Matematyka dla biologéw — Zajecia nr 12.

Rachunek prawdopodobienstwa
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Zmienne losowe

Przebieg réznych zjawisk losowych wygodnie jest opisywaé za pomocg
specjalnie wybranych funkcji, okre$lonych na przestrzeni probabilistyczne;j,
kt6re zawierajg najwazniejsze informacje o przebiegu danego zjawiska.
Jako przyktad moze stuzyé funkcja, ktéra po ustaleniu stawek, opisuje
wartos¢ wygranej przy grze polegajacej na rzutach monetg. Wartosci tej
funkcji niosa najwazniejsza informacje dla gracza o rezultacie gry. Tego
typu funkcje nazywa sie zmiennymi losowymi.

Dariusz Wrzosek Zajecia nr 12. 07 stycznia 2026 2/32



Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Definicja zmiennej losowej

Zmienng losowg nazywamy funkcje przyjmujgcg wartosci w zbiorze liczb
rzeczywistych okreslong na zbiorze zdarzen elementarnych.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Niech (2, P) bedzie przestrzenig probabilistyczna. Jesli zmienna losowa
X : Q2 — R przyjmuje wartosci dyskretne tzn. jej zbidr wartosci jest
skonczony x1 , X2, ... X, to wtedy rozktadem zmiennej losowej X
nazywamy zbiér Ry par , z ktérych kazda okresla z jakim
prawdopodobienstwem zmienna losowa przyjmuje dang warto$é

Rx = {(X1 ,p1),(X2 7p2) s (men)}
gdzie
pi = P({w : X(w) = x}) lub w skréconym zapisie p; = P(X = x;).

Zbior Rx ma tyle elementow ile r6znych wartosci przyjmuje zmienna X. Ze
wzgledu na to, ze zbiér wartosci zmiennej X jest skonczony taki rozktad
nazywa si¢ rozkladem dyskretnym zmiennej losowej, a samg zmienng
losowg nazywamy sie wtedy zmienng losowg dyskretna.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Trzeba podkresli¢, ze sam rozktad prawdopodobienstwa nie niesie petnej
informacji o zmiennej losowej jako o funkcji, okresla jedynie z jakimi
prawdopodobienstwami dana zmienna losowa przyjmuje swoje wartosci.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne
Przyktad

Wykorzystujac rzut koscig okreslimy gre losowa: jesli wypadnie "6” gracz
otrzymuje 90z, a jesli wypadnie nieparzysta liczba oczek otrzymuje 10 zt i
nic nie traci ani nic nie otrzymuje w pozostatych przypadkach. Wtedy :

]
Q={1,2,3,4,5,6},P({i})=5°€" gi=1,2...,6.

Zmienng losowa, ktdéra opisuje wartosci wygranych, oznaczymy przez Y.
Przyjmuje ona tylko trzy wartoéci: 0,10,90, awiec P(Y =0) = qo + q4 =

J.P(Y=10)=qg1 + g3 +05 = 3, P(Y =90) = gs = { i jej rozkiad jest

nastepujacy 1 1 1
{05) (0z) (05)}
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Duze znaczenie w rachunku prawdopodobienstwa majg charakterystyki
liczbowe zmiennych losowych - warto$¢ oczekiwana EX oraz wariancja,
oznaczana jako VarX lub D?X. Mozna je wyrazié¢ znajac jedynie ich
rozktady. Warto$¢ oczekiwang zdefiniowat w 1658 roku Huygens
(Christiaan Huygens (1629-1695)) w pracy po$wiecone;j teorii gry w kosci.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Warto$¢ oczekiwana zmiennej losowej

Wartoscig oczekiwang dyskretnej zmiennej losowej X o rozkfadzie Rx
nazywamy liczbe

n
EX = inp,- .

i=1

Dla zmiennej Y z przyktadu ; EY =10 3 + 0 + 90} = 20.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Rozktad jednostajny

Rozpatrzmy rozktad R, zmiennej losowej przyjmujgcej n wartosci z tym
samym prawdopodobienstwem %

Ry={(x1 1) (s 7)o (60 2) (o 7))

Przyktadem zmiennej losowej o takim rozktadzie jest zmienna losowa J
okreslona na przestrzeni probabilistycznej

