
Presentation of XML – commercial
approach (XML in DTP)

Patryk Czarnik

XML and Applications 2013/2014
Week 11 – 16.12.2013

2 / 87

Uwaga, nie trzeba uczyć się wszystkich szczegółów
technicznych do egzaminu.

3 / 87

Desktop Publishing (DTP)

Production of high-quality text&graphics material to be printed
(main focus) or published in different ways

Examples: press, marketing folders, user manuals

Existing approaches to work:
manual preparation of all materials in specialised tools
semi-automated workflow, e.g.:

manual preparation of templates (often by example documents)
creation of actual documents by filling the tamplate with varying
content
frequent need of manual corrections after the template is filled
with actual data

fully automated production – rarely applied

4 / 87

DTP-related terms

Template – a document baselining the structure, shape (page
size, margins) and format (available styles, etc.) of documents

Templates are often used to produce series of documents
varying in their content, but sharing a common structure and
style.

Page master – a template of a page, fixing its orientation,
size, margins, and setting available regions on the page

Depending on technology, page master may also set the content
of static page regions, usually header and footer.
A document may use several page masters, e.g. different
masters for odd and even pages, and a separate one for the title
page.

Flow – a sequence of content distributed on document pages
In advanced DTP, a document may have more than one flows. It
is possible to have concurrent flows on the same page.

5 / 87

Why XML in DTP workflow?

Typical DTP tool formats: proprietary, closed, requiring
commercial products to access documents

Many tools and technologies making use of XML and
extending particular tool functionality:

general technologies supporting XML (XSL, XQuery)
custom applications based on programming libraries
CMS, report generators, Web Services, etc.
specialised tools for particular XML applications
(DITA, DocBook, RSS, MathML, SVG, ...)

Communication between a “DTP tool world” and the external
world

6 / 87

DTP and XML – different approaches

XML as additional format required from time to time
Save as XML... available (at least in tools presented today)

XML as central format in workflow process
structured application developed
content stored in XML files
DTP tools used as editors and formatting engines
additional tools may consume XML (CMS, for instance)

DTP tool for formatting purposes only
XML created (manually or automatically) independently
DTP tools used to open and “print” document (e.g. by exporting
PDF)

DTP tools and its templates play role analogous to stylesheets

manual enhancements available in special cases
which would not be possible using generic stylesheets, e.g. XSL-FO

7 / 87

Tools mentioned today

Adobe FrameMaker
especially useful for large and complex text documents
advanced support for XML and structured documents
constructs analogous to DTD and stylesheets

Adobe InDesign
especially useful for documents that have to look perfectly
basic support for XML be means of filling a template with XML
content

8 / 87

Adobe FrameMaker

Word processor / desktop publishing tool
One of first that advanced tools
Acquired by Adobe in 1995

Especially popular for:
complex documents, where structure important
large documents, e.g. technical documentation

Two kinds of documents (and 2 ways of authoring):
unstructured – flat, paragraph-based structure,
similar to styles in popular word processors
structured – tree-like structure, based on SGML and XML

FrameMaker augments a structural approach to the
content with a WYSIWYG editor convenience.

9 / 87

Basic XML features

For any FM document
File > Save As XML...

Unstructured document
XML structure based on styles and FM objects (tables etc.)

Structured document
XML structure directly reflecting document structure

Structured document within registered structured application
Read/write rules and XSLT postprocessing may additionally
affect resulting XML.

