
Modelling XML Applications

Patryk Czarnik

XML and Applications 2013/2014
Lecture 2 – 14.10.2013

2 / 19

XML application (recall)

XML application (zastosowanie XML)
A concrete language with XML syntax

Typically defined as:
Fixed set of acceptable tag names (elements and
attributes, sometimes also entities and notations)
Structure enforced on markup, e.g.:
“<person> may contain one or more <first-name> and
must contain exactly one <surname>”
Semantics of particular markups (at least informally)

3 / 19

Modelling new XML application

Analysis & design
analysis of existing documents,
new requirements, etc.
identifying nouns,
their role and dependencies
data types, constraints, limits

Writing down
structure definition – “schema”
semantics description – usually in natural language;
in schema (comments, annotations) or a separate document

4 / 19

Standards for defining structure of
XML documents

DTD
part of XML standard (1998, 2004)
origins from SGML (1974)

XML Schema – W3C Recommendation(s)
version 1.0 – 2001
version 1.1 – 2012

Relax NG
OASIS Committee Specification – 2001
ISO/IEC 19757-2 – 2003

Schematron
alternative standard and alternative approach
several version since 1999
impact on XML Schema 1.1

5 / 19

Benefits of formal definition

Tangible asset resulting from analysis & design
Formal, unambiguous definition of language
Reference for humans (document authors and readers,
programmers and tool engineers)

Ability to validate documents using tools or libraries
Programs may assume correctness of content of validated
documents (less conditions to check!)

Content assist in editors
autocomplete during typing, stub document generation

6 / 19

Two levels of document correctness
(recall)

Document is well-formed (poprawny składniowo) if:
conforms to XML grammar,
and satisfies additional well-formedness constraints
defined in XML recommendation.
Then it is accessible by XML processors (parsers).

Document is valid (poprawny strukturalnie,
“waliduje się”) if additionally:

is consistent with specified document structure definition;
from context: DTD, XML Schema, or other;
in strict sense (DTD): satisfies validity constraints given
in the recommendation.
Then it is an instance of a logical structure and makes
sense in a particular context.

7 / 19

Element content – simple case

<student>
 <first-name>Monika</first-name>
 <surname>Domżałowicz</surname>
 <birth-date>1990-03-13</birth-date>
</student>

Example content

<!ELEMENT student (first-name, surname, birth-date)>
<!ELEMENT first-name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT birth-date (#PCDATA)>

DTD definition

<xs:element name="student">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="first-name" type="xs:string"/>
 <xs:element name="surname" type="xs:string"/>
 <xs:element name="birth-date" type="xs:date"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

XML Schema definition

8 / 19

Details in examples!

Disclaimer

Taking our experience and students' opinions into account
we will try not to copy standard specifications onto slides
but rather to show by examples:

some typical usage,

different paths to do a thing – so you can choose your
approach depending on needs,

chosen cases of advanced usage and rarely used
features – it is impossible to show all of them during
a short lecture,

some good and bad practices.

It also means, in particular, that slides are not a complete
source of knowledge required to pass the exam.

9 / 19

Details in examples!

Examples presented during the lecture:

Structure of DTD, structure of XML Schema definition

Typical element definition

Controlling number of occurrences

Sequence and choice

Building complex models

Any order (xs:all)– schema only

Defining attributes in schema and DTD

10 / 19

Details in examples! (ctd)

Examples on lab classes (see lab scenario)

Mixed content
DTD approach – (#PCDATA| a | b)*
Mixed content with controlled subelements – schema only

Avoiding code duplication and different ways of writing
definitions in schemas

Local definitions vs global definitions
Anonymous types vs named (global) types
Named groups
Extending complex types

11 / 19

Common design decisions
Natural language

Which natural language to use?
It would be a nonsense not to use English in solutions that
have a potential to be used worldwide.
But XML supports internationalisation. You may choose to
honour you native language if the solution is dedicated for
a particular country.

Law acts processed in Polish Parliament use Polish tags,
as well as XML-version forms for tax declarations.