Q={wi:i=1,2,...,n}

takiej, ze zdarzenia sg jednakowo prawdopodobne tzn. P({wi}) = 1 dia
kazdego i. Warto$cig oczekiwang zmiennej losowej okre$lonej jako
J(wj) = x; jest wartos¢ srednia ze wszystkich wartosci tej zmienne;j

n
EJ= Zx,1 EPYEL =12
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Prawdopodobienstwa jako wagi

Z tego punktu widzenia w przypadku ogolnym ujetym w definicji mozna
powiedzieé, ze warto$¢ oczekiwana jest $rednig wazona, ktérej wagi czyli
prawdopodobienstwa p; okreslajg jak wielki jest wkiad poszczegbinych
wartos$ci x; do catkowitej “Sredniej”.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Podstawowe wtasnosci wartosci oczekiwanej

@ Jesli G jest zmienng losowg bedaca ztozeniem zmiennej X : Q — Ri
funkcji g : R — R tzn.

G(wi) = 9(X(wi)), wi€Q,
to
EG = E(9(X ZQ(X:

@ Nietrudno udowodni¢ wprost z deﬂmcp, ze jesli X i Y sg dwiema
zmiennymi losowymi okreslonymi na tej samej przestrzeni
probabilistycznej a a i b sg liczbami to

E(aX + bY) = aEX + bEY .
© Jesli X. jest zmienng losowg przyjmujgca tylko jedng wartosc¢ c to
n
EX;=c) pi=c.

i=1
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Wariancja

Miarg tego jak bardzo wartosci zmiennej losowej X odbiegajg od wartosci
oczekiwanej jest wariancja oznaczana jako VarX lub D?X i dyspersja
DX = v/ D2X. Dyspersja okresla innymi stowy $redni rozrzut zmiennej
losowej. Dyspersja bywa tez nazywana odchyleniem standardowym.

Definicja
Oznaczajac przez my wartos¢ oczekiwang zmiennej X jej wariancja w
przypadku dyskretnej zmiennej losowej nazywamy liczbe

n
D?X = VarX := E((X — my)?) =Y _(xi — my)?p;
i=1
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Skoro definiowana wielko$¢ ma by¢ miarg Sredniego rozrzutu wartosci
zmiennej losowej, to uzasadnione jest pytanie dlaczego nie okreslic jej
jako warto$ci oczekiwanej odlegto$ci pomiedzy wartoscig zmiennej od
Sredniej tzn.

n
EIX —my| =" |xi— mdpi.
i=1
To nie jest zty pomyst, ale niepraktyczny z rachunkowego punktu

wiedzenia, gdyz modut nie ma tak dobrych wtasnosci arytmetycznych. Oto
przyktad obliczenia wariancji wprost z definicji

VarX := E((X—my)?) = E(X?)—2(my)EX+(my)? = E(X?)—(my)?. (1)
Aby obliczy¢ wariancje wystarczy zatem obliczy¢ EX i E(X?).
Latwo sprawdzi¢, inng wazng wtasnos¢:
jesli X jest zmienng losowag, a a i b pewnymi liczbami to
Var(aX + b) = a®VarX. )
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Niezalezno$¢ zmiennych losowych

Skoro zmienne losowe opisuja rezultaty réznych zjawisk losowych to
naturalne jest pytanie o wzajemne zwigzki pomiedzy ro6znymi zmiennymi
losowymi (okreslonymi na tej samej przestrzeni zdarzen elementarnych).
Tego typu zwigzki moga wyraza¢ istnienie zwigzkow
przyczynowo-skutkowych pomiedzy tymi zjawiskami. Réwnie wazne bywa
okreslenie braku tego typu zwigzku. Dobrym przyktadem jest pobieranie
probek z jakiej$ populaciji. Postuzymy sie przyktadem zaczerpnietym z
ksigzki tomnickiego "Statystyka dla Biologéw”.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Pte¢ osobnika wybranego z jakiej$ populacji mozemy uzna¢ za realizacje
zmiennej losowej dwuwarto$ciowej. Niezalezno$¢ préb oznacza tu, ze
odtowienie osobnika jednej pici nie ma wptywu na nastepny odtéw. W
przypadku ptakéw, ktére wystepujg w czasie rozrodu parami (jest tak u
synogarlic tureckich) warunek ten moze nie by¢ spetniony bo odfawiajgc
samice zwiekszamy prawdopodobienstwo schwytania w nastepnym
odtowie jej partnera. Jesli za$ ptaki trzymaja sie w grupach
jednoptciowych, odtowienie samicy zwigksza prawdopodobienstwo
schwytania w drugim odtowie nastepnej samicy, kolejne proby nie sg
zatem niezalezne.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Niezalezno$c zmiennych losowych