10 / 87

Structured documents in FM

Structured application
FM concept analogous to XML application in XML world

FM manages a set of registered structured applications

XML documents opened / saved directly
template and formatting rules from EDD define the formatting
manual formatting available in FM, but lost when document
saved as XML

11 / 87

Structured application

EDD – Element Definition Document (or Elements Catalogue)
document structure definition (elements, attributes)
formatting and other rules

! not included in s.a. definition directly, rather through template

DTD – may be generated from EDD

structured template – FM document
pagination, layout, header and footer, ...
styles (“paragraph/character format tags”), variables, markers,
cross-reference formats, ...
Elements Catalogue imported from EDD

∘ Read/write rules – extra translations between XML and FM

∘ XSLT pre- and post-processing

∘ API client – custom executable application

12 / 87

Structured application structure :)

Template:
● layout and pagination
● styles catalog
● element catalog

EDD:
● structure
● rules

DTD

imported by

generates

read / write rules

13 / 87

Structured application dependencies

cite: [1]

14 / 87

Element Definition Document

FM document defining other documents structure

EDD role corresponding to (in general XML applications):
DTD or XML Schema – structure definition
CSS or XSL (to some extent) – formatting rules

Structure definition
available elements, their type and acceptable content
attributes, their type and optionality

Particular elements marked as FM special objects (tables
and table components, variables, markers,
cross-references, ...)

Rules for elements:
formatting
initial value or structure
prefix and suffix

15 / 87

EDD based on existing XML application

Options for EDD creation:
from scratch
based on existing DTD
based on existing XML Schema

If based on existing structure, some details to be added:
formatting rules (DTD or XML Schema do not contain such)
relation to FM special objects (tables, variables, etc.)

Formatting rules may be created based on CSS.
Though many details are not reflected and have to be recovered
manually.

16 / 87

Element definition examples
(EDD shown in document view)

17 / 87

Content model (General rule)

Expression built from element names, <TEXT> token,
parentheses, and:

grouping symbols (between element names or () groups)
, – sequence of subelements
& – subelements in any order
| – choice

occurrence indicators (after element name or () group):
? – optional element (0-1 occurrence)
* – any number of occurrence (0-unbounded)
+ – at least one occurrence (1-unbounded)
no indicator – exactly one occurrence

Examples:
imię+, nazwisko
Title, Abstract?, Section*

18 / 87

Kinds of elements

Container
element with no special meaning
may contain elements or text (or both → mixed model)

CrossReference – FM cross-reference

Footnote – FM footnote

Equation, Graphic – anchored objects;
XML would contain references to external entities

Marker – FM marker

SystemVariable – FM system variable reference

Rubi, RubiGroup – Asian alphabets support

19 / 87

Kinds of elements (cntnd.)

Table – FM table main element

TableTitle, TableBody, TableHeading, TableFooting,
TableRow – table components

TableCell – table cell; may contain text and other elements
(like Container) but no table or table component

20 / 87

Types of attributes

Choice – one of given values

String – any text

Integer – integer number

Real – floating-point number in decimal (e.g. 0.0023) or
exponential (e.g. 2.3e-3) notation

Unique ID – value unique within document scope

ID Reference – reference to Unique ID value somewhere
in document

Strings, Integers, Reals, Unique IDs, ID References
– multi-value attributes

21 / 87

Document structure specification
– what more?

<ANY> or <EMPTY> as content model (General rule)

ValidHighestLevel – element may be document root

AutoInsertions, InsertChild, InsertNestedChild –
automatic insertion of subelements

InitialStructurePattern – initial content (on structure
level) of table

22 / 87

EDD and DTD – similarities

Document structure definition

Container elements

Content model specification (| , * ? +)

Optional and required attributes

Unique ID, ID Reference – ID, IDREF in DTD

23 / 87

EDD and DTD – differences

EDD

FrameMaker-special element
kinds (tables, variables, etc.)

Numeric attribute types

Multi-value attributes

& – elements in any order

Formatting rules

No means for structure
modularisation

style modularisation
available through format
change lists

DTD

General-purpose elements
(like EDD Container)

No numeric types (for XML)

Space-separated NMTOKENS
and IDREFS

Only choice and sequence

No formatting specification

Parameter entities as means
for DTD modularisation

24 / 87

EDD and XML Schema

EDD

FM-tied (special element
kinds, formatting)

No constraints for simple
values, except lists of choice
for attributes

General ID/IDREF
mechanism

No means for structure
modularisation

Format specific for FM

XML Schema

General-purpose technology
(like DTD)

Simple types and precise
control of simple values
(text, numbers, etc.)

