ByteCode 2010

A dozen instructions make Java bytecode'

Jacek Chrzgszcz? Patryk Czarnik® Aleksy Schubert?

Institute of Informatics
University of Warsaw
ul. Banacha 2
02-097 Warsaw
Poland

Abstract

One of the biggest obstacles in the formalisation of the Java bytecode is that the language consists of
200 instructions. However, a rigorous handling of a programming language in the context of program
verification and error detection requires a formalism which is compact in size. Therefore, the actual Java
bytecode instruction set is never used in the context. Instead, the existing formalisations usually cover
a ‘representative’ set of instructions. This paper describes how to reduce the number of instructions in a
systematic and rigorous way into a manageable set of more general operations that cover the full functionality
of the Java bytecode. The factorisation of the instruction set is based on the use of the runtime structures
i}[lchhas operand stack, heap etc. This is achieved by presentation of a formal semantics for the Java Virtual
achine.

Keywords: bytecode, semantics

1 Introduction

The transfer of programs from one party to the other raises the problem of security
of its execution on the receiver’s side. Therefore it is desirable to provide means to
guarantee certain computational properties of the code in the form it travels from
the developer to the consumer. Java bytecode language (JVML in short) is one of
the most popular formats for a code that travels in the Internet and the security
of its execution has already caused practical problems (see [5,8]) which go beyond
the abilities to control the execution by means of Java sandboxing. One of the
possible ways to overcome the problems is to provide a precise mathematical model
for the language, then prove properties of the programs using the model and supply
the travelling program with additional information that will make it possible to
reconstruct the proof efficiently on the code consumer’s side.

This work was partly supported by Polish government grant N N206 493138.
Email: chrzaszcz@mimuw.edu.pl
Email: czarnik@mimuw.edu.pl

W N =

Email: alx@mimuw.edu.pl

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:chrzaszcz@mimuw.edu.pl
mailto:czarnik@mimuw.edu.p
mailto:alx@mimuw.edu.pl

CHRZASZCZ, CZARNIK, SCHUBERT

Several formal semantics were proposed for the JVML including the most notable
ones: [1,7,11,13,14,15,16]. These formulations suffer from one of two problems—
either they provide a formal semantics of (almost) all 200 bytecode instructions ®
or they choose a subset of the instructions that represents most of the interesting
features. The drawback of the former option is that the formalisation in this case
is very difficult to operate with as most of the proofs have to be done by induction
on the structure of programs. Therefore the latter option is more often followed by
researchers, but then the particular choice of instruction representatives is often not
related to the actual instructions of the bytecode and is presented with very little
discussion on the issue of the correspondence of the actual instructions to the ones
in the model. The current paper provides the missing discussion and divides the
instructions into groups that follow the same pattern of access to the JVM runtime
structures (such as heap, operand stack etc.). For example, all load instructions
are grouped together, all jumps, including the subroutine ones (jsr and ret), but
also *aload, getfield, checkcast and instanceof form a single group as they
all access the heap and (possibly) put something on the operand stack or raise an
exception. In this way we obtain a factorisation of the whole set of the JVML
instructions to 12 items. The actual lists of instructions are in the appendix.

We believe that it is crucial to come up with a formalisation that is based on a
small number of instructions as then it is much easier to demonstrate the properties
of the language itself —many proofs for such a language are done by induction on
the structure of possible programs. If the number of instructions is limited then the
number of cases to consider in such a proof is small. This is the main reason why
ventures such as EML [10], where the number of semantical rules reaches several
hundred, failed to develop metatheoretical properties, while such as Coq module
system [2] succeeded with this regard. Moreover, it is a standard compiler design
technique to establish a small language that makes easy design of optimisation
techniques. Examples of such languages for Java and its bytecode include BAF,
Jimple and Grimp [17] as well as BIR [6].

Moreover, our rigorous consideration gives the opportunity to present what are
the instructions that really cover the whole spectrum of bytecode behaviours. We
are aware that for certain properties of the JVML a slightly different set of instruc-
tions would be more convenient (e.g. the proofs for interval static analysis require
access to the actual arithmetic operations and then it is desirable to consider them
explicitly). However, one still has a path to reach to all the operations in JVML as
their particular behaviour in our semantics is available through access to appropri-
ate tables associated with our generalised operations. We hope that this solution is
useful in all meta-proofs for JVML as it allows to build a common framework for
many analyses which is important when a verification platform is to be built for
real JVML programs.

Naturally, this paper does not provide the full semantics for the JVML as it
is very complex. In fact, in a few places we make deliberate simplifications of the
semantics in order to stay comprehensive in presentation.

This paper is an extended version of [3].

5 The number is even greater when one considers wide instructions as separate.

2

CHRZASZCZ, CZARNIK, SCHUBERT

2 Semantic domains and notation

We give here a small step semantics for the Java bytecode. The general form of a
semantics step is:

Pt h,ts — W ts (2.1)

where P is a program, h,h’ are heaps and ts,ts’ are states of the threads. The
semantic domains of these values are defined in the following way. First, we provide
the description of programs: Prog = [Cnhames —p, CDesc|]. Programs are partial
functions with finite domain that associate class descriptions from CDesc with class
names from Cnames. The class names are just appropriately defined identifiers,
the class descriptions are defined as CDesc = [Mnames —g,, MDesc] i.e. partial
functions with finite domains that associate method descriptions MDesc with the
method names. Again the method names are just appropriate identifiers while the
method descriptions are somewhat more complicated and defined as

MDesc = [PC — g, Instr] x ExTable
ExTable = [PC x Chames —,, PC]

where Instr is the set of JVM instructions and ExTable is an exception table for
the method. The intent is that a function in [PC —g, Instr] provides a mapping
from instruction labels to the instructions under the labels. The ExTable returns
the handler address for a given exception origin address and class.