Definicja
Dwie zmienne losowe X : Q — R i Y : Q — R o rozktadach dyskretnych

Rx ={(xt,p1), - (%, pi) s+ (Xn s Pn)} (3)

oraz
Ry ={(y1,a1),---(¥,G)--- ,(¥m,am)} (4)

s3 niezalezne jesli dla dowolnych wartosci x; oraz y; ktére przyjmujg,
zachodzi

P(X =xi,Y =y;) = piq;
gdzie P(X = xj, Y = y;) oznacza prawdopodobienstwo zdarzenia, ze X
przyjeta wartos¢ x; i zmienna losowa Y przyjeta wartos¢ y; . Podobnie

definiuje sie niezaleznos¢ dowolnej liczby zmiennych losowych wigkszej
od dwdch.

v
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Niezalezne zmienne losowe majg kilka bardzo waznych wtasnosci.

Stwierdzenie

Jezeli zmienne losowe X i Y o rozktadach (3)-(4)sa niezaleZne to

EXY =EX-EY

Dowdd. Ustalmy iloczyn x;y;. Zauwazmy, ze wéréd wartoéci zmiennych X i
Y moze by¢ wiecej par liczb, ktére po wymnozeniu dajg x;y; np.

xi =5,y =10o0raz xx = 2iy, = 25. Aby znalez¢ rozktad zmiennej XY,
dla kazdego takiego iloczynu x;y; trzeba zatem posumowac wszystkie
prawdopodobienstwa zdarzen postaci P(X = xx , Y = y;) o tej wiasnosci,
ze Xx;jyj = Xxy. Poniewaz zmienne losowe sg niezalezne to

P(X =x,Y =y) = pka
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Stad i z definicji wartosci oczekiwanej mozna wydedukowag, ze

EXY = xiypig;. ()

N
3

gdzie suma brana jest po wszystkich iijtakich,ze 1 <i< n,1 <j
Z drugiej strony fatwo sprawdzi¢, ze

(EX)(EY) = Z Xipi) Z Yi4))

rowne jest wiasnie (5). Pamietamy, ze warto$¢ oczekiwana sumy
zmiennych losowych jest sumg ich wartosci oczekiwanych. Odpowiemy
teraz na pytanie postawione wcze$nie;.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Bardzo czesto w rachunku prawdopodobienstwa i statystyce rozwaza sie
sumy
Sh=X1+Xo+... X,

ktére reprezentowa¢ moga na przyktad kolejne wyniki pomiaréw jakie$
wielkosci i chcemy policzy¢ np. $rednig tych wynikéw. Powstaje naturalne
pytanie, jaki rozktad ma suma zmiennych losowych jesli znamy
rozktady kazdej ze zmiennych sktadowych?
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Wariancja sumy

Czy wariancja sumy zmiennych losowych jest suma wariancji?

Okazuje sie, ze w ogélnosci tak by¢ nie musi, ale jest to prawdg jesl
zmienne losowe sg niezalezne.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne
Kowariancja zmiennych losowych

Oznaczmy: EX = my , EY = m,.

Kowariancja zmiennych losowych X i 'Y nazywa sie liczbe

Cov(X,Y)=E((X —my)(Y —my))

tatwo sprawdzi¢, ze Cov(X, Y) = E(XY) — mym, Stad wynika wazny
whiosek.

Jesli zmienne losowe X i Y sg niezalezne to Cov(X, Y) = 0.