Advanced key/keyref
mechanism

Modularisation though
types, type inheritance,
groups

Understandable and usable
outside FM world (e.g. for
WebServices)

25 / 87

Formatting rules

Appearance of particular elements described in EDD

In element definition (e.g. Container) rules grouped by
scope of effect:

TextFormatRules – formatting of whole element, inherited by
descendants
FirstParagraphRules, LastParagraphRules – formatting
of first / last paragraph only
PrefixRules, SuffixRules – content generated in front / at
end of element and its formatting

Some more features analogous to CSS selectors:
context rules
level rules

We omit the rest of details here...

26 / 87

Format rules – example

Element (Container): Head
 General rule: <TEXT>
 Text formal rules
 1. In all contexts
 Default font properties
 Weight: Bold
 Size: 14pt
 Numbering properties
 Autonumber format: <n>.<n+>\t

27 / 87

Format change list – example

Format change list: Code
 Basic properties
 Tab stops
 Relative tab stop position: +12pt
 Alignment: Left
 Default font properties
 Family: Courier
 Pair kerning: No

Element (Container): CodeFragment
 General rule: <TEXT>
 Text format rules
 1. In all contexts.
 Text range.
 Use format change list: Code

28 / 87

Reference to document-defined style

ElementPgfFormatTag element

Good practice – define all referenced formats in structured
application template
Element (Container): Item
 General rule: <TEXT>
 Text format rules
 Element paragraph format: item
 1. If context is: BulletList
 Numbering properties
 Autonumber format: \b\t
 Else, if context is: NumberList
 Numbering properties
 Autonumber format: <n+>\t

29 / 87

Context rules – example

Text format rules
1. If context is: List [Type = "Bulleted"]
 Numbering properties
 Autonumber format: \b\t
 Character format: bulletsymbol
 Else, if context is: List [Type = "Numbered"]
 1.1 If context is: {first}
 Numbering properties
 Autonumber format: <n=1>\t
 Else
 Numbering properties
 Autonumber format: <n+>\t

30 / 87

Level rules – example

Text format rules
 1. Count ancestors named: Section
 If level is: 1
 Default font properties
 Font size: 18
 If level is: 2
 Default font properties
 Font size: 14
 If level is: 3
 Default font properties
 Font size: 12

31 / 87

Prefix / suffix rules – example

Prefix rule
 1. In all contexts.
 Prefix: <attribute[Label]>
 Font properties
 Weight: Bold

32 / 87

Tables

FM table model restrictions:
Table > Title?, Header?, Body, Footer? > Row+ > Cell+

Document structure required to conform the requirements

Arbitrary element names, obligatory element kinds

Table cell allowed to contain text and other elements (like
Container) but no table or table component

Read/write rules must add table metadata on read
(and optionally store them to XML on write)

When table element defined in EDD, normal FM tools (here:
Table creator) may be used to insert tables conveniently

33 / 87

Read/write rules

Translation between FM-internal and XML form of document

Capabilities:
changing name of element or attribute
setting/changing attribute value
mapping between FM special objects (variables, markers, etc.)
and XML constructs (elements, entities, processing instructions)
mapping between FM-specific metadata and XML elements or
attributes (e.g. table metadata)

More complex structure modifications or content processing
– use XSLT

34 / 87

R/W rules example: Storing table
metadata in XML attributes

element "table" {
 is fm table element "Table";
 attribute "frame" {
 is fm property table border ruling;
 value "top" is fm property value top;
 value "bottom" is fm property value bottom;
 value "topbot" is fm property value top and bottom;
 value "all" is fm property value all;
 value "sides" is fm property value sides;
 value "none" is fm property value none;
 }
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
 attribute "numcols" is fm property columns;
 attribute "colwidths" is fm property column widths;
}

