
XML in Programming 2,
Web services

Patryk Czarnik

XML and Applications 2013/2014
Lecture 5 – 4.11.2013

2 / 37

Features of JAXP

3 models of XML documents in Java: DOM, SAX, StAX
Formally JAXB is a separate specification

Reading and writing documents

Transformations of XML documents (Transformers)
applying XSLT in our programs
translating internal form of representation

XPath support

Validation
against DTD (only during parsing)
against XML Schema (during parsing or using Validators)
against XML Schema 1.1, Relax NG, or other alternative
standards – when implementation supports

3 / 37

Transformer: source and result

StreamSource

Source

DOMSource

JAXBSource

SAXSource

StAXSource

StreamResult

Result

DOMResult

JAXBResult

SAXResult

StAXResult

SAAJResult

Transformer

4 / 37

Applications of Transformers

Simple:
invoking XSLT transformations from Java
changing internal representation of XML
in our program

Tricky:
parsing and writing documents,
e.g. serialisation of a DOM tree
serialisation of modified (or generated)
sequences of SAX events
(together with SAX filters)
enabling “on-the-fly” processing
of large XML documents

5 / 37

Editing XML documents

More natural when whole document present in memory
DOM – generic API
JAXB – deep embedding of XML in application model

Harder, but possible, using node-by-node processing
required when processing big documents within small
amount of memory
suggested for big (“long and flat”) documents and simple
local operations – then we can save substantial resources
StAX – possible using “writers”

IMO XMLEventWriter more convenient than XMLStreamWriter

SAX
no direct support for editing/writing
available indirect solution: SAX filters and Transformer

6 / 37

Editing XML documents – examples

7 / 37

Validation

Against DTD
setValidating(true) before parsing

Against XML Schema (or other schema formats,
if implementation supports)

setSchema(schema) before parsing
using Validator

Validator API
validate(Source) – only checking of correctness
validate(Source, Result) – augmented document returned

not possible to use as Transformer – source and result must
be of the same kind
(my private observation) – not always working as expected

8 / 37

Handling errors

Most JAXP components (specifically SAX and DOM
parsers, Validators)

may throw SAXException
signal errors through ErrorHandler events

Interface ErrorHandler
3 methods (and severity levels): warning, error, fatalError
registering with setErrorHandler allows to override default
error handling

Required to manually handle validation errors

9 / 37

Validation – examples

10 / 37

XPath support in Java

DOM XPath module implementation
org.w3c.dom.xpath
officially not a part of Java SE, but available in practice
(by inclusion of Xerces in Oracle Java SE runtime)

JAXP XPath API
javax.xml.xpath
most efficient when applied for documents in memory
(DOM trees)
our examples show this solution

Note: using XPath may significantly reduce developer's
work, but the application may be less efficient (than if we
used SAX, for example)

11 / 37

Electronic data interchange (EDI) –
motivation

How to interchange data between companies /
institutions (B2B)?

paper
electronic data interchange

How to establish EDI protocol?
customer receives (or buys) a tool from provider
smaller partner complies to bigger parter
ad-hoc created conversion tools
standard

Standard deployment levels
software developed according to standard from beginning
interface added to legacy system

12 / 37

Pre-XML solutions

ANSI Accredited Standards Committee X12 sub-group
USA national standard
used mainly in America

EDIFACT
international standard (UN/CEFACT and ISO)
used mainly in Europe and Asia

13 / 37

EDIFACT characteristic

Format
text
hardly readable
tree structure

Predefined dictionaries

193 message types

279 segments

186 elements

(counted for version 08a, 2008)

14 / 37

EDIFACT

EDIFACT message example

UNB+IATB:1+6XPPC+LHPPC+940101:0950+1'
UNH+1+PAORES:93:1:IA'
MSG+1:45'
IFT+3+XYZCOMPANY AVAILABILITY'
ERC+A7V:1:AMD'
IFT+3+NO MORE FLIGHTS'
ODI'
TVL+240493:1000::1220+FRA+JFK+DL+400+C'
PDI++C:3+Y::3+F::1'
APD+74C:0:::6++++++6X'
TVL+240493:1740::2030+JFK+MIA+DL+081+C'
PDI++C:4'
APD+EM2:0:1630::6+++++++DA'
UNT+13+1'
UNZ+1+1'

