
Introduction to XML

Patryk Czarnik

XML and Applications 2013/2014
Lecture 1 – 7.10.2013

2 / 42

Text markup – roots

The term markup origins
from hints in manuscript
to be printed in press.

Po polsku
znakowanie tekstu

And she went on planning to
herself how she would manage it.
'They must go by the carrier,'
she thought; 'and how funny it'll
seem, sending presents to one's
own feet! And how odd the
directions will look!

ALICE'S RIGHT FOOT, ESQ.
HEARTHRUG,
NEAR THE FENDER,
(WITH ALICE'S LOVE).

Oh dear, what nonsense
I'm talking!'.

10pt space

10pt space
0.5in

bold

3 / 42

Text markup – roots

In fact people have marked up text
since the beginning of writing.

Marking up things in hand-written text:
punctuation, indentation, spaces,
underlines, capital letters.

Structural documents:
layout of letter – implicit meaning,
tables, enumeration, lists.

Today informal markup used in
computer-edited plain text:

email, forum, blog (FB etc.),
SMS, chat, instant messaging.

4 / 42

Text markup – fundamental distinction

Presentational markup

Describes the appearance of
text fragment

font, color, indentation,...

Procedural or structural

Examples:
Postscript, PDF, TeX
HTML tags:

direct formatting in word
processors
XSL-FO (we will learn)

Semantic markup

Describes the meaning (role)
of a fragment

Examples:
LaTeX (partially)
HTML tags:
<Q> <CITE> <VAR>
styles in word processors
(if used in that way)
most of SGML and XML
applications

5 / 42

Documents in information systems

Since the introduction of computers to administration,
companies and homes plenty of digital documents have
been written (or generated).

Serious problem: number of formats, incompatibility.

De facto standards in some areas (e.g. .doc, .pdf, .tex)
most of them proprietary
many of them binary and hard to use
some of them undocumented and closed for usage without
a particular tool

Let's design another format
replacing all existing!

Let's design another format
replacing all existing!

And now we have 1000+1 formats to handle...

6 / 42

Why is XML a different approach?

Common base
document model
syntax
technical support (parsers,
libraries, supporting tools
and standards)

Different applications
varying set of tags
undetermined semantics

Base to define formats
rather than one format

General and extensible!
syntax

libraries

tools

XHTML

Open
Document

MathML

SOAP

competencies

standards

7 / 42

A bit of history – overview

1960 1970 1980 1990 2000

Road to XML

Context and alternative solutions

8 / 42

Road to XML

1967–1970s – William Tunnicliffe, GenCode

Late 1960s – IBM – SCRIPT project, INTIME experiment
Charles Goldfarb, Edward Mosher, Raymond Lorie
Generalized Markup Language (GML)

1974–1986 – Standard Generalized Markup Language
(SGML)

ISO 8879:1986

Late 1990s – Extensible Markup Language (XML)
W3C Recommendation 1998
Simplification(!) and subset of SGML

9 / 42

What is XML?

Standard – Extensible Markup Language
World Wide Web Consortium (W3C) Recommendation

version 1.0 – 1998
version 1.1 – 2004

Language – a format for writing structural documents
in text files

Metalanguage – an extensible and growing family
of concrete languages (XHTML, SVG, etc...)

Means of: (two primary applications)

document markup
carrying data (for storage or transmission)

10 / 42

What is XML not?

Programming language

Extension of HTML

Means of presentation (for humans)

Web-only, WebServices-only, database-only,
nor any other _-only technology – XML is general.

Golden hammer

11 / 42

XML components
Main logical structure

Element (element)
start tag (znacznik otwierający)
end tag (znacznik zamykający)

Attribute (atrybut)

Text content
/ text node
(zawartość tekstowa
/ węzeł tekstowy)

<article id="1850" subject="files">
 <author>Jan Kowalski</author>
 <title>File formats</title>
 <p>
 <n>Open document</n> files may have
 the following extensions:
 </p>
 <list type="unordered">
 <item>odt</item>
 <item>ods</item>
 <item>odd</item>
 <item>odp</item>
 <item>odb</item>
 </list>
</article>

12 / 42

XML components
Comments and PIs

Comment (komentarz)