35 / 87

Variables and markers

Variables in FM
enable automatic insertion of varying texts into the main text
flow or into the background text (header/footer)
predefined set of system variables (page number, etc.)
user-defined variables (e.g. document title)

Markers
parts of document can be marked in a special way
and then referred from a cross-reference or the header (to make
“running header”)

In structured applications they can be represented as XML
documents, if appropriately declared in EDD

otherwise they are written in XML as processing instructions

36 / 87

Cross references

FM cross-references represented by elements of kind
CrossReference

Structural cross-references – based on Unique Id and
IdReference attribute types (mapped to ID/IDREF in DTD);
structure requirements:

IdReference declared in reference element
Unique Id declared in referenced element

Cross-reference format defined in actual FM document
good practice: in structured template

Inserting structural references very easy in FM:
choosing elements capable of having Unique Id
ID automatically generated, if not existed so far
IDREF inserted behind scenes

37 / 87

Conversions

Both the functionalities make use of “conversion tables”

Migrating unstructured documents to structure

Exporting documents to HTML

38 / 87

Conversion rule examples

Simple (paragraph style, character style):
P:Body para
C:Emphasis em

Wrapping elements (any graphics, paragraph style,
and wrapper for both):

G: Graphic
P:caption Caption
E:Graphic,E:Caption Figure

As we can see, we can apply structure to elements we have just
created.

Root:
RE:RootElement document

39 / 87

Manual modification of conversion
table

Available on appropriate reference page
(after first usage of HTML)

40 / 87

Adobe InDesign

Advanced desktop publishing tool
part of Adobe Creative Suite

Especially helpful when:
text and graphics mixed together
advanced, non-standard page layouts used
precise positioning and typesetting required
high-quality printout planned

Compromise between word processor and graphic design tool

Less structure support when compared to Adobe FrameMaker
or XML-based solutions

harder to automatize publication process
easier to make ad-hoc formatting enhancements

41 / 87

Main XML-related features of InDesign

Parts of document annotated with XML-based structure

Structure-oriented tools and features:
Tags panel and Structure pane
tag markers visible in Story Editor and layout view

Tagging unstructured content
manual
automatic
based on styles

Exporting tagged content as XML

Importing XML, and then:
manually distributing XML fragments among text frames
automatic layout of imported content if placeholders were
prepared

XML import options

42 / 87

Main XML-related features of InDesign

Relating InDesign styles and XML tags:
applying styles to tags automatically
tagging content based on styles

InDesign attributes in XML documents

Script-based XML rules

XSLT pre- and post-processing

Saving document in concrete XML-based formats:
InDesign Markup Language (IDML)
XHTML
EPUB

43 / 87

InDesign and XML – what for?

XML as interface language between various publishing tools

Exporting content already existing in InDesign documents for
external, structure-intensive processing

Importing XML into InDesign documents; XML as main
content:

InDesign template as formatting skin for structured XML content
coming from external sources
leveraging InDesign professional typesetting and formatting
capabilities for structured, maybe partially generated, content
InDesign included in highly formalised and automatised
publication workflows

Structural content added to documents prepared manually:
database records
standard text fragments like “Legal Notes” from common source

44 / 87

Structure pane and Layout view for
tagged, multi-frame document

45 / 87

Structure pane context menu

46 / 87

Story Editor and Tags panel
with Tags menu expanded

47 / 87

XML content in InDesign

May exist in any InDesign document

Whole XML content can be found in Structure pane
View > Structure > Show Structure

Parts of XML content may occur in text stories and be visible
in text frames

“tagged” text frames
parts (or even whole) of XML content may be hidden – not
included in any text frame of document

XML tags in text are indicated with:
small colour markers in main document view (“layout view”)
more verbose markers similar to actual XML tags in Story Editor

48 / 87

XML content in InDesign – summary

Where does it come from?
importing external XML documents
tagging text content (manually or basing on styles)