The set of heaps is defined to be the set of

Heap = [Loc x Threadld —,, (Cnames x Monitor x [Fnames — g, Val])]

where Loc is the set of locations (e.g. natural numbers or pointers in the current
architecture) with a distinguished location null (the set Loc\{null} will be denoted
by Loc®), Threadld is the set of the thread identifiers (e.g. natural numbers), Monitor
is the set of monitors which will control the lock counter for the given object, this is
defined precisely later. Fnames is the set of field names and Val is the set of expected
field values i.e. Val = intwWlong---WlLoc. The Threadld is an argument of the heap,
as each thread has its own view of the heap state. The exact way the different views
are synchronised is described by the Java Memory Model [9, Section 17].

The set of thread statesis defined as the set of all finite sets of thread descriptions,
Prgn(Thread) x History combined with a state information History which contains an
information needed for the thread scheduler to deterministically select a thread to
execute. A thread description is

Thread = Threadld x ThreadStatus x EvalState x FrameStack

where ThreadStatus represents the current status of the thread i.e. sleeping, blocked,
running, terminated etc. At last, the FrameStack = MethodFrame® contains a se-
quence of the method frames of the form

MethodFrame = Cnames x Mnames x LVals x OpStack x PC
3

CHRZASZCZ, CZARNIK, SCHUBERT

where LVals is the local variable table defined as [Vars —z, Type x Val] with the
set of local variable indices Vars = N, Type being the type of the value in the
given entry and Val the value contained in the local variable table; OpStack is the
operand stack defined as (StackKind x (Valw PC))*, where StackKind represents the
type of the value in the current cell of the stack, note that we have to add PC
type to make sure we can put labels of bytecode instructions used by subroutine
commands; the same set PC is used as the final compound of MethodFrame and the
value points to the currently executed bytecode instruction; EvalState is a set that
represents the information on which exception has been thrown. We may assume
that EvalState = Loc. The special location null is used to mark the situation that
no exception has been thrown. We also assume that certain exceptions, such as
NullPointerException, ClassCastException etc. are preallocated on the heap.
This greatly simplifies the semantics as otherwise a number of semantic rules would
be needed to allocate the exception on the stack and call its constructor before
actially throwing it. And since the simplification does not concern used defined
exceptions we decided not to complicate the semantics.

It is worth mentioning that the semantics we provide here is in the so called
defensive style i.e. we provide the type identification along with the operand stack
and local variables table entries to check if the values stored there have correct type.

We can now define the set of monitors Monitor to be the product Threadld x N.
A pair from the set represents the identifier of the thread that holds the lock and
the number of the times the thread entered the monitor. We assume that the
set Threadld contains a distinguished constant none which is used to represent the
situation when no thread holds the monitor.

A natural operation on the operand stack o is pushing an element e. It is written
as e-0. The examining the top of the stack is done by pattern matching and o = e-0’
means that the stack o contains e at the top followed by the rest in o'.

The data structures which describe the state of the virtual machine are compli-
cated. Therefore we need further notation to retrieve the information from them.
First, we have to introduce the scheduler which chooses the particular thread to
be executed: % : Pg,(Thread) x History — Thread. We do not provide a particular
definition for History as this is implementation dependent. We assume only that the
scheduler returns any element from its first argument. To make the notation more
succint we write %5 to denote %(ts). The components of the current thread are
denoted as x5 = (tidss, tstatuss, estys, tfsys). As tfs;s is also a composite value, we
introduce further notation

tfsys = (enmys, mnmyg, lvyg, ostekys, pegg) -tfs%i” (2.2)

where cnmy, is the class name and mnmys is the method name of the currently
executed method, lvy, is the local variables table for the current method, ostckys is
the current operand stack, pc,, is the label of the currently executed instruction.
The value tfs?! denotes the (possibly empty) sequence of remaining method frames
on the frame stack.

6 In the Bicolano [13] JVM semantics the space on the heap is allocated but the constructor is not called.

4

CHRZASZCZ, CZARNIK, SCHUBERT

2.1 Modification and lookup notation

We frequently modify slightly a given thread state to obtain a new one. The mod-
ification is described using the notation changed_item[replaced_part «— new_part].
These can be defined precisely as the construction of a new value where all compo-
nents but replaced_part are unchanged and the latter is replaced by new_part. For
example tfs[lv < 1v'] is a thread state tfs modified so that its local variable table
lv; in the topmost method frame is replaced with a new table 1v’'.

