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Abstract

Bytecode Modeling Language CSBML) is a recent specification language designed to support specification
and verification of Java byte code files. We present an editor called Umbra for byte code files which supports
the editing of BML specifications. This editor is accompanied by a library BMLIib which not only parses
textual representations of BML specifications and prints the specifications in a textual form, but also writes
specifications into Java class files and reads them from that format. The whole tool set allows to insert BML
specification into class files or inspect class files with BML specifications and edit them, e.g., for debugging
purposes.
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1 Introduction

One of the main achievements of high level programming languages (e.g., Algol, Pas-
cal, C) is the common adoption of abstraction as the main programming paradigm.
That means that executable code can be divided into smaller pieces which can be,
to a large extent, developed independently. The common problem here is that the
independence is usually vaguely determined which often causes misbehaviour of de-
veloped software. One of the ways to prevent this is to write precise descriptions of
what is required by and what is made available to a particular piece of code, i.e.,
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to provide precise implementation contracts. Moreover, the size of current software
packages is so big that companies often outsource at least part of the software de-
velopment process to external companies. A precise and automatically verifiable
format of software contracts could reduce the risk that the resulting code is useless.

Specification languages provide formats to precisely describe software require-
ments and the environment in which the software is going to be executed. Moreover,
these languages offer another way of abstraction — they allow not only to divide the
programming effort into smaller pieces, but they also support writing solely about
what should be done without all the details on how it is done. As they are de-
signed to be easily understood by programmers, they provide means to document
the source code. Providing documentation in a specification language also has the
advantage that it is possible to automatically verify that the source code really
implements the documented features. Furthermore, the presence of specifications
allows to locate more precisely the actual reasons for program misbehaviour.

In case of resource restricted platforms (such as mobile phones, washing ma-
chines, car engines etc.), at least part of the software development process is done in
a low level language. Software development requires usually more effort in this case,
but there are fewer methods to enable fine-grained abstraction. Of course, many
assembly language editors allow to divide the code into subroutines or macros, but
there are virtually no formalisms to describe the work of a low level program in
terms of what is to be done even though the development effort is even bigger than
in the case of programming at the source code level.

Another important scenario in which verification of a specification may be use-
ful is the case when the specification describes a required security policy which is
ensured by the verification process. In this case, the software developers are not the
only party who are interested in checking the property. The owner of the infrastruc-
ture in which the program is run will also be interested by the specification. In this
case, however, the artifact which should be analysed is most often the executable,
low level code instead of the source code. That is why it is important to have a way
to describe properties of the code on the low, executable level. Moreover, it is also
important to have a format of specification which can be understood by humans,
in particular developers, as sometimes the specification and verification effort may
only be possible at the byte code level (the code producer does not exist and we
have to use its legacy code or the code producer is not willing to supply the source
code or the code was written in a low level language). In this way a specification
language for the low level language can be a desirable part of a proof-carrying code
(PCC [22]) infrastructure and this is part of the infrastructure to be built within
the MOBIUS project [21].

Bytecode Modeling Language (BML) was proposed by Burdy et al [5] as a speci-
fication language for the low level Java byte code language. This formalism is based
on Java Modeling Language (JML) [17,18]. Both languages allow to write speci-
fications according to design-by-contract principles. In particular one can specify
the preconditions and postconditions of methods, object invariants, loop invariants,
include asserts in the code etc. As the specification language is developed within
the MOBIUS project and the main target of the project are Java-enabled mobile
devices such as mobile phones, the current version of BML assumes some simplifi-



SCHUBERT, CHRZASZCZ, BATKIEWICZ ET AL

cations of the Java byte code which are present in the J2ME platform — the Java
platform for mobile devices with restricted resources.

The Java Modeling Language has rich tool support (see [4] for an overview). In
particular, there are tools which check JML specifications at runtime [7], in extended
static checking fashion [13,10], and allow to perform software certification [23,20,1].
Moreover, there are also tools which support the generation of JML annotations
[12,9]. Unfortunately, the tool support for BML is as of now far from being close to
this rich functionality.