How do we use it?
exporting to XML documents
distributing parts of XML tree to (many, in general) text frames
and stories

Some restrictions:
one XML tree for document (even if many text frames and
stories)
one XML element cannot be included in more than one place in
the document (“1-1 mapping”)

49 / 87

Attributes of elements

Attributes available only in Structure pane:

Adding, removing or editing available from Structure pane
menu or context menu

Restrictions:
attributes not available in text flow
attribute values cannot be printed

Attributes usage in InDesign:
imported from / exported to XML
can be used during external XML processing
href attribute for image locations
special InDesign attributes (in separate namespace) for style
annotation and table metadata

50 / 87

Comments and processing instructions

Comments and processing instructions available in Structure
pane

adding, removing, editing

Visible, but not editable in Story Editor and layout view

Usage of comments and processing instructions:
imported from / exported to XML
can be used during external XML processing

51 / 87

Mixing XML and unstructured content

Unstructured frames
unrelated to structured content
may be used as header and footer or for similar approaches
or in documents merged from many structured and unstructured
sources
not taken into account on export and import

Plain text within structured story
interleaving with elements
on export, placed within parent element for whole story

52 / 87

Exporting XML

File > Export > (choose XML as file type)
or Export XML from Structure pane context menu

Saves the structured content of document in XML file

Unstructured text frames omitted

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bcard>
 <person><first-name>Alice</first-name>
 <!--This is a comment--><surname>Blonde</surname>
 </person>
 <address role="office">...</address>
 <contact>
 tel.: <telephone role="office">13131818</telephone>
 e-mail:<email role="office">aliceb@example.com</email>
 </contact>
</bcard>

53 / 87

Using styles and XML together

Manual formatting and style application

Mapping tags to styles

Mapping styles to tags

Style information in XML attributes

54 / 87

Manual formatting and style
application

XML content formatted as any text content
manual formatting
formatting with styles

Recommended for:
one-time project (formatting not intended to be used again)
short text
non-repeating XML elements or formatting unrelated to XML
structure

55 / 87

Mapping tags to styles

Automatic application of styles to elements
paragraph, character, table, and table cell styles applicable

Styles reapplied in all tagged stories of document

Elements with the same name receive the same chosen style

Styles have to be already defined

Options:
Preview – changes visible in layout view before accepting
Map by Name – uses styles of the same name for elements,
where applicable
Load – loads styles from external file

56 / 87

Mapping tags to styles

57 / 87

Mapping tags to styles – example

Sample document before and after applying styles

58 / 87

Mapping tags to styles – remarks

Benefits:
fast formatting of large documents
consistent formatting
easy style enhancements in future

Difficulties and discomforts:
styles have to be defined manually before mapping
special characters – paragraph breaks, spaces etc. – have to
exist in structured content before formatting

one paragraph style used for many XML elements in case that
those elements reside in the same source line

unneeded indents and line breaks from XML cannot be
eliminated easily

59 / 87

Style information in XML attributes

Attributes understood by InDesign may contain information
which style to apply

attributes within Adobe InDesign namespace:
aid = http://ns.adobe.com/AdobeInDesign/4.0/
aid:pstyle – paragraph style
aid:cstyle – character style

InDesign applies style according to them on import, if
provided

Benefits:
styles applied on import, user interaction not required
different styles may be used for the same tag name

! XSLT preprocessing may prepare attributes

60 / 87

Style attributes – example

<bcard
 xmlns:aid="http://ns.adobe.com/AdobeInDesign/4.0/">
 <person aid:pstyle="Person">
 <first-name>Alice</first-name>
 <surname aid:cstyle="SName">Blonde</surname>
 </person>
...
</bcard>

61 / 87

Mapping styles to tags

Each fragment marked with a given style placed within
corresponding element

Elements have to be known – import DTD or XML before

Benefits and applications:
fast tagging of unstructured content

Difficulties and risks:
removes current structure of document;
to be applied carefully to structured documents
requires document to be properly formatted with styles, where
styles denote structure (and semantics in the best case)
styles structure should correspond to desired XML structure –
hard to achieve for elaborated, nested XML structures

