good equilibria. In particular, we prove that the price of stability of the
ring design game is at most 3/2, and such bound is tight. We believe that
our results might be useful for the analysis of more involved topologies
of graphs, e.g., planar graphs.

1 Introduction

In a network design game, we are given an undirected graph G = (V,E) and
edge costs given by a function c : E → R

+. The edge cost function naturally
extends to any subset of edges, that is c(B) =

∑

e∈B c(e) for any B ⊆ E.
We define c(∅) = 0. There is a set of n players [n] = {1, . . . , n}; each player
i ∈ [n] wishes to establish a connection between two nodes si, ti ∈ V called
the source and destination node of player i, respectively. The set of strategies
available to player i consists of all paths connecting nodes si and ti in G. We
call a state of the game a set of strategies σ ∈ Σ (where Σ is the set of all the
states of the game), with one strategy per player, i.e., σ = (σ1, . . . , σn) where
σi denotes the strategy of player i in σ . Given a state σ, let nσ(e) be the
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number of players using edge e in σ. Then, the cost of player i in σ is defined

as cσ(i) =
∑

e∈σi

c(e)
nσ(e)

. Let E(σ) be the set of edges that are used by at least

one player in state σ. The social cost C(σ) is simply the total cost of the edges
used in state σ which coincides with the sum of the costs of the players, i.e.,
C(σ) =

∑

e∈E(σ) c(e) =
∑

i∈[n] cσ(i) = c(E(σ)).

Let (σ−i, σ
′
i) denote the state obtained from σ by changing the strategy of

player i from σi to σ′
i. Given a state σ = (σ1, . . . , σn), an improving move of

player i in σ is a strategy σ′
i such that c(σ−i,σ

′
i
)(i) < cσ(i). A state of the game is

a Nash equilibrium if and only if no player can perform any improving move. An
improvement dynamics (shortly dynamics) is a sequence of improving moves. A
game is said to be convergent if, given any initial state σ, any dynamics leads
to a Nash equilibrium. It is well known, as it has been proved by Rosenthal [6]
for the more general class of congestion games, that any network design game is
convergent. We denote by NE the set of states that are Nash equilibria. A Nash
equilibrium can be different from the socially optimal solution. Let Opt be a
state of the game minimizing the social cost. The price of anarchy (PoA) of a
network design game is defined as the ratio of the maximum social cost among

all Nash equilibria over the optimal cost, i.e., PoA = maxσ∈NE C(σ)
C(Opt) . It is trivial to

observe that the PoA in a network design game may be as large as the number of
players n, and such bound is tight. The price of stability (PoS) is defined as the
ratio of the minimum social cost among all Nash equilibria over the optimal cost,

i.e., PoS = minσ∈NE C(σ)
C(Opt) . Anshelevich et al. [1] proved that the price of stability

is at most Hn = 1+ 1/2+ . . .+ 1/n. Although the upper bound proof has been
shown to be tight for directed networks, the problem is still open for undirected
networks. There have been several attempts to give a significant lower bound
for the undirected case, e.g., [5, 4, 2, 3]. The best known lower bound so far of
348/155 ≈ 2.245, has been recently shown in [2].

The aim of the current paper is to analyze the network design game when
the underlying graph is a ring. We refer to this special case as ring design game.
For the sake of clarity, by a ring we mean an undirected graph G = (V,E) where
V = {v1, v2, . . . , vk}, E = {e1, e2, . . . , ek}, and ei = vivi+1, i = 1, . . . , k (where
vk+1 = v1). Note that this simple case captures the whole spectra of interesting
behavior, i.e., PoA remains equal the number of players. Moreover, the ring is
crucial in the sense that it is the first non-trivial topology to analyze in the
context of network design and it is the first step in order to cope with more
involved topologies, like planar graphs. Hence, we believe that giving a tight
bounds here could give some insight for studying more general settings.

Let us first point out that, in a ring design game, any improvement dynamics
starting from the optimal state leads to an equilibrium at most 2 times the cost
of the optimal state. In fact, either the optimal state is a Nash equilibrium, or
there is a player j wishing to switch from his optimal strategy to the alternative
path. At the optimum, the cost of player j is at most C(Opt), and thus the cost
of the alternative path cannot be more than this quantity. Since the alternative
path of j contains edges of the ring not belonging to E(Opt), it implies that
C(Opt) is also an upper bound to c(E \E(Opt)). Consequently, the cost of the
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entire ring, and thus the cost of any state, is at most 2C(Opt). As we show here,
by doing a more careful analysis, we are actually able to prove a tight bound of
3/2 · C(Opt) on the cost of any equilibrium reachable from the optimum.