The successful adoption of new formalisms is highly dependent on how useful
they are for the programmers and software designers. They can only be useful when
tool support is provided that allows editing and manipulating the expressions of the
formalism and then to obtain helpful feedback based on the supplied annotations. In
this paper we present the first step in providing such tool support for the byte code
specification: Umbra, an Eclipse [11] plugin to visually edit BML annotated byte
code files and its backend library BMLIib, an independent library to manipulate
BML specifications in byte code. This provides the most basic support for the
BML formalism and forms a basis on which other tools can be built. Even this
very basic support can serve as a way of documenting the class files which were
developed directly without the source code files. Our editor also allows to merge
changes done in the source code editor with those done in the byte code editor.
Thanks to that one can optimize some methods in the source code and some in
the byte code while keeping the possibility to repeatedly improve on both ends. In
this process, the BML annotations, in particular assertions, may be used to make
sure that the introduced optimisations do not break the assumed functionality. The
programmers may work on the annotated files which contain the specifications and
strip them with the use of an obfuscator (e.g., ProGuard [16]) when the code is
shipped to the users.

The obtained editor is not the only existing editor of class files. The editor differs
from the competitors such as CafeBaBe [6] or Java Bytecode Editor (JBE [15]) in
that it does not provide the view of the whole tree-like structure of a class file.
Instead, the editor focuses on the actual program. In a sense, it provides the user
with the functionality similar to Jasmin [14], which allows to transform a textual
representation of a class file into the actual class file. However, Jasmin resembles
more a compiler than an editor in that it does not allow to modify existing classes.
The additional functionality which is absent from the other solutions, but which is
available in our Umbra tool, is the ability to edit both the byte code instructions and
BML specifications. The JACK tool [2] has also the ability to produce byte code
instructions and BML specifications, but it is impossible to edit the specifications.
Besides the tool is not maintained any more and it handles an obsolete version of
BML.

This paper is organised as follows. Section 2 shows an example specification
which can be viewed and edited by the BML tools. Section 3 presents an outline
of the BML language. Section 4 gives an overview of the tool functionality and
presents our experience with its use. Section 5 relates the architecture of the editor
and the BML library. We conclude in Section 6.
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2 An example of using BML tools

In order to convey an intuitive feel on how the tools work and how the BML speci-
fications are presented, we consider an example.

Source code

Consider the class presented in Figure 1. This is an excerpt from a class which
implements a sequence of objects. The sequence is implemented in an array (list).
For brevity, our example contains only one method replace that takes two refer-
ences to objects obj1l and obj2 and replaces the first occurrence in our sequence
with the second one.

1 public class List {

private Object[] list;

/+#@Q requires list != null;
@ ensures \result = (\exists int i;
9 Q@ 0<=1&& i < list.length &&
@] \old (list [i]) == objl && list [i] = obj2);
Q@x/
public boolean replace (Object objl,Object obj2) {
13 int i;
/*Q
@ loop-modifies list [*], 1i;
@ loop-invariant i <= list.length && i >=0 &&
17 (@] (\forall int k;0 <=k & k < i =>
(@ list [k] != objl);
@/
for (i = 0; 1 < list.length; i++ ){
21 if (list[i] = objl) {
list [i] = obj2;
return true;
}
25
return false;

}
}
Figure 1. An example class List.java which contains a single method replace

Apart from the Java instructions, the listing in Figure 1 contains specifications
in JML. In line 7 the precondition of the method requires the callers of replace to
ensure that the private field 1ist of the List object is not null before the method
is called. Besides the precondition, there is also a postcondition which must be
fulfilled by the method when it returns. This postcondition states that the result
of the method is a Boolean value which is true when some element in the list has
the value obj1 before the call of the method (\old(1list[i]) == obj1) and obj2
after the call (1ist[i] == obj2). Note that these specifications are not complete as
they say nothing about the rest of the representation array; for example a legitimate
implementation of this specification is a code which just fills in the array with obj2
up to the first occurrence of obji.

In addition to the specifications which describe the input-output behaviour of
this method, there is also a specification of the loop that implements the replace
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method. The loop modifies clause describes which variables can be modified dur-
ing the execution of the loop (all the entries in the list array, list[*]; and the
local variable i1). The loop_invariant clause contains the invariant, i.e., a formula
which should hold right in front of the loop body at each iteration of the loop. In
this case, the invariant states that all the elements of the array list before the
current value of the index i are different than the parameter obj2.