The lookup of a particular instruction is done using the notation P@Qpc.mnm.cnm
where P € Prog, pc € PC, mnm € Mnames, and cnm € Cnames. This operation
extracts from the program P the class declaration cnm and then it uses the Java
method lookup scheme to retrieve the method of the name mnm (we assume the
method name is such that it takes into account the signature of the method and
therefore uniquely determines the method in the class). Then pc indicates which
bytecode instruction from the code of the method should be retrieved.

Similarly, P@Qetable.mnm.cnm denotes the exception table for the method of the
name mnm in the class cnm in P.

For h € Heap, s € Loc, and i € Threadld we write h(s,) to denote the value at
the location s visible in the heap A from the thread ¢. In most cases ¢ is clear from
the context so we omit it and write h(s). As h(s) is a compound value, we define

h(s)@cnm = 71 (h(s)) h(s)@monitor = ma(h(s)) h(s)@Qobj = m3(h(s))
h(s)@Qtid = 71 (ma(h(s))) h(s)@lcount = ma(ma(h(s)))

In case s = null or s ¢ dom(h), the notations above have the value L.

2.2 Awuziliary definitions

Throughout the following semantics description we use many minor notations. This
section collects the description of their meaning.

The names such as int are used here in two meanings, as a name for the set
of elements in the Java type of native integers and as a syntactical identifier which
is used to refer to the set. The 64-bit values divide into two halves. The notation
long(mi, ma) (resp. double(mi,msa)) means the 64-bit value of type long (resp.
double) constructed from two 32-bit words m1 and mso. The type of a half with no
distinction to which half and for which type (long or double) for a 64-bit value is
denoted as half.

The Java Virtual Machine handles the 64-bit types in a special way. There-
fore, the Java computational kinds are divided according to [12, Section 3.11.1] in
two categories: Catl = {int,float,ref, returnAddr} for 32-bit types and Cat2 =
{long,double} for 64-bit types. We will also use the notation Catl® to denote
Catl \ {returnAddr}.

As soon as a current thread is chosen we can conclusively determine the currently
executed method. This method is denoted cmthd € MDesc. We also use a function
next : MDesc x PC — PC to obtain the label of the next instruction in the method
using the order of the instruction occurrence there.

5

CHRZASZCZ, CZARNIK, SCHUBERT

2.3 Additional remarks

The semantics we give below is in fact more in the flavour of the interleaving seman-
tics than the actual Java Memory Model one. However, we provide here a way to
handle the Java Memory Model as our heap is defined so that it can give a different
view of the memory to each thread. Other features of the semantics such as class
loading, class initialisation, finalisation, native and synchronized methods etc. are
not handled as well. However, slight changes of the definitions above can give the
rules below the meaning which can take them into account. Adding reflection would
be more problematic as it would require us to change the form of semantic steps.

3 Semantics of instructions

The semantic rules present the evolution of runtime structures caused by the ex-
ecution of instructions. Most of the rules are directly governed by the current
instruction of the current method, but those dealing with exceptions are not.

In the course of the semantic transition the scheduler % chooses a particular
thread in ts to be executed. The notations we introduced in Section 2.1 all rely on
the assumption that a thread is fixed. Therefore, we fix a single choice made by
throughout each particular rule. However, the choice may change for different steps
of our semantics. We also assume that the state of the heap can change after each
rule so that the visibility of its content gets partially synchronised among threads.
If we do full synchronisation with every step we obtain the interleaving semantics.

3.1 Instruction load

This instruction generalizes all JVM instructions that read local variables and push
the value to the operand stack. Its parameters describe the type and source of the
value to be written to the stack, the general form of the instruction is load(k,n)
where k € Catl® U Cat2 is a kind, and n is a local variable index.

In the simplest case, when k is a 32-bit kind, & € Catl®, the instruction reads a
value from the local variable pointed by the index n and puts the value on the top
of the operand stack. It is required that the value is of kind k.

lvis(n) = (k,m) ostck’ = (k,m) - ostckys pc’ = next(cmthd, peyy)

P@pc,,. mnmys.cnmyg = load(k,n) k € Catl® est;s = null

ncatl-load

(3.1)
If k denotes a category-2 kind (long or double), the value to push on the stack is
obtained from the values of two variables, indexed by n and n + 1. This is because
category-2 values occupy two subsequent cells in the local variables array. We
provide an artificial kind half for the second variable in such a pair of variables.
Following the JVM description [12, Section 3.6.2] we use a single operand stack
element for a category-2 value.

P+ h,ts — h,ts[ostck « ostck’][pc < pc/]

CHRZASZCZ, CZARNIK, SCHUBERT

Wvis(n) = (k,m1) lvis(n+ 1) = (half,ma)
ostck’ = (k, k(my,ms)) - ostckys pc’ = next(cmthd, pc,,)

P@pc,,. mnmy,.cnmyg = load(k,n) k € Cat2 estys = null

P h,ts — h,ts[ostck « ostck’][pc « pc/] neatz-load (3.2)

3.2 Instruction store

This instruction generalizes all JVM instructions that pop a value from the operand
stack and put it in the local variable table. Its arguments are the kind and desti-
nation of the popped value, the general form of the instruction is store(k,n) where
k € Catl® U Cat2 is a kind and n is a local variable index.

In case of a category-1 kind, the store instruction pops the topmost value from
the operand stack and stores it in a local variable indexed by n.