! XSLT postprocessing may be used for correcting structure

62 / 87

Automatic tagging

Tags > Autotag

Another way for fast tagging whole document

More coarse-grained: tags applied to frames and objects

Tags > Tagging Preset Options (default values given below):

63 / 87

Import XML – two main approaches

Content-first approach:
import content
then take care of it:

distribute content to text frames
format (by e.g. mapping tags to styles)

Placeholders approach:
prepare document with stub content distributed and formatted
as desired
then import (merge) XML and get it distributed and formatted
automatically

64 / 87

Importing XML – content first approach

Benefits:
real document visible while preparing layout and formatting
fast final result

Disadvantages:
manual work to do each time document is imported

Reasonable usage:
one-time process

e.g. importing structured content into larger, unstructured
document, produced on special demand...

preliminary step while preparing template in placeholder
approach

65 / 87

Importing XML – placeholders approach

Benefits:
cheap application to arbitrary many documents
repeatable, predictable results

Disadvantages:
more preliminary work required

Reasonable usage:
repeatable tasks
part of (semi-)automatised publication process when (part of)
data comes from external XML
InDesign document as (very advanced...) stylesheet

saved as template allows for easy fresh documents creation

66 / 87

Preparing placeholders for XML import

Prepare stub structure and content:
one instance of each XML structure we want to handle
example content; representative in length of texts etc.
real document may be used

usually should be simplified – repeated elements removed etc.

Distribute content fragments to text frames and format them
accordingly

use Map Tags to Styles as much as possible
add spaces, line breaks, tabs
add text labels and other static content

! Add static text and characters outside text XML elements to
avoid removing them on import

67 / 87

Preserving labels and special
characters

Good XML contains only actual data
no labels, separators and other redundant content

Adding labels, spaces, etc. – part of formatting process
need to put static content among placeholders, so that
importing does not erase them

Put static content in places where XML to be imported does
not contain any (non-whitespace) content

usually before, after, or between text elements
sometimes inside empty elements

Select import option
Do not import contents of whitespace-only elements

68 / 87

Placeholders prepared – example

69 / 87

XML imported into placeholders

70 / 87

Handling repeating elements

Repeated structures typical for XML content
especially in case of database records saved in XML format

Prepare one placeholder for repeating element (the “record”)

Set Clone repeating text elements option on import

Placeholders get cloned
with actual content inserted, naturally

71 / 87

Tagging images

Images may be tagged as XML elements

Works best if element:
is empty
allows for href attribute

Tagging:
Tag from image frame context menu
or drag element onto image frame

href attribute:
inserted automatically by InDesign when adding or tagging
image
exported in XML
used to load image on XML import, if image placeholder used for
corresponding element in document stub / template
file: URLs, e.g. file:///path/image.png

72 / 87

Preparing placeholder for image

73 / 87

Image imported into placeholder

74 / 87

Tables in structured content

Goal

Importing and exporting tables between InDesign and XML

Available solutions

Tables tagged with custom tags
2 levels of structure: table and cell

no rows, groups, columns, ...

number of columns known to InDesign...
placeholder with given number of columns
special InDesign attributes

mapping table styles to / from tags

CALS tables
more structure levels: table, tgroup, tbody, row, entry
attributes with metadata