Byte code

We now consider translating the source code in Figure 1 to byte code. Since the
binary byte code files are not human readable, we rely on a textual representation
of the byte code which is similar to the output of the javap utility (actually, its
mnemonics are generated by BCEL, Byte Code Engineering Library [3]). The gen-
eral layout of such a textual representation is presented in Figure 2. The first line
shows the package declaration for the given class. For uniformity, we decided to
explicitly state a fixed package name ([default]) in case the class has no package
specified. Then the name of the class and its content follow. The content consists
of a certain number of class-level specifications (see next section for details), then
the constructors are listed together with their specifications and instructions and
finally the methods are listed also with specifications and instructions.

package [default]
public class List

/*Q invariants, static invariants, constraints etc. Qs /

/*Q
Q@ specification of the constructor with no parameters
@/

public void <init >()

0: R

instructions and specifications

other constructors

/*Q

Q@ specification of the method replace

@x/
public boolean replace (Object objl, Object obj2)
0: L

instructions and specifications

other methods
Figure 2. The layout of the textual representation of the class file for the List class

The actual mnemonics of the compiled version of our example method replace
are presented in Figure 3. The labels correspond to instruction positions in the bi-
nary representation of the code and depend on the length of particular instructions.
This method is accompanied with BML specifications corresponding to the JML
specifications from Figure 1. First, there is the input-output specification of the
replace method. Then its header follows and at last there is the sequence of byte
code mnemonics with the loop specification among them. Let us concentrate for a
while on the byte code program. The instructions labelled 0-3 perform the assign-
ment 1i=0 from line 20 of the source code. The following goto instruction jumps to
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the place where the loop condition (i <= list.length) is checked. This is done
in instructions 27-33 of the byte code. Line 33 contains a conditional jump which,
in case the loop guard is true, jumps inside the loop. The source code instructions
in lines 21-24, that constitute the body of the loop are translated into lines 5-23 of
the byte code. Finally, the increment instruction from line 20 is translated into the
iinc instruction in line 24 of the byte code.

/*Q
@ requires this.list != null
@ {
@ precondition true
@ modifies \everything
@ ensures \result —
@ (\exists int var_0;
Q 0 <= var_0 &
(@ var_0 < this.list.length &&
© old_this. list [var_.0] = objl &&
@ this.list [var.0] = obj2)
Q exsures Ljava/lang/Exception;: false
@ |}
@x/
public boolean replace (Object objl, Object obj2)
0: iconst_0
1 istore_3
2: goto #27
5: aload_0
6: getfield List.list [Ljava/lang/Object; (18)
9: iload_3
10: aaload
11: aload_1
12: if_acmpne #24
15: aload_0
16: getfield List.list [Ljava/lang/Object; (18)
19: iload_3
20: aload_2
21: aastore
22: iconst_1
23: ireturn
24: iinc %3 1
/*Q
@ loop_specification
Q modifies this. list [*], i
Q loop_inv i <= this.list.length &&
@ i>= 0 &&
© (\forall int var_0;
Q 0 <= var.0 && var.0 < i =>
Q@ this.list [var_.0] != objl)
@ decreases this.list.length — 1v [3]
@x/
27 iload_3
28: aload_0
29: getfield List.list [Ljava/lang/Object; (18)
32: arraylength
33: if_icmplt #5
36: iconst_0
37: ireturn

Figure 3. The method replace in the List class

Apart from the byte code mnemonics, the listing in Figure 3 contains the speci-
fications of the method input-output behaviour and the specifications for the loop.
The requires-ensures pair which is present in the source code in the lines 7-11 is
represented by the annotation before the byte code version of the replace method.
In the byte code, we have certain flexibility in the placement of the requires clause
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in case only one such clause occurs in the source code. We can present the code
in the requires clause at the beginning of the specification or in one of the alter-
native precondition clauses which are associated with postconditions (the intent
is that whenever a particular alternative precondition holds at the entry to the
method the corresponding postcondition must hold at the exit from the method).
The precondition clause is accompanied not only by an ensures clause, but also
by the modifies and exsures clauses. The latter are implicit in the source code
and they must be made explicit at the byte code level.