<Podmiot1 poz="P_1A" rola="Podatnik">
<etd:OsobaFizyczna>

<etd:PESEL>00000000000</etd:PESEL>
<etd:ImiePierwsze>a</etd:ImiePierwsze>
<etd:Nazwisko>a</etd:Nazwisko>
<etd:DataUrodzenia>1900-01-01</etd:DataUrodzenia>

</etd:OsobaFizyczna>

12 / 19

Common design decisions
Element or attribute?

<teacher tel="5544458">
 <first-name>Patryk</first-name>
 <surname>Czarnik</surname>
</teacher>

<teacher>
 <first-name>Patryk</first-name>
 <surname>Czarnik</surname>
 <tel>5544458</tel>
</teacher>

Where should a field be written:
in an attribute

or in an element?

I would write this particular one in an element.
<tel type="office">55<internal>44458</internal></tel>

13 / 19

Common design decisions
Element or attribute?

Advantages of attributes:
more compact syntax
(only in DTD) some features available only for attributes

Technical restrictions of attributes:
only text, without marked up structure
multiple attributes with the same same forbidden

General hints
Semantic hint: Use elements for data, attributes for
metadata (whatever it means in you case ;)).
Presentational hint: If you had to print your document on
paper, which parts of text would you print literally (they
are elements) and which parts would only have some
impact (or no impact) on the way things are presented
(should become attributes)?

14 / 19

Common design decisions
Names

How descriptive (and long) should a name be?

To use multipart names, or assume that the context is
known?

Unique element names simplify some kinds of document
processing

CSS, SAX, or DOM (in some cases) – in large scope
XPath/XSLT/XQuery – not so important

<program>
 <item>Introduction to XML</item>
 <item>XML Schema</item>
</program>

<lecture-program>
 <lecture-program-item>Introduction to XML</lecture-program-item>
 <lecture-program-item>XML Schema</lecture-program-item>
</program>

15 / 19

Common design decisions
Wrappers

<group>
 <number>1</number>
 <students>
 <student>Jan Kowalski</student>
 <student>Anna Nowakowska</student>
 ...
 </students>
</group>

<group>
 <number>1</number>
 <student>Jan Kowalski</student>
 <student>Anna Nowakowska</student>
 ...
</group>

16 / 19

Modularisation options

Combining multiple files
DTD – external parameter entities
Schema – include, import, redefine

Reusing fragments of model definition
DTD – parameter entities
Schema – groups and attribute groups
(in practice equivalent to the above)
Schema – types, type derivation (no such feature in DTD)

Global and local definitions
In DTD all elements global, all attributes local
In schema both can be global or local, depending on case

See examples for details!

17 / 19

Import or include?

xs:import
Imports foreign definitions to refer to

xs:redefine
Includes external definitions, but a local definition
overrides external one if they share the same name

xs:include
Basic command, almost like textual insertion
Imported module must have the same target namespace
or no target namespace

A multi-module, namespace-aware project with overused
xs:include leads to duplication of logic in the software that
processes documents (or enforces meta-programming tricks
to avoid it). /based on personal experience/

A multi-module, namespace-aware project with overused
xs:include leads to duplication of logic in the software that
processes documents (or enforces meta-programming tricks
to avoid it). /based on personal experience/

18 / 19

Schema and namespaces

DTD is namespace-ignorant

XML Schema conceptually and technically bound with
XML namespaces

Basic approach: one schema (file) = one namespace
Splitting one ns into several files technically possible

Referring to components from other namespaces available

Important attributes
targetNamespace – if given, all global definitions within
a schema go into that namespace
elementFormDefault, attributeFormDefault
– should local elements or attributes have qualified names?

default for both: unqualified
typical approach: elements qualified, attributes unqualified
setting may be changed for individual definitions

19 / 19

Using namespaces in XML Schema

Different technical approaches to handle namespaces in
XML Schema

XML Schema ns. bound to xs: or xsd:, no target
namespace

XML Schema ns. bound to xs: or xsd:, target namespace
as default namespace

Convenient as long as we don't use keys and keyrefs

Target namespace bound to a prefix (tns: by convention)

Then we can declare XML Schema as default namespace
and avoid using xs: or xsd:

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19