IV = lvig[n «— (k,m)]
ostcks = (k,m) - ostck’ pc’ = next(cmthd, pc,,)

PQ@pc,,. mnmys.cnmyg = store(k,n) k € Catl® est;s = null

P+ h,ts — h,ts[ostck « ostck’][pc < pc/][lv « V'] neatl-store (3.3)

If k € Cat2, two subsequent variables, n and n+ 1, are modified. It is required that
the first variable is of kind &, and the second one is of kind half.

IV = lvig[n < (k,m1)][n + 1 « (half,mo)]
ostck’ = (k, k(m1,mz)) - ostckys pc’ = next(cmthd, pe;,)

P@pc,,. mnmys.cnmys = store(k,n) k€ Cat2 estys = null

P h,ts — h,ts[ostck « ostck’][pc « pc] neatz-store (3.4)

3.8 Instruction stackop

Instruction stackop(op) generalizes all JVM instructions that use only the operand
stack. It should be noted, that all such instructions operate on a fixed number of
top elements, while the bottom part of the stack is neither read nor modified.

The parameter op denotes the stack operation to perform. The meaning of op is
obtained through kindsgackop(0p), which is a set of triples, each of them consisting
of: a list of input kinds [, a function f, and a list of output kinds [’.

The list [defines the requirements of the operation with respect to the operand
stack. The number of stack elements must not be less than the length of [, and for
all 7, the i-th element of the stack must be of kind /;. This is denoted by check(s,).

The function f : OpStack — OpStack is the actual stack operation. || elements
are popped from the stack and become the input of f, then the result of f is pushed

7

CHRZASZCZ, CZARNIK, SCHUBERT
on the stack; I’ describes guaranteed kinds of the result of f. In a sense f :1 — I’

(1, f,1) € kindsgacrop (0P) ostckys = s - 1
check(s,1) ostck’ = f(s)-r pc’ = next(cmthd, pc,y)

P@pc,,.mnmys.cnmys = stackop(op) estys = null

n-stacko
P h,ts — h,ts[ostck « ostck’][pc « pc/] b (3.5)

For example, the JVM instruction iadd is mapped to stackop(iadd), and

kindsstackop(iadd) = {([int7 int], fiadda [int])}

where fi;qq performs addition of two 32-bit integers.
Polymorphic instructions, such as swap or dup, have more than one item in
kindstqckop, for instance kindsgiqerop (dup2) is equal to

{([k1, k2], faup2: [F1, k2, k1, ko)) Y iy koecatt U {([K], fdups (ks K]) brecat2

3.4 Instruction cond

This instruction generalizes all JVM instructions that may affect the program con-
trol flow inside the current method, but do not modify the method frame stack, that
is all unconditional and conditional jumps including tableswitch, lookupswitch,
jsr and ret. The instruction reads and modifies the operand stack and the program
counter (PC). The general form of the instruction is cond(op, d) where op identifies
the actual operation on runtime structures and d € D ong; Deona = [N —fin, PC| rep-
resents the static arguments of the instruction, which consist of an indexed table of
addresses. The form and role of kinds o4 (op) is analogous to the role of kindsgackop-
The difference here is the type of f : D ynq X OpStack x PC — OpStack x PC.

Arguments of f are the table of offsets, the relevant part of the operand stack,
and the next PC. The function f returns the new value of the relevant part of the
operand stack and the new value of PC. Only one JVM jump instruction, jsr, does
put some value onto the operand stack: the current PC; ret is the only instruction
that pops the new value of PC from the operand stack.

(1, f,1') = kindsconq(op) ostckiys = s -7

check(s,l) (s',pc’) = f(d, s, next(cmthd, pc,,)) ostck’ =" -r

P@pc,,.mnmy,.cnmys = cond(op, d) estis = null

P h,ts — h,ts[ostck « ostck’|[pc « pc] n-cond (3.6)

For example, the JVM instruction ifeq(o), performing a jump if the value on
the top of the stack is the integer 0, is mapped to cond(ifeq, [0 — pc + o]), and
kindsconq(ifeq) = ([int], fiteq, []) With fiteq(g, s, pc) returning ([], g(0)) if s = [(int, 0)]
and ([],pc) otherwise. For lookupswitch, ¢ is a function that maps key values to
the corresponding addresses.

CHRZASZCZ, CZARNIK, SCHUBERT

3.5 Instruction tinc

The opcode iinc is the only JVM instruction that uses solely the local variables
array. The corresponding instruction in our formalisation is i#inc(n, c), where n is a
local variable index and c is an integer value.

If the local variable n is of kind int, its value is increased by ¢, according to the
Java int arithmetic.

lvis(n) = (int,m) IV = lvyn < (int,m +int €)]

pc’ = next(cmthd, pc,,) PQpc,,. mnmyg.cnmys = iinc(n,c) estys = null

n-1nc

(3.7)

PF h,ts — h,ts[lv « I¥'][pc « pc/]

3.6 Instruction get

This instruction reads the heap and modifies the operand stack. The general form
of the instruction is get(op, d), where op is the operator and d contains an optional
static argument—a qualified field name.

As for the previous rules, kindsge;(op,d) provides expected kinds of arguments
on the stack, list of kinds of values to be put on the stack, and the function f of
type Dger x OpStack x Heap — OpStackwLoc®. The function f attempts to read the
indicated object field or array cell from the heap. If it exists, f returns the modified
part of the stack, which is the value from the heap.

