Web services
(continued)

Patryk Czarnik

XML and Applications 2013/2014
Lecture (week) 7 - 18.11.2013

<Evo|ution of internet applications >

« human < - human

= emall

« WWW sites written manually
= application < > human

= web applications (e.g. an internet shop)
= application < >app|ication

= |ow-level technologies and ad-hoc solutions
= “web services”

2 /24

<Web Services >

= |dea: a website for programs (instead of people)

s General definition
= communication based on high-level protocols
= structural messages
= services described
= searching services

s Concrete definition: “Classical” Web-Services
= HTTP or other protocols
= SOAP
= WSDL
= UDDI
= Web Services Interoperability

3/24

Classical vision of web services
operation

: SOAP
Service n
(and its provider) SOAP

reads WSDL

Service reqgistry
(UDDI)

In fact, most of deployed solutions
don't use the UDDI layer

4124

<Basic standards - recall >

= SOAP - communication protocol
= mainly definition of message (envelope) format
= XML message with optional binary attachments
= headers (optional XML elements) and body content
(one XML element according to WS-| BP)
s« WSDL - service description (interface)
s XML element or type definitions written with XML Schema

= port type - set of operations with their input and output
messages

= binding - how requests and responses will be sent
through the net (in our case: how they are represented as
SOAP messages)

= service instance (set of ports) - address where the

service is available 5 /24

<Service registration and discovery >

s |dea

service provider registers service
user searches for service and finds it in registry

s Universal Description Discovery and Integration (UDDI)

available as service (SOAP)
business category-based directory (“yellow pages”)

searching basing on service name, description (“white
pages”)
registration and updates for service providers

6/24

<UDDI - |Sssues >

= Main issue - who can register?
= anybody - chaos and low reliability
= accepted partners - an institution responsible for access
policy needed, no such (widely accepted) institution exists
s Reality
= UDDI rarely used
= |f ever - for “local” SOA-based solutions (intranets)

7124

<Service Oriented Architecture >

= Old-school approach for software building (when we have
some logic already developed and we want to use it again):

= |ink and compile static components - code, libraries, etc.

= SOA approach:
= use working services to obtain existing logic
= (to make it possible) build your pieces of software as services
= Result: services built basing on other services

= Main differences (advantages?)
= we don't have to include a component to use it

= we avoid not only code duplication, but also a duplication of
working logic

SOA is trendy
But use it reasonably, please!

8/24

<Web services in Java >

Basically - web services and web service clients can be built
from scratch in any technology

= put it would be the same mistake as reading XML
documents char by char.
s Low-level technologies:

s« HTTP servlets and HTTP clients supported by XML
processing APIs (DOM, SAX, StAX, JAXB, Transformers, ...)

= SOAP with Attachments API for Java (SAA))
- extension of DOM directly supporting SOAP

= High level approach (with low level hooks available):
= Java API for XML Web Services (JAX-WS)

9/24

<Web Services in Java >

s WS support (XML APIs, SAAJ, JAX-WS) present in Java SE
= JAX-WS and some of XML APIs since version 6.0

s Client side:

= Possible to develop and run WS client in Java SE without
any additional libraries!

s Server side:

= Developing and compiling WS server (without any
vendor-specific extensions) available in Java SE

= Running a service requires an application server and a WS
Implementation
« “Big” app servers (Glassfish, JBoss, WebSphere...) have
preinstalled WS implementations
« Lightweight servers (Tomcat or even Jetty) can be used by
applications equipped with appropriate libraries and

configuration L0/ 24

(o >

s Package javax.xml.soap
s« Main class - SOAPMessage

Tree-like representation of SOAP messages

= extension of DOM

= easy access to existing and building fresh SOAP messages
= support for HTTP headers, binary attachments, ...

Easy sending of requests from client side
s see example SAA] Weather

Possible implementation of server side as a servlet
s see example SAA] Server

11/24

<JAX—WS - Introduction >

s Annotation-driven
s Uses JAXB to translate Java objects to/from XML

s Central point: Service Endpoint Interface (SEl)

= Java interface representing a WS port type
« kalkulator.Kalkulator and pakiet.Service in our examples

s Translation between web services world (WSDL) and Java

s top-down: from WSDL generate Java
« server side - service interface and implementation skeleton
« client side - proxy class enabling easy remote invocations
= both sides - auxiliary classes, usually JAXB counterparts of
XML elements appearing in messages
= bottom-up: from Java code generate WSDL
(and treat the Java code as a WS implementation)
« usually done automatically during application deployment;, ;>4

<Advantages and risks of using JAX-WS >

= High level view on web service

= details of communication and SOAP/XML not (necessarily)
visible to a programmer