15 / 37

EDIFACT structure

Wymiana
(interchange)

Wiadomość
(message)

 : 690

 + KGM:690 +

MEA+WT+AAD+KGM:690+X5 '
Segment

Złożenie
(composite)

Element
(data element)

Grupa
(segment group)

16 / 37

XML EDI

Idea: use XML as data format for EDI

Traditional EDI
Documents unreadable without specification
Compact messages
Centralised standard maintenance
Changes in format requires software change
Specialised tools needed

XML EDI
“Self-descriptioning” documents format
Verbose messages
“Pluggable”, flexible standards
Well written software ready to extensions of format
XML-format layer handled by general XML libraries

17 / 37

XML EDI flexibility

Format flexibility
Structures: choosing, repeating, nesting, optionality
Format extensions and mixing via namespaces

Applications
Data interchange between partners' systems
Web interface (with little help from XSLT)

Web Services integration

18 / 37

XML EDI standardisation

Framework level
general rules for all kinds of data
data of the same kind should be represented in the same
way
(not to define the same twice)
example: Electronic Business XML (ebXML).

Industry standards (examples)
banking
trade and logistic
Automotive Industry Action Group – motor industry (mainly
American)
Health Level Seven – health care
Open Travel Alliance – (people) transport and tourist
services

19 / 37

XML for application integration

Goal – data interchange between applications
applications/modules/components with different internal
formats
XML as interface

Usage:
client/server communication
nodes of distributed systems
components integration
remote configuration and monitoring of applications

20 / 37

Local and global applications

“Local” integration
within single project or related projects of a single owner
communication between components
possibly in distributed architecture
ad-hoc solutions for given problems
possibility of using standard

“Global” integration
services available in Internet for any party
different parts cooperation
standardisation required
motivation to use Web Services

21 / 37

Web Services

Idea: a website for programs (instead of people)

General definition
communication based on high-level protocols
structural messages
services described
searching services

Concrete definition: “Classical” Web-Services
HTTP or other protocols
SOAP
WSDL
UDDI

22 / 37

Web Services – typical applications

Providing data (for free or paid)
timetables
weather
stock and currency notes

Services
searching
software updates

Business operation between partners
booking tickets or hotel rooms
ordering (and tracing order status)
electronic data interchange

e-Administration

23 / 37

Web Services standardisation

SOAP (initially Simple Object Access Protocol:
beginnings: 1998
v1.1: W3C Note, 2001 (still in use)
v1.2: W3C Recommendation, June 2003 (also used)

Web Services Description Language:
W3C Note, 2001 (most applications use this version!)
v2.0: W3C Recommendation, June 2007

Universal Description Discovery and Integration:
OASIS project

24 / 37

Web Services standardisation (2)

Web Services Interoperability – levels of WS compliance:
WS-I Basic Profile, Simple Soap Binding Profile, ...

WS-* standards: various standards, usually not W3C:
WS-Eventing, WS-Addressing, WS-Routing, WS-Security

Business Process Execution Language (OASIS) – WS
semantics description, programming using WS as
building blocks

25 / 37

SOAP – communication protocol

Built on top of existing transport protocol (HTTP or other)

Message format
main message part – XML
envelope and some special elements defined in standard
implementation-dependent content
additional attachments in any format (even binary)

Differences to RPC, CORBA, DCOM etc.:
data represented in extensible, structural format (XML)
data types independent of platform (XML Schema)
lower efficiency

26 / 37

SOAP message – general form

27 / 37

SOAP 1.2 message

<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/literal">

 <soap:Header>
 <t:Trans xmlns:t="http://www.w3schools.com/transaction/"
 soap:mustUnderstand="1">234</m:Trans>
 </soap:Header>

 <soap:Body>
 <m:GetPrice xmlns:m="http://www.w3schools.com/prices">
 <m:Item>Apples</m:Item>
 <m:Currency>PLN</m:Currency>
 </m:GetPrice>
 </soap:Body>
</soap:Envelope>

