
Modelling XML Applications
(part 2)

Patryk Czarnik

XML and Applications 2013/2014
Lecture 3 – 21.10.2013

2 / 15

Modularisation options

Combining multiple files
DTD – external parameter entities
Schema – include, import, redefine

Reusing fragments of model definition
DTD – parameter entities
Schema – groups and attribute groups
(in practice equivalent to the above)
Schema – types, type derivation (no such feature in DTD)

Global and local definitions
In DTD all elements global, all attributes local
In schema both can be global or local, depending on case

See examples for details!

3 / 15

Import or include?

xs:import
Imports foreign definitions, enables referring to them

xs:redefine
Includes external definitions, but a local definition
overrides external one if they share the same name

xs:include
Basic command, almost like textual insertion
Imported module must have the same target namespace
or no target namespace

A multi-module, namespace-aware project with overused
xs:include leads to duplication of logic in the software that
processes documents (or enforces meta-programming tricks
to avoid it). /based on personal experience/

A multi-module, namespace-aware project with overused
xs:include leads to duplication of logic in the software that
processes documents (or enforces meta-programming tricks
to avoid it). /based on personal experience/

4 / 15

Schema and namespaces

DTD is namespace-ignorant

XML Schema conceptually and technically bound with
XML namespaces

Basic approach: one schema (file) = one namespace
It is also possible to split one ns into several files

Referring to components from other namespaces available

Important attributes
targetNamespace – if given, all global definitions within
a schema go into that namespace
elementFormDefault, attributeFormDefault
– should local elements or attributes have qualified names?

default for both: unqualified
typical approach: elements qualified, attributes unqualified
setting may be changed for individual definitions

5 / 15

Using namespaces in XML Schema

Different technical approaches to handle namespaces in
XML Schema

XML Schema ns. bound to xs: or xsd:, no target
namespace

XML Schema ns. bound to xs: or xsd:, target namespace
as default namespace

Convenient as long as we don't use keys and keyrefs

Target namespace bound to a prefix (tns: by convention)

Then we can declare XML Schema as default namespace
and avoid using xs: or xsd:

6 / 15

Types in XML Schema

Every element and attribute has a type
If not specified: xs:anyType or xs:anySimpleType, resp.

“What an element/attribute may contain”
but also
“How to interpret a value”

7 / 15

Classification of types

Types by content model

Simple type (value of a text node or an attribute;
applicable to elements and attributes)

atomic type
list
union

Complex type (structure model – subelements and attributes;
applicable to elements)

empty content
element content
mixed content
simple content

8 / 15

Classification of types

Types by place of definition:

anonymous – defined locally in place of use

named – defined globally
built-in – defined in XML Schema specification
user-defined

Types by means of definition:

primitive (simple types)

defined directly (complex type as a sequence etc.)

derived (some built-in types are defined by derivation!)
by extension (complex types only)
by restriction (complex and simple types)
as a list or union (simple types only)

9 / 15

Simple types

Rich set of built-in types
decimal, integer, nonNegativeInteger, long, int, ...
boolean, float, double
date, time, dateTime, duration, ...
string, token, base64Binary, hexBinary, ...
See the recommendation for the complete hierarchy

Defining custom types basing on built-in types
by restriction
as a list
as an union

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

10 / 15

Value space vs lexical space

A simple type specifies its
value space – set of abstract values
lexical space – set of valid text representations

Type Text representations Abstract value

xs:boolean 0, false
1, true

False
True

xs:decimal (and derivatives) 13, 013, 13.00 13

xs:string 013
 foo bar

'013'
' foo bar '

xs:token foo bar 'foo bar'

11 / 15

Choosing the appropriate type

Semantic meaning of a simple type:
not only a “set of allowed character strings”
also the way a value is interpreted!

Types may affect the validation
e.g. leading zeros significant in strings,
meaningless in numbers

Processors may use the information about type, e.g.
schema-aware processing in XSLT 2.0 or XQuery

sorting, comparison, arithmetic operations

JAXB – generation of Java classes based on XSD

Choosing the appropriate type sometimes not obvious
phone number, zip code, room number – number or string?

12 / 15

Defining simple types by restriction

Constraining facets – properties we can restrict
enumeration
pattern
length, minLength, maxLength
totalDigits, fractionDigits
maxInclusive, maxExclusive
minInclusive, minExclusive
whiteSpace

Used directly in simple type definition:
<xs:simpleType name="LottoNumber">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1" />
 <xs:maxInclusive value="49"/>
 </xs:restriction>
</xs:simpleType>

Some of them available only
for chosen primitive base types

<lottoNumber>12</lottoNumber>

13 / 15

List types

List of values separated with whitespace.

Not to confuse with sequences
list – simple type, no markup structure within
sequence – complex type, sequence of subelements

Compact notation for lists of values
but

Harder to process in XML processors (requires additional
parsing using regexp etc. – not available e.g. in XSLT 1.0)

<xs:simpleType name="LottoNumberList">
 <xs:list itemType="LottoNumber" />
</xs:simpleType>

<lottoNumberList>12 2 47 6 33 12 27 18</lottoNumberList>

14 / 15

Union types

Union of sets of values

Possibility to mix values of different primitive types
Interpreting values as abstract values hard to perform
Nevertheless, a usable feature (e.g. unbounded in
XML Schema)

<xs:simpleType name="ClothingSize">
 <xs:union memberTypes="ClothingSizeNumber ClothingSizeLetter"/>
</xs:simpleType>

<size>40</size>
<size>L</size><xs:simpleType name="ClothingSizeLetter">

 <xs:restriction base="xs:token">
 <xs:enumeration value="XS"/>
 <xs:enumeration value="S" />
 <xs:enumeration value="M" />
 <xs:enumeration value="L" />
 <xs:enumeration value="XL"/>
 <xs:enumeration value="XXL"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="ClothingSizeNumber">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="20" />
 <xs:maxInclusive value="60" />
 </xs:restriction>
</xs:simpleType>

15 / 15

Identity constraints

Constraints on uniqueness and references

Two mechanisms:

DTD attribute types ID and IDREF
introduced in SGML DTD but still available in XML Schema
drawbacks:

one global scope, at most one ID per element
special form of values – only names allowed
IDs and references necessarily in attributes

XML Schema identity constraints
key, unique, and keyref definitions
more powerful and more flexible than ID/IDREF

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15