In our case the requires clause from the source code is represented by the main
requires clause in the specification. The ensures clause from the source code is
translated into the ensures clause in the byte code preceded by true precondition.
It is possible to formulate the condition in this way as the method can only be called
provided that the main precondition (after requires) is fulfilled. The content of
the ensures clause is indeed what we expect as it compares the \result with an
existential expression that has exactly the same structure as the original one, but
the name we quantified over is var_O instead of i and the references to the field
list are prefixed with the references to this or old_this.

Besides the specifications that come directly from the byte code, there are also
specifications which are implicit in the source code. The modifies clause expresses
which variables can be modified in the course of the method execution. The default
value \everything means that everything can be modified. The exsures clause
expresses the postcondition in case an exception is thrown. Here it says that if
an exception of a subclass of Exception is thrown from this method the false
postcondition must be satisfied, so, in other words, no exception of a subclass of
Exception can be thrown.

The body of the replace method contains the specification pertinent to the loop.
Again, the clauses here correspond to the clauses in the source code (modifies and
loop_inv) and are accompanied by a clause decreases which is absent from the
source code. The presence of this clause shows that we are able not only to derive the
byte code level specifications from the source code ones, but we can also introduce
new specificational elements at the byte code level.

Figure 4 shows how the listing form Figure 3 looks like within the Umbra editor
in the Eclipse integrated development environment.

3 Annotation language

The BML annotation language [5] is a direct descendant of JML [17,18] and the
structure of specifications in both languages are very similar. Generally, the anno-
tations can be divided into two groups: class annotations and method annotations.

Class annotations

Class annotations specify the behaviour of a class as a whole or of objects of
that class. They also declare other elements (such as ghost fields, model fields, data
groups, see below) that will be helpful in other specifications in that class or in
other classes. The annotations refer either to all objects of that class— these are
instance annotations—or to the class itself —these are static annotations. For
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o list @ old_this.list[var_] == objl &&
@ this. list[var_0] == obj2)
@ replace(Object, Ol @ exsures Ljava/lang/Exception;: false
¥ =i JRE System Library [jdk1.5 SUU
b L rtjar - jusrjavaldkl .0 public boolean replace(Object objl, Object obj2)
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5 1load 3
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b 11:  aleadl
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b H javax.net 15:  aload_0
16: tfield List.list [Ljava/lang/Object; (18)
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b 8 com sun.crypto prov e (forall int var_o;
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b 2 META-INF @ this. list[var_0] T= obj1)
. @ decreases this.list.length - i
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b ER METAJNF 27:  iload 3
® 28: aload 0
b sun.securitypkcs11 29: getfield List.list [Ljava/lang/Object; (18)
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e [ Fead e Tim tom) |

Figure 4. The compiled List class inside the Eclipse environment. This picture presents most of the replace
method together with all the relevant specifications in BML

the sake of brevity, we will describe only the instance version of all annotations
here. The meaning of their static counterparts is analogous.

The most prominent example of a class annotation is class invariant. It specifies
a condition that is supposed to hold for all objects of that class in all visible states,
i.e., before and after every method call and after all constructors. In other words,
the class invariant is another precondition and another postcondition of all methods.
For example a class invariant for the List class described in the previous section
could say that the elements of the list are not null. This invariant is not preserved
by the replace method though.

Another class annotation is history constraint. It specifies how object field values
can evolve with time. For example it can say that the length of the list can only
grow.

The last interesting class annotation is initially clause which is a formula that is
supposed to hold just after the object initialisation is complete. i.e., after execution
of any constructor.