Our results. In this paper we show that in a ring design game, differently from
what the classical bound of n on the price of anarchy suggests, there always
exist good performing Nash equilibria. In particular, we show that there always
exists a Nash equilibrium of cost at most 3/2 times the cost of an optimal state,
thus giving a bound on the PoS. We show that such equilibrium can be reached
by a dynamics having as initial state an optimal configuration. Such result also
gives some insight on the problem of computing an equilibrium in a ring design
game. In fact, it reveals that if the cost of the entire ring is larger than 3/2 times
the cost of an optimal state, then the dynamics starting from an optimal state
converges quickly, within at most 3 steps, to an equilibrium. We also show that
such bound on the PoS is tight, by showing an instance for which PoS = 3/2− ǫ.

2 Upper and lower bounds on the price of stability

We start by upper bounding the price of stability. Our technique to prove the
bound on the PoS is different from the previously used ones. Previous techniques
used potential function arguments and proved that any equilibrium reached by
any dynamics starting by an optimal state has potential value at most Hn ·
C(Opt). Here we also bound the cost of a Nash equilibrium reachable by a
dynamics from the optimal state but without using potential function arguments.
In particular, the analysis is made by cases on the number of moves, and for
each such case we write a linear program that captures the most important
inequalities. The most important observation we use is that one needs to consider
the cases when at most 4 players move. We prove that for higher number of moves
the PoS can only be smaller.

Our notation includes the number m representing the amount of steps in
which some fixed dynamics reaches a Nash equilibrium starting from an optimal
state Opt, the Nash equilibrium N obtained after m steps, as well as players
making a move in the dynamics, meaning that πj denotes the player that made
the move at step j = 1, . . . ,m during the dynamics. Note that a player could
make a move at many different steps of the dynamics. Let σ0, . . . , σj , . . . , σm

be the states corresponding to the considered dynamics, where σ0 = Opt and
σm = N. Also, let f be a set of players of interest. The set f will be composed
by a subset of the players moving in the dynamics. The usage of f will be clear
in the proof of Theorem 1. For any A ⊆ f the set DA will denote the edges in
Opt which are used by exactly the players in A, and RA will denote the edges
used in Opt which are used by exactly the players in A and at least one player
from outside of f , formally:

Df
A = {e ∈ E | (∀i ∈ f. e ∈ Opti ⇐⇒ i ∈ A) ∧ ¬∃i /∈ f. e ∈ Opti},

Rf
A = {e ∈ E | (∀i ∈ f.e ∈ Opti ⇐⇒ i ∈ A) ∧ ∃i /∈ f. e ∈ Opti}.
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For the sake of simplicity in the sequel we will omit the superscript f when it is
clear from the context. Notice that DA andRA naturally define a partition of the

edges of the ring, and that for any f we have E(Opt) =
(

⋃

A⊆f DA ∪RA

)

\D∅.

Moreover, let λ > 0 be such that c
(

D∅

)

≤ λC(Opt). Since Opt and D∅ is a
partition of E and the cost of any equilibrium N can be at most c(E), then:

PoS ≤
C(N)

C(Opt)
≤

C(Opt) + c
(

D∅

)

C(Opt)
≤

C(Opt) + λ · C(Opt)

C(Opt)
≤ 1 + λ. (1)

Now let us write the necessary conditions for the fact that player πj can
move in step j of the dynamics, for any j = 1, . . . ,m. Such conditions will
be expressed by using the above defined variables DA and RA. Unfortunately,
we do not know the exact usage of edges in sets RA. Let us define functions
leftk, rightk : Σ → R for any players k ∈ f . Set dσ(k) and rσ(k) to be the
collection of subsets A of f such that player k is using (all) edges of DA and
RA respectively in state σ, i.e., dσ(k) = {A ∈ 2f | k is using edges of DA in σ},
rσ(k) = {A ∈ 2f | k is using edges of RA in σ}. Also, define the edges’ usage by
the players’ of interest (i.e., players belonging to f) n̂σ : 2E → N as n̂σ(H) =
#{i ∈ f | H ⊆ σi}. Let us define:

leftσ(k) =
∑

A∈dσ(k)

∑

e∈DA

c(e)

nσ(e)
+

∑

A∈rσ(k)

∑

e∈RA

c(e)

n
=

∑

A∈dσ(k)

c(DA)

n̂σ(DA)
+

∑

A∈rσ(k)

c(RA)

n
.