(lv s l/) = kindsget(op, d) ostckigs = s -1 check(s, l)
s’ = f(d7 S, h) s e OpStaCk OStCk/ =5 .r

pc’ = next(cmthd, pc,;) P@pc,,.mnmy,.cnmys = get(op,d) estys = null

; n-get
P+ h,ts — h,ts[ostck < ostck’][pc « pc’]

(3.8)
If it is impossible to obtain the requested value and an exception must be thrown
(e.g. NullPointerException), f returns the location e of the exception in the heap
and the resulting evaluation state is the exceptional state.

(1, f,I') = kindsgei(op,d) ostckys = s -7 check(s, 1)

e= f(d,s,h) e€Lloc® PQpc,,.mnmy.cnmys = get(op,d) estys = null

exn-get
P h,ts — h,tslest — €]

(3.9)

3.7 Instruction put

This instruction reads and modifies the operand stack and the heap without creating
new locations. The general form of the instruction is put(op,d), where op is the
operator and d contains an optional static argument—a qualified field name.

9

CHRZASZCZ, CZARNIK, SCHUBERT

The role of kinds,;(op,d) is similar to previous kinds with the function f of
type Dpy x OpStack x Heap — Heap W Loc®. The function f attempts to modify
the indicated field or array cell in the heap. If the indicated item exists and may
be changed, f returns the modified heap.

Note that the value written by put does not have to be accessible by other threads
immediately. In fact, any part of heap may be synchronized with the thread cache at
any point of program execution, with Java Memory Model constraints preserved. In
particular, the two halfs of a category-2 value may be synchronized independently.

(1, f,') € kinds(op,d) ostckys = s-r check(s,l) ostck’ =r
h = f(d,s,h) h' € Heap pc = next(cmthd,pc,,)

PQpc,,.mnmys.cnmys = put(op, d) estys = null

7 7 ; n-put
Pt h,ts — I, ts[ostck « ostck’|[pc « pc'] (3.10)

If the requested object does not exist, an exception is thrown.
(1, f,") € kinds(op,d) ostckys = s-r check(s,l) ostck’ =r

e= f(d,s,h) e € Loc®

P@pc,,. mnmy,.cnmyg = put(op,d) estys; = null

exn-put

Pt h,ts — h,tslest < €] (3.11)

3.8 Instruction new

This instruction modifies the operand stack and the heap by creating a new location.
The general form of the instruction is new(op, d), where op is the operator and d is
a list of its arguments (integers and class names).

The precise meaning of the instruction is given by the function f, obtained from
kinds,e (0p, d), together with expected kinds of arguments on the stack and the
expected kinds of values to be stored on the operand stack, which is actually always
one value of kind ref. The function f itself manipulates the heap, allocating the
requested structure and returning the location of the allocated structure and the
new heap in case of success, and the exception otherwise.

Note that this instruction and its rules are very similar to put. We preferred
to keep the two separated as new adds new locations to the heap while put only
modifies existing ones.

(1, f,1") = kindsyey (0op,d) ostckys = s-r check(s,l) ostck’ =s"-r
(s',h') = f(d,s,h) s € OpStack h' € Heap

pc’ = next(cmthd, pc,s) P@Qpc,,. mnmyg.cnmys = new(op,d) estys = null
n-new

Pt h,ts — I ts[ostck < ostck][pc « pc’]
(3.12)

10

CHRZASZCZ, CZARNIK, SCHUBERT

(1, f,1") = kindsyey (0P, d)
ostcky;s = s-r check(s,l) e= f(d,s,h) e € Loc®

P@pc,,. mnmys.cnmys = new(op, d) est;s = null

exrn-new

P h,ts — h,ts[est — €] (3.13)

3.9 Instruction monitor

This instruction can modify the state of threads by trying to acquire or release a
monitor. The operation itself is done by modifying an object on the heap. The
monitor instruction expects one location on the operand stack: the object with
which the monitor in question is associated. The general form of the instruction is
monitor(op), where op is either enter or eit.

Both variants of the instruction are handled by the same two rules — one for
correct operation, one for raising an exception. The rules are governed by a partial
function f : Threadld x Loc x Threadld x N — Threadld x N U Loc obtained from
kinds,onitor (0p). If op = enter, f(tid’, s, tid, ¢) is defined only if s = null or tid =
none or tid = tid’. In the first case f returns a NullPointerException, in the
second (tid’, 1), and in the third (tid’,c+ 1). Since f is not defined when s # null
and tid’ # tid # none, i.e. the monitor is owned by a different thread, the rule
cannot be fired until the monitor is released.

If op = exit, f returns the exception IllegalMonitorStateException if tid #
tid" and otherwise either NullPointerException or (none,0) or (tid,c—1) depend-
ing on the values of s and c.

