
XML in Programming

Patryk Czarnik

XML and Applications 2013/2014
Lecture 4 – 28.10.2013

2 / 32

XML in programming – what for?

To access data in XML format

To use XML as data carrier (storage and transmission)

To support XML applications (Web, content management)

To make use of XML-related standards
(XML Schema, XInclude, XSLT, XQuery, XLink, ...)

To develop or make use of XML-based technology
XML RPC, Web Services (SOAP, WSDL)
REST, AJAX

3 / 32

XML in programming – how?

Bad way
Treat XML as plain text files and write low-level XML
support from scratch

Better approach
Use existing libraries and tools

Even better
Use standardised interfaces independent of particular
suppliers

4 / 32

XML and Java

Propaganda
Java platform provides device-independent means
of program distribution and execution.
XML is a platform-independent data carrier.

Practice
Java - one of the most popular programming languages,
open and portable.
Very good XML support in Java platform.
Many technologies use XML.

5 / 32

XML in Java – standards

Both included in Java Standard Edition from 6.0

Java API for XML Processing (JAXP 1.x – JSR-206)
many interfaces and few classes,
“factories” and pluggability layer
support for XML parsing and serialisation (DOM, SAX, StAX)
support for XInclude, XML Schema, XPath, XSLT

Java API for XML Binding (JAXB 2.x – JSR-222)
binding between Java objects and XML documents
annotation-driven
strict relation with XML Schema

6 / 32

Classification of XML access models

And their standard realisations in Java

Document read into memory

generic interface: DOM

interface depending on document type/schema: JAXB

Document processed node by node

event model (push parsing): SAX

streaming model (pull parsing): StAX

7 / 32

DOM – status

W3C Recommendations
DOM Level 1 – 1998
DOM Level 3 – 2004
Several modules. We focus on DOM Core here

Document model and universal API
independent of programming language (IDL)

Used in various environments
notable role in JavaScript model
available (in some form) in all modern programming
platforms

8 / 32

Primary DOM types

Document Element Comment

Attr Text

CDATA Section

Processing
Instruction

NamedNodeMap

NodeListNode

9 / 32

DOM key ideas

Whole document in memory

Tree of objects

Generic interface Node

Specialised interfaces for particular kinds of nodes

Available operations
reading document into memory
creating document from scratch
modifying content and structure of documents
writing documents

10 / 32

Example: problem introduction

Count the number of seats in rooms equipped with
a projector.

<rooms>
<room>

<number>2120</number>
<floor>1</floor>
<equipment projector="false" computers="false"/>
<seats>50</seats>

</room>
<room>

<number>3180</number>
<floor>2</floor>
<equipment projector="true" computers="false"/>
<seats>100</seats>

</room>
<room>

<number>3210</number>
<floor>2</floor>
<equipment />
<seats>30</seats>

</room>
</rooms>

11 / 32

Example program

Two approaches in DOM programming
Use only generic Node interface
Use specialised interfaces and convenient methods

See example programs
CountSeats_DOM_Generic
CountSeats_DOM_Specialised

12 / 32

XML binding and JAXB

Mapping XML to Java

High-level view on documents

From programmer's point of view:
instead of Integer.parseString(room.
getElementsByTagsName("seats").item(0).getTextContent())
we simply have
room.getSeats()

13 / 32

JAXB 2.x architecture

Application operates basing on (usually annotated)
“JAXB classes”

generated from a schema
or written manually

14 / 32

Example

We generate Java classes basing on our schema
xjc -d src -p package_name school.xsd

See generated classes and program CountSeats_JAXB

15 / 32

JAXB – applications and alternatives

Main applications:
high-level access to XML documents
serialisation of application data
automatic mapping of method invocations to SOAP
messages in JAX-WS

Many options to customise the mapping
using Java or XML annotations

Some alternatives:
Castor
Apache XML Beans
JiBX

16 / 32

Streaming (and event) processing
Motivation

Whole document in memory (DOM, JAXB)
convenient
but expensive

memory for document
(multiplied by an overhead for structure representation)
time for building the tree
reading always whole document, even if required data
present at the beginning

sometimes not possible at all
more memory required than available
want to process document before it ends

Alternative: Reading document node by node

17 / 32

Event model

Document seen as a sequence of events
“an element is starting”,
“a text node appears”, etc.