In the following the function left will be used as a lower bound on the cost of a

player. Then wlog we can consider c(RA)
n

to be 0 for any RA. Therefore in the
following we will omit such terms. Moreover, let us define:

rightσ(k) =
∑

A∈dσ(k)

∑

e∈DA

c(e)

nσ(e)
+

∑

A∈rσ(k)

∑

e∈RA

c(e)

n̂σ(RA) + 1

=
∑

A∈dσ(k)

c(DA)

n̂σ(DA)
+

∑

A∈rσ(k)

c(RA)

n̂σ(RA) + 1
.

Then the following inequalities hold for any state σ ∈ Σ:

leftσ(k) ≤ cσ(k) ≤ rightσ(k).

The role of functions leftk and rightk is to weaken the inequalities between
player’s utilities in some neighbour states, so that they become manageable. As
we do not know the exact usage of edges in sets RA, it would be hard to derive
the precise bounds. This means that on the lower-hand side we introduce the
maximum possible number (i.e., n) of players using edges of sets RA in σ and on
the upper-hand side we introduce the minimum number of players using edges
of RA in σ, i.e., n̂σ(RA) + 1.

The proof of the following lemma will be given in the full version of this
paper. This lemma will become useful in the proof of the main theorem.
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Lemma 1. In the ring design game, if in state Opt there are at least two players
able to perform an improving move (both starting from state Opt) then the cost
of the whole ring is at most 3

2 times the cost of an optimal solution, that is
c(E) ≤ 3

2C(Opt).

Theorem 1. The price of stability for the ring design game is at most 3
2 .

Proof. The proof is split into five different cases, depending on the amount m
of steps in which some fixed dynamics reaches a Nash equilibrium starting from
an optimal state Opt. Moreover notice that since in a ring design game the
strategy set of each player i is composed by exactly 2 different strategies, i.e.,
the clockwise and counterclockwise paths connecting si and ti. This implies that
πj 6= πj+1, for any j = 1, . . . ,m − 1. We remark that in some cases we get the
bound by solving a linear program where constraints are naturally defined by
using left and right functions, and where objective functions are proper defined
in each of the case.

Case m = 0. The equality m = 0 trivializes the instance into an example where
Opt is a Nash equilibrium, thus PoS = 1.

Case m = 1. In this case the dynamics reaches a Nash Equilibrium N after
one step starting from Opt. Since player π1 can perform an improving move
starting by state Opt, the following inequalities hold: leftN(π1) ≤ cN(π1) <

cOpt(π1) ≤ rightOpt
(π1). Therefore, by setting f = {π1} we have that:

c

(

D∅

)

1 <

c

(

D{π1}

)

1 +
c

(

R{π1}

)

2 . The last inequality directly implies that:

C(N)

C(Opt)
=

c(D∅) + c(R∅) + c(R{π1})

c(D{π1}) + c(R∅) + c(R{π1})
≤

c(D{π1}) + c(R∅) +
3
2c(R{π1})

c(D{π1}) + c
(

R∅

)

+ c
(

R{π1}

) ≤
3

2
.

Case m = 2. When m = 2, the player π1 leads the dynamic from Opt to σ1 and
player π2 leads the dynamics from σ1 to N. Therefore the following must hold:

leftσ1(π1) ≤ cσ1(π1) < cOpt(π1) ≤ rightOpt
(π1),

leftN(π2) ≤ cN(π2) < cσ1(π2) ≤ rightσ1(π2).

Therefore, by setting f = {π1, π2} we have that:

c
(

D∅

)

1
+

c
(

D{π2}

)

2
<

c
(

D{π1}

)

1
+

c
(

R{π1}

)

2
+

c
(

D{π1,π2}

)

2
+

c
(

R{π1,π2}

)

3

c
(

D∅

)

2
+

c
(

D{π1}

)

1
<

c
(

D{π2}

)

2
+

c
(

R{π2}

)

2
+

c
(

D{π1,π2}

)

1
+

c
(

R{π1,π2}

)

2
.