75 / 87

Exporting CALS tables

Preconditions:
table within tagged text frame
table not tagged

Export XML
with option Export Untagged Tables as CALS XML

Such table can be then imported with option
Import CALS Tables as InDesignTables

76 / 87

Example table exported as CALS XML

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Root><Story>Text above table.
<table frame="all"> <tgroup cols="3">
<colspec colname="c1" colwidth="119.40551181102364pt"></colspec>
...
<thead><row>
 <entry align="left" valign="top">Person</entry>
 <entry align="left" valign="top">Position</entry>
 <entry align="left" valign="top">Salary</entry>
</row></thead>
<tfoot><row>
 <entry align="left" valign="top">Total</entry>
 <entry align="left" valign="top"></entry>
 <entry align="right" valign="top">10000</entry>
</row></tfoot>
<tbody><row>
 <entry align="left" valign="top">Alice Blone</entry>
 <entry align="left" valign="top">manager</entry>
 <entry align="right" valign="top">2500</entry>
</row>
...</tbody>
</tgroup>
</table>Text below table.</Story></Root>

77 / 87

Importing custom tags as tables

Solution for importing externally-provided XML (e.g. records
from database) and placing data in tables in InDesign
documents

Prepare tagged table as placeholder in template document
one tag for whole table
tags for individual cells inside table
number of columns should match (XML and template)

Import with option
Import text elements into tables if tags match

78 / 87

Custom XML content to be imported as
table
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Root><Story>Text above table.
<salaries>
 <person>Person</person>
 <position>Position</position>
 <salary>Salary</salary>

 <person>Alice Blone</person>
 <position>manager</position>
 <salary>2500</salary>

 <person>John Brown</person>
 <position>secret agent</position>
 <salary>2300</salary>

 <person>Rebeca Green</person>
 <position>secretary</position>
 <salary>5200</salary>
</salaries>
</Story></Root>

79 / 87

Placeholder for table

Placeholder for table before and after import

80 / 87

InDesign attributes in table tags

Flexible table tagging
custom element names
table-related metadata in InDesign attributes

No table placeholder needed in template document
table placed within tagged text frame automatically interpreted
as table on import

Additional features:
number of columns set individually for each table
table header and footer
size and style of table and cells

81 / 87

Example table with InDesign attributes

<salaries xmlns:aid="http://ns.adobe.com/AdobeInDesign/4.0/"
 aid:table="table" aid:trows="5" aid:tcols="3">
 <Cell aid:table="cell" aid:theader="" aid:crows="1" aid:ccols="1"
 aid:ccolwidth="119.4">Person</Cell>
 <Cell aid:table="cell" aid:theader="" aid:crows="1" aid:ccols="1"
 aid:ccolwidth="70.8">Position</Cell>
 <Cell aid:table="cell" aid:theader="" aid:crows="1" aid:ccols="1"
 aid:ccolwidth="63.5">Salary</Cell>

 <Cell aid:table="cell" aid:crows="1" aid:ccols="1"
 aid:ccolwidth="119.4">Alice Blone</Cell>
 <Cell aid:table="cell" aid:crows="1" aid:ccols="1"
 aid:ccolwidth="70.8">manager</Cell>
 <Cell aid:table="cell" aid:crows="1" aid:ccols="1"
 aid:ccolwidth="63.5">2500</Cell>
...

 <Cell aid:table="cell" aid:tfooter="" aid:crows="1" aid:ccols="1"
 aid:ccolwidth="119.4">Total</Cell>
 <Cell...></Cell>
 <Cell ...>10000</Cell>
</salaries>

82 / 87

IDML file format

IDML (for InDesign) and ICML (for InCopy)
interrelated file formats for storing and interchanging documents
open, XML-based
replace INX and INCX formats used up to CS 3

IDML document – ZIP archive of files
XML files for structure, metadata and text content
binary files for embedded fonts, images, etc.