Programmer provides code fragments - “event handlers”

Parser reads a document and
controls basic syntax correctness
calls programmer's code relevant to actual events

Separation of responsibility:
Parser responsible for physical-level processing
Programmer responsible for logical-level processing

18 / 32

SAX

Simple API for XML – version 1.0 in 1998

Independent standard designed for and acquired by Java

Idea applicable for other programming languages

Typical usage:
Programmer-provided class implementing
ContentHandler
Optionally classes implementing ErrorHandler,
DTDHandler, or EntityResolver

one class may implement all of them
DefaultHandler – convenient base class to start with

19 / 32

SAX

Typical usage (ctnd):
Obtain XMLReader (or SAXParser) from factory
Create ContentHandler instance
Register handler in reader
Invoke parse method

Parser conducts processing and calls methods of our
ContentHandler

Use data collected by ContentHandler

20 / 32

SAX events in run

<?xml-stylesheet ...?>

<room>

 <equipment projector="true"/>

 <seats>
 60
 </seats>
</room>

● startDocument()
● processingInstruction(

 "xml-stylesheet", ...)
● startElement("room")
● startElement("equipment",

{projector="true"})
● endElement("equipment")
● startElement("seats")
● characters("60")
● endElement("seats")
● endElement("room")
● endDocument()

21 / 32

Example

See example classes:
CountSeats_SAX_Traditional and CSHandler_Traditional
for traditional scenario of creating parses instance
and registering a ContentHandler
CountSeats_SAX_JAXP and CSHandler_JAXP
for modern JAXP-conformant scenario of combining things
together

22 / 32

SAX filters

Motivation: Joining ContentHandler-like logic into chains

Realisation:
interface XMLFilter
(XMLReader having a parent XMLReader)
in practice filters implements also ContentHandler
convenient start-point: XMLFilterImpl

Typical implementation of a filter:
handle incoming events like in a ContentHandler
pass events through by manual method calls on the next
item in chain

Filters can:
pass or halt an event
modify an event or a sequence of events!

23 / 32

Possible usage of SAX filters

Filter FilerReader

Filter TransformerReader

Content
Handler

24 / 32

SAX – typical problems

To make implementations portable – we should manually
join adjacent text nodes in an element

StringBuffer is a convenient class

The same method called for different elements, in
different contexts

Typical solution – remembering the state (one flag for
simple logic or elaborated structures for complex logic)
It may become tedious in really complex cases.

25 / 32

StAX: Pull instead of being pushed

Alternative for event model
application “pulls” events/nodes from parser
processing controlled by application, not parser
idea analogous to: iterator, cursor, etc.

More intuitive control flow
reduced need of remembering the state etc.

 Advantages of SAX saved
high efficiency
possibility to process large documents

26 / 32

StAX

Streaming API for XML

Available in Java SE since version 6

Two levels of abstraction:

XMLStreamReader
one object for all purposes
most efficient approach

XMLEventReader
subsequent events (nodes) provided as separate objects
more convenient for high-level programming,
especially when programming modification of document
“on-the-fly”

27 / 32

Example

See programs
CountSeats_Stax_Stream
for usage of low-level XMLStreamReader
CountSeats_Stax_Event
for usage of XMLEventReader

28 / 32

Control flow in SAX

program :ContentHandler parser

init

setContentHandler

parse

startElement

characters, etc.

endDocument

29 / 32

Control flow in StAX

program parser

createXMLEventReader

nextEvent

nextEvent

close

result : StartElement

result : Characters

30 / 32

StAX features

API for reading documents:
XMLStreamReader, XMLEventReader

API for writing documents:
XMLStreamWriter, XMLEventWriter

Filters
simple definition of a filter: accept(Event): boolean
“filtered readers”

31 / 32

Which model to choose? (1)

Document tree in memory:
small documents (must fit in memory)
concurrent access to many nodes
creating new and editing existing documents “in place”

Generic document model (like DOM):
not established or not known structure of documents
lower efficiency accepted

XML binding (like JAXB):
established and known structure of documents
XML as data serialisation method

32 / 32

Which model to choose? (2)

Processing node by node
potentially large documents
relatively simple, local operations
efficiency is the key factor

Event model (SAX):
using already written logic (SAX is more mature)
filtering events, asynchronous events
several aspects of processing during one reading of
document (filters)

Streaming model (like StAX):
processing depending on context; complex states
processing should end after data is found
reading several documents simultaneously

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32