Stwierdzenie

Przyjmijmy zatoZenia takie jak w poprzednim twierdzeniu i oznaczenia jak
wyzej. Wtedy

Var(X +Y) = VarX + VarY +2Cov(X,Y).
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Korelacje

Wspoétczynnikiem korelacji zmiennych losowych X i Y nazywamy liczbe
z przedziatu [-1, 1] réwng

Cov(X,Y)
VVarX - \/VarY

Q(Xv Y) =
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

@ Jesli o(X, Y) = 0 to zmienne losowe nazywa sie nieskorelowanymi.
Stad wynika, ze jesli dwie zmienne losowe s3 niezalezne to sa
nieskorelowane.

@ Jesli (X, Y) = 1(—1) to zmienne nazywa sie dodatnio (ujemnie)
skorelowanymi.

@ Latwo sprawdzi¢, korzystajac z (1) i (2), ze jesli Y = aX, gdzie a to
pewna liczba, to

_ 1 gdy a>0.
Q(X’Y)_{—1 gdy a<0o,

Zmienne X i aX sg zatem dodatnio lub ujemnie skorelowane w
zaleznosci od znaku a.

Stwierdzenie, ze dwa zjawiska (losowe) np. cechy osobnicze w badane;j
populacji sg dodatnio skorelowane oznacza w praktyce, ze zjawiska te
wspotwystepujg i moze, ale nie musi wystepowaé pomiedzy nimi zwigzek
przyczynowo skutkowy.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Cigg préb Bernoulliego

Szczeg6Ing role w rachunku prawdopodobienstwa i statystyce petni opis
rezultatéw serii powtorzen jakiego$ doswiadczenia w przypadku gdy
kolejne do$wiadczenia sg wzajemnie niezalezne. Typowym przyktadem
jest seria rzutéw monetg lub koscig do gry jesli zapewni sie przy kazdym

rzucie idealnie takie same warunki dotyczace stanu przedmiotu ktérym
rzucamy.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Rozwazmy ciag n niezaleznych doswiadczen taki, ze w wyniku kazdego
doswiadczenia moze zaj$¢ zdarzenie A C Q lub przeciwne do niego
zdarzenie A. Czesto jedno ze zdarzen A lub A nazywa sie umownie
sukcesem. Przyjmijmy, ze zdarzenie A (sukces) zachodzi z
prawdopodobienstwem p a zdarzenie A z prawdopodobienstwem

q, p+q=1.Niech X; : Q, — {1,0} bedzie zmienng losowg réwna 1
gdy w i-tym do$wiadczeniu zaszto zdarzenie A i rébwng 0 w przeciwnym
przypadku.

Ciag niezaleznych zmiennych losowych Xy , Xo , . .. X, z ktérych kazda ma
ten sam rozktad

{(1,p),(0,9)}

nazywa sie ciagiem prob Bernoulliego.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Cigg préb Bernoulliegodlap =g = % jest oczywiscie modelem
probabilistycznym opisujacym wyniki serii rzutdw monetg symetryczna.
Poniewaz zmienne losowe w ciggu préb Bernoulliego sa niezalezne,
prawdopodobienstwo wystgpienia serii okreslonych wynikéw jest
iloczynem prawdopodobienstw otrzymania kazdego wyniku w
poszczegdlnych prébach. Na przyktad w przypadku czterech préb

P(Xi=0,X%=1,X3=1,X4=1)
= P(Xy = 0)P(X2 = 1)P(Xs = 1)P(Xs = 1) = p°q.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Rozktad dwumianowy

Rozktad ten ma kluczowe znaczenie w zastosowaniach rachunku
prawdopodobienstwa gdyz opisuje liczbe sukceséw w ciggu préb
Bernoulliego. Szukamy zatem rozktadu zmiennej losowe;

n
Sn = ZXia
i=1

ktéra przyjmuje wartos¢ k jesli doktadnie k razy w ciggu préb Bernoulliego
zaszto zdarzenie A. Aby znalez¢ rozkiad tej zmiennej obliczamy
prawdopodobienstwo zdarzenia, ze doktadnie k sktadnikéw w powyzszej
sumie przyjmuje warto$¢ 1 a pozostate wartos¢ 0. Prawdopodobienstwo
zdarzenia, ze wybrane k zmiennych przyjeto wartos$¢ 1 a pozostate
warto$é 0 wynosi pX(1 — p)"~k. Zwréémy uwage, ze k sktadnikow w
n-sktadnikowej sumie mozna wybra¢ na tyle sposobéw ile jest kombinagcji
k-elementowych ze zbioru n-elementowego, czyli
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Sumujgc prawdopodobienstwa roztgcznych zdarzen odpowiadajagcym
seriom zawierajgcym doktadnie k sukceséw osiagnietych w réznych
prébach otrzymujemy

P(Sn = k) & bnp(k) = (k) p*(1 — p)"*.