Directories within archive:

├───MasterSpreads
├───META-INF
├───Resources
├───Spreads
├───Stories
└───XML

83 / 87

Handling IDML files – potential benefits

Theoretical ability of handling IDML files without InDesign
custom applications, scripts, XSLT

Potential benefits:
reading contents created with InDesign without InDesign
automatised production of final documents ready to be opened
by InDesign (or InDesign Server) and printed / published

Challenges:
complex, internally-related format
preparation of scripts producing proper documents would most
probably require:

heavy InDesign usage
“reverse engineering”
trial-and-error cycles repeated many times

84 / 87

IDML content overview – root

designmap.xml – overall structure of document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?aid type="document" featureSet="257" product="7.5(142)" ... ?>
<Document Self="d" ActiveLayer="ub3" CMYKProfile="$ID/" RGBProfile="$ID/"
 DOMVersion="7.5" StoryList="uc4 ue4 u32c u410 u42a u9c" ZeroPoint="0 0"
xmlns:idPkg="http://ns.adobe.com/AdobeInDesign/idml/1.0/packaging" ...>
 <Language Self="Language/$ID/English%3a UK" Name="$ID/English: UK"
 SingleQuotes="‘’" DoubleQuotes="“”" PrimaryLanguageName="$ID/English"/>
 <idPkg:Graphic src="Resources/Graphic.xml"/>
 <idPkg:Fonts src="Resources/Fonts.xml"/>
 <idPkg:Styles src="Resources/Styles.xml"/>
 ...
 <TextVariable Name="Creation Date" VariableType="CreationDateType"...>
 <DateVariablePreference TextBefore="" Format="dd/MM/yy"
TextAfter=""/>
 </TextVariable>
 <idPkg:MasterSpread src="MasterSpreads/MasterSpread_ubd.xml"/>
 <idPkg:Spread src="Spreads/Spread_ub6.xml"/>
 <idPkg:BackingStory src="XML/BackingStory.xml"/>
 <idPkg:Story src="Stories/Story_u42a.xml"/>
 ...

85 / 87

IDML content overview – tags

XML/Tags.xml – list of tags available for document

<idPkg:Tags DOMVersion="7.5"
xmlns:idPkg="http://ns.adobe.com/AdobeInDesign/idml/1.0/packaging" >
 <XMLTag Self="XMLTag/address" Name="address">
 <Properties>
 <TagColor type="enumeration">Yellow</TagColor>
 </Properties>
 </XMLTag>
 <XMLTag Self="XMLTag/city" Name="city">
 <Properties>
 <TagColor type="enumeration">Cyan</TagColor>
 </Properties>
 </XMLTag>
...

86 / 87

IDML content overview – backing story

XML/BackingStory.xml – structure tree of document
contains content not placed in text frames
points to stories placed in text frames

...
<XMLElement Self="di2" MarkupTag="XMLTag/common-info">
 <XMLElement Self="di2i3i21i23" MarkupTag="XMLTag/email">
 <Content>aliceb@example.com</Content>
 <XMLAttribute Self="di2i3i21i23XMLAttributenrole"
 Name="role" Value="office"/>
 </XMLElement>
...
 <XMLElement Self="di2i10" MarkupTag="XMLTag/license"
XMLContent="ue4"/>

 <Link Self="u327" LinkResourceURI="file:C:/.../common_info.xml" ... />
</XMLElement>
...

87 / 87

IDML content overview – stories

XML/Stories/Story_u???.xml – content of text stories
tagged and untagged content
XML tags, style information, and all other metadata stored

<Story Self="ue4" AppliedTOCStyle="n" TrackChanges="false"
 StoryTitle="$ID/" AppliedNamedGrid="n">
 <XMLElement Self="di2i10" MarkupTag="XMLTag/license" XMLContent="ue4">
...
 <ParagraphStyleRange AppliedParagraphStyle="ParagraphStyle/body">
 <CharacterStyleRange AppliedCharacterStyle="CharacterStyle/$ID/
 [No character style]">
 <Content>First line</Content>
<Content>The first successful
 locomotives were built by Cornish inventor </Content>
 </CharacterStyleRange>
 <CharacterStyleRange AppliedCharacterStyle="CharacterStyle/person">
 <Content>Richard Trevithick</Content>
 </CharacterStyleRange>
...

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80
	Slajd 81
	Slajd 82
	Slajd 83
	Slajd 84
	Slajd 85
	Slajd 86
	Slajd 87