Processing instruction (instrukcja przetwarzania,
ew. instrukcja sterująca, dyrektywa)

target (cel, podmiot)

<?xml-stylesheet type="text/css" href="style.css"?>
<article id="1850" subject="files">
 <author>Jan Kowalski</author>
 <?Categorisation technical informal ?>
 <title>File formats</title>
 <!-- <p>Commented content... -->
</article>
<!-- Modified: 2013-10-02T11:11:00 -->

13 / 42

XML components – CDATA

CDATA section (sekcja CDATA)
Whole content treated as a text node, without any
processing.
Allows to quote whole XML documents
(not containing further CDATA sections).

<example>
 The same text fragment written in 3 ways:
 <option>x > 0 & x < 100</option>
 <option>x > 0 & x < 100</option>
 <option><![CDATA[x > 0 & x < 100]]></option>
</example>

14 / 42

Document prolog

XML declaration
Looks like a PI, but formally it is not.
May be omitted. Default values of properties:

version = 1.0
encoding = UTF-8 or UTF-16 (deducted algorithmically)
standalone = no

Document type declaration (DTD)
Optional

<?xml version="1.0" encoding="iso-8859-2" standalone="no"?>
<!DOCTYPE article SYSTEM "article.dtd">
<article>
 ...
</article>

15 / 42

Unicode and character encoding

Unicode – big table assigning characters to numbers.
Some characters behave in a special way, e.g.
U+02DB ˛ Ogonek

One-byte encodings (ISO-8859, DOS/Windows, etc.)
Usually map to Unicode, but not vice-versa
Mixing characters from different sets not possible

Unicode Transformation Formats:
UTF-8 – variable-width encoding, one byte for characters
0-127 (consistent with ASCII), 16 bits for most of usable
characters, up to 32 bits for the rest
UTF-16 – variable-width, although 16 bits used for most
usable characters; big-endian or little-endian
UTF-32 – fixed-length even for codes > 0xFFFF

16 / 42

XML components
Character & entity references

Character reference decimally: ü
(referencja do znaku)

Character reference hexadecimally: ü
Relate to character numbers in Unicode table.
Allow to insert any acceptable character even if out of
current file encoding or hard to type from keyboard.
Not available within element names etc.

Entity reference: < &MyEntity;
(referencja do encji)

Easy inserting of special characters.
Repeating or parametrised content.
Inserting content from external file or resource

addressable by URL.

17 / 42

Where do entities come from?

5 predefined entities: lt gt amp apos quot

Custom entities defined in DTD
simple (plain text) or complex (with XML elements)
internal or external

<!ELEMENT doc ANY>
<!ENTITY lecture-id "102030">
<!ENTITY title "XML and Applications">
<!ENTITY abstract SYSTEM "abstract.txt">
<!ENTITY lect1 SYSTEM "lecture1.xml">

<?xml version="1.0"?>
<!DOCTYPE doc SYSTEM "entities.dtd">
<doc>
 <lecture id="&lecture-id;">
 <title>&title;</title>
 <abstract>&abstract;</abstract>
 &lect1;
 </lecture>
</doc>

<?xml version="1.0"?>
<p>XML is fine.</p>
<p>A general parsed entity is well-formed
if it forms a well-formed XML document
when put between element tags.</p>
In particular, it may contain
text and any number of elements.

We skip details of
unparsed entities

and notations.

18 / 42

Document Type Definition

Defines structure of a class of XML documents
(“XML application”).

Optional and not very popular in new applications.
Replaced by XML Schema or alternative standards.
It is worth to know it, though. Important for many
technologies created 10-30 years ago and still in use.

Beside document structure definition, which we'll learn in
the next week, it allows to define entities and notations.

19 / 42

<?xml version="1.0"?>
<!DOCTYPE doc SYSTEM "entities.dtd"
[
 <!ENTITY title "XML and Advanced Applications">
]>
<doc>...

Associating DTD to XML document
(3 options)

Internal DTD External DTD

Mixed approach – internal part processed first and has
precedence for some kinds of definitions (including entities)

<?xml version="1.0"?>
<!DOCTYPE doc SYSTEM "entities.dtd">
<doc>...