For the lack of space we did not formalize other synchronization operations
related to synchronized methods. Note however, that it is quite easy to syntactically
transform a synchronized method into one having monitor(enter) at the beginning
and monitor(exit) at every exit point.

f = kindsponitor (0p) ostckis =s-r s € Loc
(tid’, lcount”) = f(tidys, s, h(s)@Qtid, h(s)@lcount)
tid’ € Threadld lcount’ € N pc’ = next(cmthd, pc,,) ostck’ =r
h' = h[s « h(s)[tid < tid'][lcount + lcount’]]

P@pc,,.mnmys.cnmys = monitor(op) estys = null

- t
P h,ts — I ts[pc < pc]ostck « ostck’] n-monitor

(3.14)
11

CHRZASZCZ, CZARNIK, SCHUBERT

f = kindsonitor (0p) ostckys = s-r s € Loc
e = f(tids, s, h(s)@Qtid, h(s)@Qlcount) e € Loc

P@pc,,. mnmy,.cnmys = monitor(op) estys = null

Pt h,ts — h,ts[est < €] exn-monitor (3.15)

3.10 Instruction invoke

This instruction modifies the operand stack, the method frame stack and reads
the heap. The general format of the instruction is invoke(mode, cnm, mnm), where
mode is one of interface, special, static or virtual, and cnm and mnm are
class and method name of the method that is supposed to be called.

The principal action of this instruction is to find the method code, prepare
the new method frame and pass the execution to the new method instance. To
do that the types | of expected values on the stack together with the expected
types return by the method !’ are read from kinds;,yore(mode, cnm, mnm), which
in turn reads them from the method signature. The list I’ is of length at most 1.
Next, the dispatch function is executed which checks that the method’s flags are not
contradictory to the invoke mode, that the access rights are preserved (for private
and protected methods) and selects the type of dispatch by returning either the
class cnm for static dispatch or the class of the first location of s in h for dynamic
dispatch. The dispatch function can also return an exception.

The rest of the n-invoke rule is devoted to the preparation of the new method
frame: the function initlv places the arguments from the stack in the local variable
table of the new frame after splitting values of type long and double and performing
necessary floating-point value set conversions [12, Section 3.8.3]. Finally, the new
method frame is put on the method frame stack with the empty initial operand
stack and pc = 0.

Synchronized methods are not handled here, but please see the remark at the
end of Section 3.9.

(1,1") = kindsof ;o (Mode, cnm, mnm) ostckys = s - check(s,)
cnm’ = dispatch(mode, cnm, mnm, s, h) tfs’ = tfs;s[ostck « 7]
v/ = initlv(lvlength(P@mnm.cnm), s)
tfs” = (cnm’, mnm, v/, [, 0) - tfs’

P@pc,,.mnmy,.cnmys = invoke(mode, cnm, mnm) estys = null

n-invoke

(3.16)

Pt h,ts — h,ts[tfs «— tfs"]

12

CHRZASZCZ, CZARNIK, SCHUBERT

(1,1") = kindsof ;,pore (Mmode, cnm, mnm) ostckss = s - check(s, 1)

e = dispatch(mode,cnm, mnm, s, h) e € Loc

P@pc,,.mnmys.cnmyg = invoke(mode, cnm, mnm) estys = null

exn-invoke

(3.17)

PFE h,ts — h,ts[est — €]

8.11 Instruction return

This instruction returns from the current method. It reads the operand stack and
modifies the method frame stack by removing the current frame and updating the
previous frame: moving the pc to the next instructions (usually over an invoke
instruction) and updating the operand stack by pushing the return value, after
the floating-point value set conversion [12, Section 3.8.3]. The general form of the
instruction is return(l) where [is a list of kinds of length at most 1.

Even though [12] does not specify this explicitly, we decided to add the rule
n-term-return, to deal with the termination of the method corresponding to the
last frame on the frame stack.

These rules do not handle releasing of monitor when exiting a synchronized
method. This can be simulated, however, by putting a monitor (exit) instruction
before every return statement. Please see also the discussion in Section 3.9.

ostckys = s- 1 check(s, 1)
tfsts = f1 - (enm/, mnm’, v/, ostck’, pc’) - tfs2 f; € MethodFrame
tfs’ = (cnm’, mnm’, Iv’, vsc(s) - ostck’, next(PQmnm’.cnm’, pc’)) - tfst!

PQ@pc,,. mnmys.cnmys = return(l) estys = null

n-return

(3.18)

P+ hyts — h,tstfs «— tfs']

ostckys = s -1 check(s,l) tfs;s = [f] f € MethodFrame

tfs’ = || tstatus’ = TERMINATED

P@pc,,. mnmys.cnmys = return(l) estys = null

-t -ret
PF h,ts — h,ts[tfs « tfs/][tstatus « tstatus'] rrrermererin (3.19)

3.12 Instruction throw

This instruction takes no parameters, it reads and removes the location of the
exception form the stack and changes the evaluation state of the current thread
(the rule ex-throw). The way the exceptions are handled in our semantics is the

13

CHRZASZCZ, CZARNIK, SCHUBERT

following. The evaluation state (est) component of each thread says if the execution
is in the normal state, when est = null, or in exception handling state otherwise.

Note that the switch to the latter state can be done not only by executing the
throw instruction but also by throwing an exception (e.g. NullPointerException)
by other semantic rules. If est = e is a location of a valid exception, the remaining
rules ezx-in-handle, ex-out-handle or ex-term-handle can be fired, depending on the
fact whether the exception is handled inside the current method or provokes its
abrupt termination. In the latter case, the ex-term-handle rule handles the special
case where the current method is the last on the method frame stack. This rule
does not have a direct correspondence in [12], just like the rule n-term-return.

