Modelling XML Applications
(part 2)

Patryk Czarnik

XML and Applications 2013/2014
Lecture 3 - 21.10.2013

<Modu|arisation options >

s« Combining multiple files
= DTD - external parameter entities
= Schema - include, import, redefine

= Reusing fragments of model definition
= DTD - parameter entities

= Schema - groups and attribute groups
(in practice equivalent to the above)

= Schema - types, type derivation (no such feature in DTD)

s Global and local definitions
= In DTD all elements global, all attributes local
= |In schema both can be global or local, depending on case

See examples for details!

2 /15

<Import or include? >

s« Xs:1import
= |Imports foreign definitions, enables referring to them
s« Xs:redefine

s |ncludes external definitions, but a local definition
overrides external one if they share the same name

s XSs:1nclude

= Basic command, almost like textual insertion

= |Imported module must have the same target namespace
or no target namespace

A multi-module, namespace-aware project with overused
XS :1include leads to duplication of logic in the software that

processes documents (or enforces meta-programming tricks
to avoid it). /based on personal experience/

3/15

<Schema and namespaces >

= DTD is namespace-ignorant

s« XML Schema conceptually and technically bound with
XML namespaces

Basic approach: one schema (file) = one namespace
« |t is also possible to split one ns into several files

Referring to components from other namespaces available

s |mportant attributes

targetNamespace - if given, all global definitions within
a schema go into that namespace

elementFormDefault, attributeFormDefault
- should local elements or attributes have qualified names?
« default for both: unqualified
« typical approach: elements qualified, attributes unqualified
« setting may be changed for individual definitions 415

<Using namespaces in XML Schema >

Different technical approaches to handle namespaces in
XML Schema

XML Schema ns. bound to xs: or xsd:, no target
namespace

XML Schema ns. bound to xs: or xsd:, target namespace
as default namespace

= Convenient as long as we don't use keys and keyrefs
Target namespace bound to a prefix (tns: by convention)

Then we can declare XML Schema as default namespace
and avoid using xs: or xsd:

5/15

<Types in XML Schema >

s Every element and attribute has a type
= |If not specified: xs:anyType or xs:anySimpleType, resp.

« “What an element/attribute may contain”
but also

“How to interpret a value”

6/15

<Classification of types >

Types by content model
« Simple type (value of a text node or an attribute;

applicable to elements and attributes)
atomic type
list
union

s Complex type (structure model - subelements and attributes;

applicable to elements)
empty content
element content
mixed content
simple content

7 /15

<Classification of types

Types by place of definition:
= anonymous - defined locally in place of use

= named - defined globally
= Dbuilt-in - defined in XML Schema specification
= user-defined

Types by means of definition:
s primitive (simple types)
s defined directly (complex type as a sequence etc.)

s derived (some built-in types are defined by derivation!)
= by extension (complex types only)
= Py restriction (complex and simple types)
= as a list or union (simple types only)

8/ 15

<Simp|e types >

= Rich set of built-in types
= decimal, integer, nonNegativelnteger, long, int, ...
= boolean, float, double
= date, time, dateTime, duration, ...
= string, token, base64Binary, hexBinary, ...
= See the recommendation for the complete hierarchy

s Defining custom types basing on built-in types
= Dy restriction
= as a list
= as an union

9/ 15

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

Value space vs lexical space

s A simple type specifies its

= value space - set of abstract values

= |lexical space - set of valid text representations

Type Text representations

xs:boolean 0, false

xs:decimal (and derivatives) 13, 013, 13.00

xs:string 013
........... foobar ..
xs:token foo bar

Abstract value

False
True

13
‘013"

" foo bar '
'foo bar'

10 /15

<Choosing the appropriate type >

= Semantic meaning of a simple type:
= not only a “set of allowed character strings”
= also the way a value is interpreted!

= Types may affect the validation

= e.g. leading zeros significant in strings,
meaningless in numbers

= Processors may use the information about type, e.q.

= schema-aware processing in XSLT 2.0 or XQuery
« sorting, comparison, arithmetic operations

= JAXB - generation of Java classes based on XSD

= Choosing the appropriate type sometimes not obvious
= phone number, zip code, room number - number or string?

11/15

Defining simple types by restriction

s Constraining facets - properties we can restrict

enumeration Some of them available only
pattern for chosen primitive base types

length, minLength, maxLength
totalDigits, fractionDigits
maxInclusive, maxExclusive
mininclusive, minExclusive
whiteSpace

s Used directly in simple type definition:

<xs:simpleType name="LottoNumber">
<xs:restriction base="xs:integer">

</xs:restriction>
</xs:simpleType>

<xs:minInclusive value="1" />
<xs:maxInclusive value="49"/> <lottoNumber>12</1lottoNumber>

12 /15

List types

s List of values separated with whitespace.

= Not to confuse with sequences
= |ist - simple type, no markup structure within

= sequence - complex type, sequence of subelements

s Compact notation for lists of values
but

= Harder to process in XML processors (requires additional
parsing using regexp etc. - not available e.g. in XSLT 1.0)

<xs:simpleType name="LottoNumberList">
<xs:list itemType="LottoNumber" />
</xs:simpleType>

<lottoNumberList>12 2 47 6 33 12 27 18</lottoNumberList>

13 /15

Union types

s Union of sets of values

= Possibility to mix values of different primitive types
= Interpreting values as abstract values hard to perform

= Nevertheless, a usable feature (e.g. unbounded in
XML Schema)

<size>40</size>

<xs:simpleType name="ClothingSizeletter">
<xs:restriction base="xs:token">

<xS:enumeration
<Xs:enumeration
<Xs:enumeration
<xS:enumeration
<xS:enumeration
<xS:enumeration
</xs:restriction>
</xs:simpleType>

value="XS"/>
value="S" />
value="M" />
value="L" />
value="XL"/>
value="XXL"/>

<size>lL</size>

<xs:simpleType name="ClothingSizeNumber">
<xs:restriction base="xs:integer">
<xs:minInclusive value="20" />
<xs:maxInclusive value="60" />
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ClothingSize">
<xs:union memberTypes="ClothingSizeNumber ClothingSizelLetter"/>

</xs:simpleType>

14 /15

<Identity constraints >

s Constraints on unigueness and references
Two mechanisms:

s« DTD attribute types ID and IDREF
= Introduced in SGML DTD but still available in XML Schema
s drawbacks:
= one global scope, at most one ID per element
« special form of values - only names allowed
« |Ds and references necessarily in attributes
s« XML Schema identity constraints
= Kkey, unique, and keyref definitions
= more powerful and more flexible than ID/IDREF

15/15

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15