<?xml version="1.0"?>
<!DOCTYPE doc [
 <!ELEMENT doc ANY>
 <!ENTITY title "XML and Apps">
]>
<doc>...

<!ELEMENT doc ANY>
<!ENTITY title "XML and Applications">

20 / 42

External entity identifiers

For the external DTD fragment or an entity.

System identifier
SYSTEM "lecture1.xml"
SYSTEM "http://xml.mimuw.edu.pl/lecture1.xml"

Public identifier
PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"

Public identifiers mapped to actual resources using
catalog file – SGML-related technology.
Some processors (e.g. Web browsers) may use their
internal knowledge about a document when they see
an expected public identifier.
System URI given as additional “fallback”
(in XML required, in SGML not).

21 / 42

XML syntax – supplement

Elements have to be closed (in stack-like order).
Shorthand for empty elements: <elem/>

Two possibilities of attribute value quotation: " or '

Not every character is allowed in XML document,
even by a character reference.

Different sets in XML 1.0 and 1.1

Surprising curiosities:
-- is forbidden within comments
]]> is forbidden anywhere in text content

therefore > is ever needed

22 / 42

Document as a tree

id = 77
employee

fname surname tel
type = mob

tel

Jan Kowalski 123234345 intern

1313

605506605

<?xml version="1.0"?>
<?xml-stylesheet href="styl.css"?>
<employee >
 <fname>Jan</fname>
 <surname>Kowalski</surname>
 <tel>123234345<intern>1313</intern></tel>
 <!-- Comment -->
 <tel >605506605</tel>
</employee>

/

Comment

xml-stylesheet
href="style.css"

id="77"

type="mob"

23 / 42

Language or metalanguage?

XML is a language.
Grammar, additional constraints expressed descriptively
→ one can determine whether a sequence of characters is
well-formed XML.

Better to think as of a metalanguage.
Common base for defining particular languages
Set of languages (open, unlimited)

24 / 42

XML application

XML application (zastosowanie XML)
A concrete language with XML syntax

Typically defined as:
Fixed set of acceptable tag names (elements and
attributes, sometimes also entities and notations)
Structure enforced on markup, e.g.:
“<person> may contain one or more <first-name> and
must contain exactly one <surname>”
Semantics of particular markups (at least informally)

Means of defining XML applications (the syntax part):
DTD – part of XML standard
XML Schema – W3C Recommendation
Relax NG and other alternative standards

25 / 42

Two levels of document correctness

Document is well-formed (poprawny składniowo) if:
conforms to XML grammar,
and satisfies additional well-formedness constraints
defined in XML recommendation.
Then it is accessible by XML processors (parsers).

Document is valid (poprawny strukturalnie,
“waliduje się”) if additionally:

is consistent with specified document structure definition;
from context: DTD, XML Schema, or other;
in strict sense (DTD): satisfies validity constraints given
in the recommendation.
Then it is instance of a logical structure and makes sense
in a particular context.

26 / 42

Two faces of XML

“Text document”

Flexible structure,
mixed content

Text (formatted or annotated
with tags)

Content created and used by
humans

“Database”

Strict structure

Various datatypes

Created and processed
automatically

<p><spoken who="alice">Curiouser
 and curiouser!</spoken> cried Alice
 <remark>she was so much surprised, that
 for the moment she quite forgot how to
 speak good English</remark>;
 <spoken who="alice">now I'm opening
 out like the largest telescope.</spoken>
</p>

<order nr="18/2013">
 <customer id="1313"/>
 <order-date>2013-10-10</order-date>
 <deliv-date>2013-11-03</deliv-date>
 <items>
 <item good-id="56312" qty="1"/>
 <item good-id="56100" qty="10"/>
 <item good-id="56560" qty="7"/>
 </items>
</order>

27 / 42

Applications of XML

Traditional (successor of SGML) – content management
Source text markup – preferably semantic – to be used in
various ways (publication, searching, analysis)
Combining documents (links, references, etc.)