The feature which is not handled is the release of monitor when a synchronized
method is abruptly terminated by an exception. Note however that this can be sim-
ulated by adding a catch-all exception handler which would execute the instruction
monitor (exit) and then rethrow the exception. See also the discussion at the end
of Section 3.9.

ostck;s =e-r e € Loc®

P@pc,,. mnmy,.cnmyg = throw estys = null

ex-throw

Pt h,ts — h,ts[est «— €] (3.20)

ostck’ = [e] (pcy,, h(e)@cnm) € dom(PQ@etable.mnm;y,.cnmy,
ts

pc’ = PQetable.mnmyg.cnmys(pe,,, h(e)@enm) estys = e € Loc®

ex-in-handle

(3.21)

P+ h,ts — h,ts[ostck < ostck][pc « pc’][est + null]

(PCtss h(€)@cnm) ¢ dom(P@etable.mnmy,.cnmys)

tfsis = f1 - fo - thsf3 f1, fo € MethodFrame esty, = e € Loc®

il ex-out-handle
P h,ts — h,ts[tfs « fo - tfs;3"]

(3.22)
(pcss, h(e)@cnm) ¢ dom(P@etable.mnmy.cnmyg)
tfsis = [f] f € MethodFrame estys = e € Loc®
PE b ts — h, ts[tfs — []|[tstatus — TERMINATED] ¢-term-handle g 5q)

3.18 Instructions without semantics

The functionality of a few instructions cannot be expressed by semantical transfor-
mation of the runtime structures as their meaning is not described in JVM speci-
fication [12]. These are breakpoint, impdepl, impdep2, and the instruction with
the opcode 186."7 Therefore, they are omitted from the paper. The opcode wide is
taken into account along with the non-wide operations.

7 JVM semantics says: ‘For historical reasons, opcode value 186 is not used.’

14

CHRZASZCZ, CZARNIK, SCHUBERT

4 Conclusions

We have presented a concise formalisation of JVML which turns out to be factoris-
able into 12 instruction mnemonics. This was possible because we separated generic
operation of many instructions and tabularised particular behaviours of individual
opcodes. In this way we rigorously reduced the overall complexity of the whole
language without significantly sacrificing its features.

References

[1] Atkey, R., CoqJVM: An ezxecutable specification of the Java Virtual Machine using dependent types,
in: M. Miculan, I. Scagnetto and F. Honsell, editors, Types for Proofs and Programs, International
Conference, TYPES 2007, Cividale des Friuli, Italy, May 2-5, 2007, Revised Selected Papers, Lecture
Notes in Computer Science 4941 (2008), pp. 18-32.

[2] Chrzaszcz, J., Modules in Coq are and will be correct, in: S. Berardi, M. Coppo and F. Damiani, editors,
Types for Proofs and Programs, International Workshop, TYPES 2003, Torino, Italy, April 30 - May
4, 2003, Revised Selected Papers, Lecture Notes in Computer Science 3085, 2004, pp. 130-146.

[3] Chrzaszcz, J., P. Czarnik and A. Schubert, A dozen instructions make Java bytecode, in: Proceedings
of Bytecode’2010, 2010, to appear.

[4] Consortium, M., Deliverable 3.1: Bytecode specification language and program logic (2006), available
online from http://mobius.inria.fr.

[5] Dean, D., E. Felten and D. Wallach, Java security: From HotJava to Netscape and beyond, Security
and Privacy, IEEE Symposium on (1996), pp. 190-200.

[6] Demange, D., T. Jensen and D. Pichardie, A provably correct stackless intermediate representation for
Java bytecode, Technical Report Research Report 7021, INRIA (2009).

[7] Freund, S. N., “Type systems for object-oriented intermediate languages,” Ph.D. thesis, Stanford
University (2000).

[8] Freund, S. N. and J. C. Mitchell, The type system for object initialization in the Java bytecode language,
ACM Transaction on Programming Languages and Systems 21 (1999), pp. 1196-1250.

[9] Gosling, J., B. Joy, G. Steele and G. Bracha, “The Java Language Specification, third edition,” The
Java Series, Addison Wesley, 2005.

[10] Kahrs, S., D. Sannella and A. Tarlecki, The definition of Extended ML: A gentle introduction,
Theoretical Computer Science 173 (1997), pp. 445-484.

[11] Klein, G. and T. Nipkow, A machine-checked model for a Java-like language, virtual machine, and
compiler, ACM Transactions on Programming Languages and Systems 28 (2006), pp. 619-695.

[12] Lindholm, T. and F. Yellin, “The Java (TM) Virtual Machine Specification (Second Edition),” Prentice
Hall, 1999.

[13] Pichardie, D., Bicolano — Byte Code Language in Cogq (2006), http://mobius.inria.fr/bicolano.
Summary appears in [4].

[14] Pusch, C., Proving the soundness of a Java bytecode verifier specification in Isabelle/HOL, in:
R. Cleaveland, editor, Tools and Algorithms for Construction and Analysis of Systems, 5th
International Conference, TACAS ’99, Amsterdam, The Netherlands, March 22-28, 1999, Proceedings,
Lecture Notes in Computer Science 1579 (1999), pp. 89-103.