Without loss of generality we can add the following constraints:
∑

e∈OPT

c(e) ≤ 1, ∀e ∈ E. c(e) ≥ 0.
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We need to bound the value of c
(

D∅

)

− 1
2c
(

D{π1,π2}

)

with respect to the above
inequalities. Such a bound can be obtained by forming a linear program from
all the above equations including the appropriate objective function. We have
solved this linear program on a computer using a standard LP solver. This way
we have obtained the following bound: c

(

D∅

)

− 1
2c
(

D{π1,π2}

)

≤ 5
11 < 1

2 .
In the remainder of the proof similar bounds have been obtained in the same

way by using a LP solver. Further, the cost of states N and Opt are:

C(N) = c
(

D∅

)

+ c
(

R∅

)

+ c
(

D{π1}

)

+ c
(

R{π1}

)

+ c
(

D{π2}

)

+ c
(

R{π2}

)

+ c
(

R{π1,π2}

)

,

and

C(Opt) = c
(

D{π1,π2}

)

+ c
(

R∅

)

+ c
(

D{π1}

)

+ c
(

R{π1}

)

+ c
(

D{π2}

)

+ c
(

R{π2}

)

+ c
(

R{π1,π2}

)

,

respectively. Therefore, by using the upper bound on c
(

D∅

)

− 1
2 c
(

D{π1,π2}

)

we

obtain that: C(N)
C(Opt) ≤

16
11 < 3

2 .

Case m = 3. Similarly to the previous case, we will construct a suitable linear
program. We know that π1 6= π2 and π2 6= π3. If π1 = π3 then by Lemma 1 we
have that PoS ≤ 3

2 . Therefore we can assume that π1 6= π3. The following must
hold:

leftσ1(π1) ≤ cσ1(π1) < cOpt(π1) ≤ rightOpt
(π1),

leftσ2(π2) ≤ cσ2(π2) < cσ1(π2) ≤ rightσ1(π2),

leftN(π3) ≤ cN(π3) < cσ2(π3) ≤ rightσ2(π3).

By setting f = {π1, π2, π3} we obtain a set of constraints that along with
C(Opt) ≤ 1 and maximization target c

(

D∅

)

− 1
2c
(

D{π1,π2,π3}

)

constitute a

linear program with a solution c
(

D∅

)

− 1
2c
(

D{π1,π2,π3}

)

≤ 198
487 < 1

2 . Substituting

it into the ratio of the costs of N and Opt we get that: C(N)
C(Opt) ≤

685
487 < 3

2 .

Case m ≥ 4. Here it is enough to consider the case m = 4. This is due to the fact
that the inequalities obtained by the dynamics of the first 4 players are strong
enough to bound the cost of the whole ring. This gives the bound on the cost
of any Nash equilibrium the dynamics will converge to, because even if more
players move the cost of the final state will be smaller than the cost of the whole
ring. We show that if m = 4 then c

(

D∅

)

< 1
2 · C(Opt). Clearly, adding new

constraints for m > 4 cannot increase this bound. Then let us consider m = 4.
As in the previous case we have that π1 6= π2 and π2 6= π3 and π1 6= π3, anyway
we are not able to derive any conclusion about π4. It follows that we have to
consider 3 subcases, i.e., π4 = π1, π4 = π2 and π4 6= πz for z = 1, 2, 3. As usually
in this proof, we are going to derive sets of constraints that must hold at every
step of the dynamics by using functions left and right.
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By summarizing we get three different sets of constraints corresponding to
three different linear programs. In each of them it suffices to consider maximiza-
tion target c

(

D∅

)

assuming that C(Opt) ≤ 1 wlog. In all cases the maximum

value of c
(

D∅

)

turns out to be smaller than 1
2 . Hence, by (1) for all these cases

we know that PoS is bounded by 3
2 . ⊓⊔

Corollary 1. In a ring design game, if the cost of the entire ring is larger
than 3/2 times the cost of an optimal state, then the improvement dynamics
starting from an optimal state converges quickly, within at most 3 steps, to a
Nash equilibrium.

The following theorem will be given in the full version of this paper and
constructs an example (Figure 1) when the above upper bound is reached.

Theorem 2. Given any ǫ > 0, there exists an instance of the ring design game
such that the price of stability is at least 3

2 − ǫ.

b b b b2
e1

2
e2

2
e3

3−ǫ

e4

Fig. 1. The lower bound example for PoS on the ring. There is a player associated with
each edge. The optimum uses three edges of cost 2 whereas the only Nash equilibrium
uses the whole ring.
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