Modern – data serialisation, programming technologies
Saving structural data in files
Integration of distributed applications:
“web services” (SOAP), REST, AJAX
Databases (import/export, “XML databases”)
Format of configuration files for many technologies

Somewhat between – IMO the best place for XML:
Structural documents (forms etc.) to be processed
by IT systems

28 / 42

XML vs (X)HTML

HTML

Defined set of elements and
attributes

Their meaning established

Defined (to some extent)
way of presentation

Although specification
exists, tools support (and
often create) incorrect
HTML.

XML

All (syntactically correct)
tag names allowed

Undefined semantics
<p> is not necessarily
a paragraph!

Unspecified way of
presentation

Processors obliged to work
with well-formed XML

29 / 42

XML vs SGML

SGML

“Convenient for author”

Some ambiguity allowed
when supported by DTD,

e.g. in HTML <p> or
may stay not closed

Token attributes allowed to
be unquoted

More datatypes for
attributes in DTD

More DTD structuralisation
capabilities

DTD required

XML

“Convenient for processor”

Strict unambiguous syntax

Less options, simpler DTD

Unified with modern internet
standards (URI, Unicode)

DTD optional

30 / 42

What can we do with XML?

Define new XML-based formats using XML Schema or
other standards

Validate documents against the definition

Edit manually (e.g. Notepad) or using specialised tools

Store in files or databases, transfer through network

Process documents (read, use, modify or create, write) in
custom applications

Use existing parsers and libraries

Search and query for data using XQuery, XPath, XSLT, or
custom applications

Transform to other formats (for presentation, but not
only) using XSLT, XQuery, or custom applications

Format using stylesheets or specialised tools

31 / 42

Advantages of XML

Compared to binary formats:
Readable (to some extent...) for humans, “self-descriptive”

Possibility to read or edit using simplest tools
Easier debugging

Compared to ad-hoc designed formats:
Common syntax and document model

Common way of defining XML applications (XML Schema)

Existing tools, libraries, and supporting standards
Interoperability

Compared to WYSIWYG editors and their formats:
Semantic markup available, more advanced than flat styles
Relatively easy conversion to other formats (using
transformations and stylesheets)

32 / 42

Drawbacks of XML

Verbosity
Writing numbers, dates, images, etc. as text not efficient
Syntax of XML (e.g. element name repeated in closing tag)
Common use of whitespace for indentation
(not obligatory, of course)

Complexity
Inherited features of SGML (entities, notations, even whole
DTD) which are rarely used in modern applications, but
have to be supported by processors

Technical restrictions, e.g.:
Elements can not overlap (trees, not DAGs)
Binary content not allowed (there are some solutions – we will learn)

Requirement of exactly one root element impractical

33 / 42

Where does XML make sense?

Text-oriented applications
As source format for further processing
To denote metadata, structural dependencies, links, etc.

Data-oriented applications
When structural text or tree-like structure appears in
a natural way; e.g. business documents interchange
When interoperability more important than efficiency

public administration services, external business partners,
heterogeneous environment

But XML (read also “WebService”)
is maybe not the best format to transfer arrays of

numbers between nodes performing a physical process
simulation (in a centralised and internal solution).

But XML (read also “WebService”)
is maybe not the best format to transfer arrays of

numbers between nodes performing a physical process
simulation (in a centralised and internal solution).

34 / 42

Alternatives to XML – text

For text-oriented applications of XML:

TeX and LaTeX

Direct tagging in graphical
text editors

flat styles
more advanced solutions,
e.g. Adobe FrameMaker

“Lightweight markup”
MediaWiki
AsciiDoc, OrgMode,
and others

==== A dialogue ====

"Take some more [[tea]],
" the March Hare said to Alice,
 very earnestly.

"I've had nothing yet,"
Alice replied in an offended tone:
"so I can't take more."

"You mean you can't take ''less'',"
 said the Hatter: "it's '''very'''
easy to take ''more'' than nothing."

MediaWiki source example from Wikipedia

35 / 42

Alternatives to XML – data

For “modern” applications of XML:

JSON (JavaScript Object Notation)
more compact than XML
often used instead of XML
in AJAX-like solutions

YAML
similar to JSON,
but more advanced

CSV
simple and poor

ASN.1, EDIFACT
different approach
(not as generic)

{ "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021"
 },
 "phoneNumber": [
 {"type": "home",
 "number": "212 555-1234"
 },
 {"type": "fax",
 "number": "646 555-4567"
 }
]
} JSON example from Wikipedia

36 / 42

Namespaces – motivation

Same names of tags may denote different things.