[15] Qian, Z., A formal specification of Java Virtual Machine instructions for objects, methods and
subrountines, in: Formal Syntaz and Semantics of Java (1999), pp. 271-312.

[16] Stark, R. F., J. Schmid and E. Borger, “Java and the Java Virtual Machine: Definition, Verification,
Validation,” Springer, 2001.

[17] Vallée-Rai, R., P. Co, E. Gagnon, L. Hendren, P. Lam and V. Sundaresan, Soot - a Java bytecode

optimization framework, in: CASCON ’99: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative research (1999), p. 13.

15

http://mobius.inria.fr
http://mobius.inria.fr/bicolano

CHRZASZCZ, CZARNIK, SCHUBERT

A Factorisation of instructions

A.1 load

21 (0x15) iload
22 (0x16) lload
23 (0x17) fload
4 (0x18) dload
25 (0x19) aload
26 (0Ox1la) iload_0
27 (0x1b) iload_1
28 (0x1c) iload_2
29 (0x1d) iload-3
30 (0xle) lload-0
31 (0x1f) lload_-1
32 (0x20) lload_2
33 (0x21) lload 3
(fload_0
35 (0 fload-1
36 (0 fload-2
37 (fload_3
38 (dload_0
39 (dload_1
40 (dload_2
41 (0 dload-3
42 (0x2a) aload_0
43 (0x2b) aload_1
44 (0x2c) aload_2
45 (

0x2d) aload_3

)
)
)
4 0x22)
x23)
x24)
0x25)
0x26)
0x27)
0x28)
x29)

)

fstore_0

)
)
0x42) Istore_3
)
) fstore_1

16

69 (0x45) fstore_2
70 (0x46) fstore_3
71 (0x47) dstore_0
72 (0x48) dstore_1
73 (0x49) dstore_2
7 (Ox4a) dstore_3
75 (0x4b) astore_0
76 (0x4c) astore_1
77 (0x4d) astore_2
78 (

Ox4e) astore_3

A.8 stackop

00 (0x00) nop
01 (0x01) aconst_null
02 (0x02) iconst_-m1
03 (0x03) iconst_0
04 (0x04) iconst_1
05 (0x05) iconst_2
06 (0x06) iconst_3
07 (0x07) iconst_4
08 (0x08) iconst_5
09 (0x09) lconst_0
0 (0x0a) lconst_1
(OXOb) fconst_0
(OXOC) feconst_1
3 (0x0d) fconst_2
4 (0x0e) dconst_0
5 (0x0f) dconst_1
6 (0x10) bipush
(Oxll) sipush
8 (0x12) lde
9 (0x13) ldc_w
20 (0x14) 1dc2_w
87 (0x57)
88 (0x58) pop2
0x59) dup

CHRZASZCZ, CZARNIK, SCHUBERT

17

CHRZASZCZ, CZARNIK, SCHUBERT

18

CHRZASZCZ, CZARNIK, SCHUBERT

ifnull

A5 dinc
132 (0x84) iinc

A6 get

46 (0x2e) iaload
0x2f) laload
0x30) faload
0x31) daload
0x32) aaload
0x33) baload
0x34) caload
0x35) saload
180 (0xb4) getfield

47 (
48 (
49 (
50 (
51 (
52 (
53 (

19

CHRZASZCZ, CZARNIK, SCHUBERT

190 (0Oxbe) arraylength
192 (0xc0) checkcast
193 (0xcl) instanceof

A7 put

79 (0x4f) iastore
80 (0x50) lastore

81 (0x51) fastore

82 (0x52) dastore
83 (0x53) aastore
84 (0x54) bastore
85 (0x55) castore

86 (0x56) sastore
179 (0xb3) putstatic
181 (0xb5) putfield

(0xbb) new

188 (Oxbc) newarray
(0xbd) anewarray

197 (0xch) multianewarray

A.9 monitor

194 (0xc2) monitorenter
195 (0xc3) monitorexit

A.10 invoke

182 (0xb6) invokevirtual
183 (0xb7) invokespecial
184 (0xb8) invokestatic
185 (0xb9) invokeinterface

A.11 return

172 (Oxac) ireturn
(Oxad) Ireturn
(Oxae) freturn

175 (Oxaf) dreturn
(0xb0) areturn
(0xbl) return

A.12 throw
191 (0xbf) athrow
20

CHRZASZCZ, CZARNIK, SCHUBERT

A.153 Instructions without semantics

196 (0xc4) wide

202 (Oxca) breakpoint
254 (0xfe) impdepl
255 (0xff) impdep2

21

	Introduction
	Semantic domains and notation
	Modification and lookup notation
	Auxiliary definitions
	Additional remarks

	Semantics of instructions
	Instruction load
	Instruction store
	Instruction stackop
	Instruction cond
	Instruction iinc
	Instruction get
	Instruction put
	Instruction new
	Instruction monitor
	Instruction invoke
	Instruction return
	Instruction throw
	Instructions without semantics

	Conclusions
	References
	Factorisation of instructions
	load
	store
	stackop
	cond
	iinc
	get
	put
	new
	monitor
	invoke
	return
	throw
	Instructions without semantics