Taki rozktad zmiennej losowej nazywamy rozktadem dwumianowym
(ang. binomial distribution) o parametrach ni p. Latwo sprawdzi¢
stosujac Wniosek(1.8), ze

ES,=np VarS,=np(1 —p).
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Przyktad

Typowe zastosowanie rozktadu dwumianowego znajdujemy w klasycznej
(mendlowskiej) genetyce populacyjnej. Rozpatrzmy mianowicie duzg
populacje organizméw diploidalnych i zajmijmy sie jednym locus, ktéremu
odpowiadajg dwie alle A i a. Przyjmijmy, ze allel A wystepuje w populacji z
czestoscig p a allel a z czgstodcia g, p + g = 1, oraz, ze nie wystepuja
mutacje. Wiemy, ze zamiast czesto$ci mozemy tu méwic o
prawdopodobienstwie wystepowania danego allelu. Przyjmujac
catkowicie losowe kojarzenie w pary i brak sprzezen pomiedzy genami
mozemy przyjac, ze allel, ktéry trafia na odpowiednie miejsce na jednym z
chromosomoéw homologicznych jest losowany z puli gendéw, niezaleznie
dla kazdego z dwéch homologicznych chromosomow.

Dariusz Wrzosek Zajecia nr 12. 07 stycznia 2026 29/32



Rachunek prawdopodobienstwa, zmienne losowe dyskretne

To tak jakby$smy dla obsadzenia obu miejsc na chromosomach
homologicznych dwukrotnie rzucali monetg. W przypadku allelu A
prawdopodobienstwo jego wylosowania wynosi p a dla allelu a
odpowiednio g. Jesli wylosowanie A nazwiemy sukcesem to
prawdopodobienstwo wystepowania w kolejnej generacji "genotypu”

@ AA odpowiada prawdopodobienstwu wystapienia dwéch sukceséw w
dwoch probach Bernoulliego czyli (3) p2q° = p? om-

@ Aa odpowiada prawdopodobienstwu wystgpienia jednego sukcesu w
ozn.

dwoch probach Bernoulliego czyli (3) p'q' = 2pg =" v,

@ aa odpowiada prawdopodobienstwu nie wystgpienia ani jednego
sukcesu w dwéch prébach Bernoulliego czyli (2) p°q? = ¢ = w.

Jest to rozktad dwumianowy.
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Rozktad dwumianowy

Rozktad dwumianowy
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Rozktad dwumianowy: n=10,p=0,2, 0,4, 0,5, 0,8..
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Rachunek prawdopodobienstwa, zmienne losowe dyskretne

Zadania

1. W pewnym lesie wystepuje N zwierzat danego gatunku, w tym M
zaobrgczkowanych. Znalez¢ wz6r, ktory okresla prawdopodobienstwo, ze
wsrdd n losowo schwytanych zwierzat k jest niezaobrgczkowanych.
(wskaz. Zastosowac¢ schemat Bernoulliego.)

2. Wykonujemy niezalezne rzuty monetg symetryczng. W czterech
kolejnych rzutach otrzymalismy orty. Czy prawdopodobienstwo wyrzucenia
reszki w pigtym rzucie jest wigksze od %?

3. Pewna gra polega na rzucie kostkg i monetg. Wygrana wystepuje przy
tacznym wyrzuceniu piatki i orfa. Jakie jest prawdopodobienstwo, ze w
trzech grach wygrana wystapi dokfadnie raz?

wskaz. Zastosowac¢ schemat Bernoulliego do ciggu do$wiadczen, w
ktérym sukcesem jest jednoczesne wyrzucenie orta i pigtki. Rzuty koscig i
monetg traktujemy jako zdarzenia niezalezne. Odp
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