In order to increase expressibility of specifications one can declare on the class
level a number of elements that can be used in specifications. These include:

* Ghost fields —fields existing only in the specification. These fields can be modi-
fied by explicit set annotations within method’s code (see below). In the example
of a list this could be e.g., the element most recently inserted in the list; the
replace method should set this field to obj2.
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* Model fields— these, together with represents clauses are a shorthand for a longer
formula or expression, e.g., a field called has_nulls could be declared as a model
field and the corresponding represents clause would contain a fomula stating that
has nulls is equivalent to the existance of null as an alement of the 1ist. The
separation of represents clauses from the model field declarations is useful to
declare a model field in one class and the clause in a subclass or to specify the
represents clause for a sub-field (i.e., for a model field of an object stored in a
field).

e Data groups —these are named lists of fields and sub-fields that are referenced
by modifies clauses of method specifications and loop specifications.

Method annotations

The most important kind of method annotations is called method specifica-
tion. They describe the precondition, postcondition, and assignable clauses of the
method. The precise description is given in Section 2.

Other method annotations are actually specification elements appearing in the
code. They include:

* Declarations of local ghost variables — they are similar to ghost fields declared in
a class but their lifetime and scope is limited to the execution of one part of a
method.

e Set instructions—they correspond to Java assignments, but they operate on
ghost fields and local ghost variables.

* Loop specifications —they introduce the invariant of the loop, the modifies
clause, saying what can be modified by the loop body, and the decreases clause
to prove the loop’s termination.

e Assert instructions—they are similar to Java assert instructions, that is, they
state facts about fields, variables etc. that are supposed to hold in a given point
of the code execution.

Additional modifiers

BML introduces also new modifiers non_null and nullable to specify that a
declared field, local variable, method parameter or a method result cannot (resp.
can) have the null value. Note that this can also specified in a method specification
or a class invariant using a normal formula, but using a modifier is much more
concise.

Another important modifier is pure. It can accompany a method declaration,
and it states that the method terminates and does not modify any existing objects;
it can create new ones though. Pure methods can be used in specification formulae
(see below).

BML formulae
The formulae used in invariants, assertions, and pre- and postconditions are
Java Boolean expressions using only pure methods, augmented with a number of

9
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predicates such as \old, quantifiers such as \forall, \exists, and other similar
operators such as \sum, \num_of etc.

Binary format of BML annotations

There is an ongoing effort to precisely document the binary format of BML
annotations inside Java class files [8]. The class files representing byte code with
annotations are regular Java class files, executable and usable by all Java tools,
where annotations are stored within additional attributes (see Chapter 4.7 of [19]).
The names of BML related attributes start with the prefix org.bmlspecs (e.g., as in
org.bmlspecs.ClassInvariant, org.bmlspecs.MethodSpecification, etc.) and
according to the specification of the Java Virtual Machine they are supposed to be
silently ignored by the Machine, since their names are not part of the original JVM
specification.

Of course, following the logical structure of class files, class specifications are
stored as class attributes, method specifications as method attributes attached to a
particular method and specifications inserted in the code are attributes of the JVM
Code attribute of the given method.

4 Functionality and experience

Additional features in the Java editor

The Umbra plugin adds three new buttons to the toolbar of the Java editor:
the first button generates the byte code mnemonics, the second one allows to move
between a source code line and the corresponding sequence of byte code instructions,
and the third one allows to merge changes done at the source code level into the
(modified) byte code.

The button which generates the byte code mnemonics activates the byte code
disassembling process and opens an Eclipse editor with the byte code representation
of the current class. At this point, the user is able to edit the byte code mnemonics
and introduce or edit BML specifications. We elaborate more on that later on.

The second button permits the user to see the byte code realisation of a par-
ticular line in the source code. The user points the source code editor cursor at
a line of interest and then pressing the button mowves the focus to the byte code
editor of the same class in which the lines corresponding to the source code line are
highlighted. This feature facilitates the process of understanding the byte code. In
case the user cannot understand the structure of the byte code, she or he can go to
the accompanying source code and point particular instructions to obtain a clear
division of the instruction stream into more comprehensive chunks.

The third button provides the user with possibility to develop the code both
at the source code level and at the byte code level. It allows to incorporate into
the (modified) byte code version of the class the changes that were made at the
source code level. It works so that whenever a method was modified at the source
code level only, its new byte code representation can be safely combined with the
(modified) byte code of other methods.