= proxy object on client side enables to transparently invoke
methods on server-side just like on local objects

s Automatic generation/interpretation of WSDL
= conformance to WSDL controlled by system
s Bottom-up scenario - easy introduction of WS interface to
already existing systems
= or for programmers not familiar with WSDL/XML details

s Risk of

= accidental service interface (WSDL)
(automatically generated, not elaborated enough)

« inefficiency L3724

<J—WS - main elements >

s (Class level annotations:
= @WebService, @S0APBinding

s Method-level annotations:
« @WebMethod, @OneWay, @SOAPBinding,
@RequestWrapper, @GResponseWrapper
s Parameter-level annotations:
« @WebParam
s @WebResult (syntactically a method annotation, applies
to what the method returns)
s Support for specific technologies
= @TOM - automatically created binary attachments
= @Addressing - adds WS-Addressing headers

14 /24

<J-WS - low level hooks >

s Providers - low level server side
s Useful when

« high efficiency required (e.g. streaming processing)
« XML technology used in implementation

Dispatch - low level client side
One way methods
Asynchronous client calls
Handlers and handler chains

additional processing of messages between client and
server |ogic

one place to perform common logic: logging,
authentication, session binding

15/ 24

<JAX—WS examples >

Details to note:

= top-down (Kalkulator):
= (different) form of WSDL in RPC and Document styles

= 3 ways WSDL can be translated to Java (and SOAP)
(RPC, document-wrapped, document-bare)

= @WebService annotation in implementation class

= pbottom-up (Hello)
= how annotations affect SOAP messages (and WSDL)
= how Java objects are represented in SOAP messages (JAXB)

= high level proxy clients (JAXWS Weather)

16 /24

< JAX-WS architecture

When both sides written in Java...

SEI

Client

Logic

Proxy

Server

Service Logic

impl.

High level Java clients available
also for non-Java servers!

17724

<WSDL and SOAP interaction >

= Basically - specified through binding element in WSDL
= not so simple, because of many possibilities
s« RPC style

= SOAP XML structure derived basing on operation name and
message parts

« Document style

= theoretically designed to allow sending arbitrary XML
documents

= |n practice also used for RPC realisation, but the author of
WSDL has to define an appropriate document structure

« (some tools may be helpful, e.g. bottom-up service
generation in Java JAX-WS)

s Message use: literal or encoded.
= \We should use literal in modern applications. 18/ 24

Web Services advantages and
problems

= Advantages:
= Standardised, platform-independent technology
= |nteroperability
= Existing tools and libraries

s Main drawbacks:

= |nefficiency
« size of messages - transfer, memory usage

« data representation translated many times on the road from
client to server (and vice versa) = processor usage / time

= Complex standards, especially when using something more
than raw WSDL+SOAP

19/ 24

<Are Web Services good or bad? >

It depends on the actual case, of course.

s Web Service recommended when
= Many partners or public service (standardisation)
= Heterogeneous architecture
= Text and structural data already present in problem domain
= Interoperability and flexibility more important than
efficiency
= Web Service?... not necessarily
= |Internal, homogeneous solution.
= Binary and flat data

= Efficiency more important than interoperability and
flexibility

20/ 24

<REST - motivation >

s Complexity and inefficiency of SOAP-based services led
designers/researchers to propose other solutions

= service-oriented
= put simpler (and less general) than classical WS
= The most popular alternative these days:
Representational State Transfer (REST)
= |dea by Roy Fielding (2002)

= \lery popular solution for integration of JavaScript clients
(AJAX) with servers

= |n Java (EE) available through JAX-RS interface

21 /24

<REST - basic ideas >

s Service = set of resources
= resource identified by its URL

= best practices: URLs unique, resources organised in
collections

http://rest.example.org/service/orders/302312

s Resources
= are representable (e.qg. as XML, other formats available)
= can be transferred through the net

« HTTP - protocol for remote access to the resources
= HTTP methods (GET, PUT, etc) used directly

22] 24

<H'ITP methods (in REST, but not only) >

s GET - read the resource
s no side effects

PUT - write the resource
= request body contains new contents
= for writing new and overriding existing resources

DELETE - deletes the resource

POST - “get this data and something with it”
= conceptually incompatible with REST ideas

= used in practice to call remote logic more complex that
reading or writing a resource

OPTIONS, HEAD - no special meaning in REST
= well, getting last modification time makes sense in REST...
23 /24

<JAX—RS - REST In Java >

= Java API for RESTful Services (JAX-RS)
s Annotation driven API
s Support for different ways of passing arguments

s Content-type negotiation
= the same resource may be available in different formats

s Easy to write HTTP servers
= REST-specific logic has to be written manually

24 [24

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24