Problematic especially when combining document
fragments from different sources into one document.

<article code="A1250">
 <title>Assignment in Pascal and C</title>
 <author>
 <fname>Jan</fname> <surname>Mądralski</surname>
 <address>...
 <code>01-234<code>
 </address>
 </author>
 <body>
 <paragraph>
 Assignment is written as <code>x = 5</code> in C
 and <code>x := 5</code> in Pascal.
 </paragraph>
 </body>
</article>

37 / 42

XML namespaces – realisation

Namespace name (identyfikator przestrzeni nazw)
– globally unique identifier

Universal Resource Identifier (URI) in XML v1.0
Internationalized Resource Identifier (IRI) in XML v1.1

Namespace prefix (prefiks przestrzeni nazw)
– local, for convenient reference

Local for document or fragment
Processors should not depend on prefixes!

Names resolved and interpreted as pairs:
(namespace name, local name)

To make things more complex:
scope and overrding
default namespace

38 / 42

Usage of namespaces and prefixes

<art:article code="A1250"
 xmlns:art="http://xml.mimuw.edu.pl/ns/article"
 xmlns:t="http://xml.mimuw.edu.pl/ns/text-document"
 xmlns:ad="urn:addresses">
 <art:title>Assignment in Pascal and C</art:title>
 <art:author>
 <fname>Jan</fname> <surname>Mądralski</surname>
 <ad:address>...
 <ad:code>01-234</ad:code>
 </ad:address>
 </art:author>
 <art:body>
 <t:paragraph>
 Assignment is written as <t:code>x = 5</t:code> in C
 and <t:code>x := 5</t:code> in Pascal.
 </t:paragraph>
 </art:body>
</art:article>

39 / 42

Namespaces – overriding and scopes

<pre:article code="A1250" xmlns:pre="http://xml.mimuw.edu.pl/ns/article">
 <pre:title>Assignment in Pascal and C</pre:title>
 <pre:author>
 <fname>Jan</fname> <surname>Mądralski</surname>
 <pre:address xmlns:pre="urn:addresses">...
 <pre:code>01-234</pre:code>
 </pre:address>
 </pre:author>
 <pre:body>
 <pre:paragraph xmlns:pre="http://xml.mimuw.edu.pl/ns/text-document">
 Assignment is written as <pre:code>x = 5</pre:code> in C
 and <pre:code>x := 5</pre:code> in Pascal.
 </pre:paragraph>
 </pre:body>
</pre:article>

40 / 42

Default namespace

Applies to element names which do not have a prefix.

Does not apply to attributes.

<article code="A1250" xmlns="http://xml.mimuw.edu.pl/ns/article">
 <title>Assignment in Pascal and C</title>
 <author>
 <fname>Jan</fname> <surname>Mądralski</surname>
 <address xmlns:pre="urn:addresses">...
 <code>01-234</code>
 </address>
 </author>
 <body>
 <paragraph xmlns:pre="http://xml.mimuw.edu.pl/ns/text-document">
 Assignment is written as <code>x = 5</code> in C
 and <code>x := 5</code> in Pascal.
 </paragraph>
 </body>
</article>

41 / 42

Namespaces – supplement

Qualified name – name with non-empty ns.URI

Unqualified name – name with null (not assigned) ns.
elements without prefixes when no default namespace
attributes without prefixes – always

Namespace name
Only identifier, even if in form of an address!
Should be in form of URI / IRI; some processors do not
check it, though
Pay attention to every character (uppercase/lowercase,
etc.) – most processors simply compare strings

XML namespaces may be used not only for element and
attribute names – e.g. type names in XML Schema

42 / 42

Namespace awareness

A document may be well-formed as XML while erroneous
from the point of view of namespaces.

For some applications (usually old ones...) such document
might be proper and usable.

Modern parsers can be configured to process or not
namespaces.

The mentioned document would be
parsed successfully by a parser which is not
namespace-aware,
revoked by a namespace-aware parser.

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42