10



SCHUBERT, CHRZASZCZ, BATKIEWICZ ET AL

Features of the byte code editor

In the byte code editor, we have buttons that realise the features that corre-
spond to the features in the Java editor: a button to move from byte code to the
corresponding line in the source code and a button to combine modifications at the
source code level with the ones at the byte code level. Besides, we have a button
that saves the current content of the byte code document and reformats it using the
internal pretty printing mechanism. Other buttons are auxiliary ones, they handle
the history of changes, colouring mode, and display help information.

We decided not to associate the byte code editor with the .class files, but to
make it operate on textual .btc (short for ByTe Code) files. The format of these
textual files is similar to the one generated by javap utility from the standard
Java Software Development Kit. This design choice was motivated by two reasons.
First, it is useful to circulate the text files with the byte code in case one wants to
demonstrate some issue (e.g., a useful byte code that is not well-formed according
to the Java Virtual Machine). Another reason is that the textual format is more
convenient in case additional information at the byte code level should be written
in the file. The textual representation must always be defined in this case to enable
the presentation in the editor. However, one can decide not to define the class file
binary representation when the editor is associated with a textual file.

The Umbra editor allows to change the byte code mnemonics, i.e., to add new
instructions, to change the existing ones, and to delete them. It checks the syntactic
correctness of the edited code so that the user knows if his byte code script can be
transformed into a class file. The code editor functionality is limited in the sense that
it does not allow to add or to remove methods. These actions must be performed
at the source code level —i.e., one must add a method on the source code level and
commit the change into the class file.

Except from the possibility to edit the instructions of the program the editor
allows to edit the BML specifications. The user can add every specification she or
he wants and the editor informs the user if the specification is syntactically correct.

Experience

The Umbra editor has already proved to be useful. We used it successfully to
generate various experimental byte code files that illustrate the intricacy of the byte
code verification process (e.g., files that are rejected by the standard JVM verifier
even though they do have the property for the lack of which they are rejected)
and inconsistencies between the semantics of Java and the semantics of the byte
code (e.g., that final fields can be modified from the byte code level). The editor
proved to be very useful for this task as it is quite easy to generate these class files
compared to generation by hand.

We also used Umbra to do a small study on how easy it is to write specificataions
to methods at the byte code level. It turned out that the editor needs additional
features to make the process convenient. First of all, the current mechanism to
handle comments added by the user is not sufficient: the comments should be
stored in a permanent way. Additionally, the editor could display the names of
local variables instead of their numeric representation. Otherwise the user is forced
to continually perform fatiguing deciphering of their meaning.

11
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5 Architecture

In this section we give the overview of architecture of the BMLIib library and the
Umbra plugin.

annot .beexpression. javatype Total Classes: 4

T

annot .bcexpression. formula Total Classes: 5 annot .bcexpression.modifies Total Classes: 11

T~

annot.io Total Classes: 5

annot.textio Tetal Classes: 51

annot .bcexpression Total Classes: 21

!

annot .bcexpression.util Total Classes: 2

i

annot.beclass Total Classes: 5

/

annot.attributes Total Classes: 17

bmllib Total Classes: 1

Figure 5. The dependency graph of the BMLIib internal packages

BMLIib

The BMLIib uses the Byte Code Engineering Library (BCEL [3]) to read and
write class files, and to process standard Java class components. The BMLIib
contains 10 modules which handle different tasks associated with the library. The
overall interdependencies between the packages are presented in Figure 5.

The annot.bcclass contains the representation of the basic building blocks of
a BML enriched class file. This includes abstract representation of classes, methods
and the constant pool. The classes in this package contain the methods which
trigger interpreting and saving of BML annotated classes.

The module annot.attributes contains the abstract representation of BML
attributes and handles the task of writing them to a class file.

The module annot.bcexpression together with its submodules which are lo-
cated in packages annot.bcexpression.formula, annot.bcexpression. javatype
and annot.bcexpression.modifies contain the abstract syntax tree representing
the BML clauses. The syntax tree can be converted into binary form and em-
bedded into a class file. Finally, the module annot.bcexpression.util contains
walker classes that can be used to process the abstract syntax tree of BML clauses.