28 / 37

SOAP 1.2 – normal response

<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:Body>
 <m:GetPriceResponse xmlns:m="http://www.w3schools.com/prices">
 <m:Price>1.90</m:Price>
 <m:Currency>PLN</m:Currency>
 </m:GetPriceResponse>
 </soap:Body>
</soap:Envelope>

29 / 37

SOAP 1.2 – fault response

<soap:Envelope xmlns:usos="urn:USOS"
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:Body>
 <soap:Fault>
 <soap:faultcode>soap:Receiver</soap:faultcode>
 <soap:faultstring>Data missing</soap:faultstring>
 <soap:faultdetail>
 <usos:exception>Found no student identified
 with <usos:ind>123</usos:ind>
 </usos:exception>
 </soap:faultdetail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

30 / 37

SOAP – more info

Request and response have the same structure.
In fact, we can think of SOAP as a document transport
protocol, not necessarily in client-server architecture.

Header part optional, Body part required.

Restrictions on XML part:
no DTD (and external entity references),
no processing instructions.

Although SOAP allows many body elements (elements
within soap:Body), WS-I BP requires exactly one.

To make applications portable we should follow this
restriction.

31 / 37

WSDL – service description

XML document describing a service

Interface (“visit card”) of a service (or set of services)

Specifies (from abstract to concrete things)
XML types and elements (using XML Schema)
types of messages
port types – available operations, their input and output
details of binding abstract operations to a concrete
protocol (SOAP in case of “classical” services)
ports – concrete instances of services, with their URL

Splitting definitions into several files and using external
schema definitions available

32 / 37

WSDL 1.1 structure

<?xml version="1.0" encoding="UTF-8"?>
<definitions name='HelloWorldService'
 targetNamespace='http://example.com/hello'
 xmlns='http://schemas.xmlsoap.org/wsdl/'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
 xmlns:tns='http://example.com/hello'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'>
 <types>
...............

 </types>
 <message name='HelloWorld_sayHello'>
...............

 </message>
 <message name='HelloWorld_sayHelloResponse'>
...............

 </message>
 <portType name='HelloWorld'>
...............

 </portType>
 <binding name='HelloWorldBinding' type='tns:HelloWorld'>
...............

 </binding>
 <service name='HelloWorldService'>
 <port binding='tns:HelloWorldBinding' name='HelloWorldMyPort'>
...............

 </port>
 </service>
</definitions>

Elementy i typy XMLSchema

Komunikaty – parametry wejściowe i rezultat

Interfejs określający udostępniane operacje

Wiązanie z konkretnym protokołem

Definicja usługi sieciowej

33 / 37

WSDL and SOAP interaction

Basically – specified through binding element in WSDL
not so simple, because of many possibilities

RPC style
SOAP XML structure derived basing on operation name and
message parts

Document style
theoretically designed to allow sending arbitrary XML
documents
in practice also used for RPC realisation, but the author of
WSDL has to define an appropriate document structure

(some tools may be helpful, e.g. bottom-up service
generation in Java JAX-WS)

Message use: literal or encoded.
We should use literal in modern applications.

34 / 37

Service registration and discovery

Idea
service provider registers service
user searches for service and finds it in registry

Universal Description Discovery and Integration (UDDI)
available as service (SOAP)
business category-based directory (“yellow pages”)
searching basing on service name, description (“white
pages”)
registration and updates for service providers

35 / 37

UDDI – issues

Main issue – who can register?
anybody – chaos and low reliability
accepted partners – institution responsible for access
policy needed, no such (widely accepted) institution exists

Reality
UDDI rarely used
if ever – for “local” SOA-based solutions (intranets)

36 / 37

Service Oriented Architecture

Idea
services built basing on other services
even addition defined as a Web Service :)
software split into components and layers with WS
interfaces between them
precise specification required (interesting research field...)

Critique
modular, flexible, and scalable solutions

by the cost of (sometimes) irrational inefficiency and
complexity

Use reasonably!

37 / 37

Are Web Services good or bad?

Web Service recommended when
Many partners or public service (standardisation)
Heterogeneous architecture
Text and structural data already present in problem domain
Interoperability and flexibility more important than
efficiency

Web Service?... not necessarily
Internal, homogeneous solution.
Binary and flat data
Efficiency more important than interoperability and
flexibility

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37