The module annot.io contains an interface for reading and writing BML at-
tributes and expressions into class files and annot.textio contains an interface for
reading and writing the textual representation of BML clauses.
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The module bmllib contains only the class which handles the Eclipse plugin
activation protocol. All other modules are completely independent from Eclipse
and thus can be used in standalone tools like compilers, verifiers or annotation
generators.

Umbra

The Umbra editor is tightly integrated with Eclipse. Apart from the BMLIib
library, it also directly depends on the BCEL. Umbra is divided into several modules
which are grouped into Java packages. Each of the modules handles a specific task
associated with the functionality of the editor. The overall dependency graph of
the packages in the Umbra editor is presented in Figure 6.

umbra .editor.actions.info
Total Classes: 2
umbra . editor.actions.history ambra

umbra .editor.parsing —® Total Classes: 3

-
Total Classes: 10

7

4

umbra.instructions

Total classes: 35

Figure 6. The dependency graph of the Umbra editor internal packages

The interface with the Eclipse plugin framework is handled in the umbra package.
This concerns, however, only the activation interface. The contributions of the plu-
gin to the GUI of Eclipse are spread over other modules (i.e., umbra. java.actions,
umbra.editor.actions and its submodules, and umbra.editor). The umbra pack-
age contains also some classes which can in principle be used in any other module
of the plugin.

The umbra. java.actions module contains the implementation of the actions
that are triggered from within the Java source code editor (i.e., disassemble, syn-
chronise, and combine). In particular, it triggers the creation of the byte code
editor.

The byte code editor itself is implemented in the module umbra.editor and
its submodules. This module contains an interface with BMLIib and with an
internal abstract syntax tree for byte code mnemonics. The GUI actions which
are available from within the byte code editor are implemented in the module
umbra.editor.actions and its submodules.

The submodule umbra.editor.parsing contains a little parser which parses the
general structure of the byte code file in the textual representation. This enables
the possibility to present the byte code program in a colourful notation that eases
the understanding of the program internal structure.

At last, the submodule umbra.instructions defines an abstract syntax tree
which enables the syntax checking of the edited instructions. This is a crucial
part which allows to state that a particular text is a syntactically well formed
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representation of a byte code program. This module does not perform any byte
code verification though.

6 Conclusions

The constantly growing use of various programming languages that compile to the
Java Virtual Machine platform may easily result in a situation in which the only
common ground for understanding programs is the byte code level. We believe
that the inclusion of specifications into the byte code can considerably ease the
process of making the byte code programs understandable. Additionally, our de-
velopment effort, the result of which is Umbra and BMLIib, can help to build a
program verification platform that works at the byte code level. Moreover, as the
BML specifications are embedded into class files the presented tools can be used
at the code producer end in proof-carrying code scenarios to prepare parts of the
certificates or at the policy provider side as a desirable code policies editor.

There are several trade-offs in the design of a byte code editor with specification
support. The first issue is the representation of the edited files. We believe that
there will be situations which will require to add additional information to the byte
code which should be absent from the class files (e.g., comments that explain or
document certain features of the code). Similarly, there are several trade-offs for
the way BML specifications are presented to the user. We believe that in order
to make the technology successful the specifications must be easy to understand by
humans. We believe that a big advantage of BML is that it is similar to JML, which
should make the formalism acceptable to programmers. Moreover we expect that
with a little additional computational overhead one can make the specifications as
comprehensive as the specifications at the source code level. It is also important
that the specifications should not incur huge overhead on the class files as that
would limit the applicability of the technology and impair their acceptance on the
end user side. That is why the BML clauses are represented in a concise binary
format inside class files.

We are aware that the development of specifications at the byte code level is
not easy. Moreover, the current tool support makes it only one small step easier.
However, the presented tools can serve to inspect the specifications generated by
other tools which should enable easier debugging. Additionally, the separate BMLIib
library allows to develop new tools (e.g., compiler, verifier, annotation generator,
etc.) that can work with BML annotated class files.

We also believe that the existence of such a tool can encourage people to search
for new methods to pretty-print the byte code instructions, to group them, or to
provide hint systems to show the dependencies between them.

The Umbra editor together with accompanying libraries can be downloaded at
http://www.mimuw.edu.pl/~alx/umbra/.
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