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Abstract

We generalize to finite algebras the Krohn-Rhodes wreath decomposition
theory of finite (transformation) semigroups. (An algebra here is a set with
a clone of operations.) Our methods are essentially categorical, following the
lead of B. Tilson’s approach to the Krohn-Rhodes theory. We define wreath
products and relational morphisms of algebras. Associated with a relational
morphism is a many-sorted algebra, called the derived algebra, analogous with
Tilson’s derived category. Many-sorted algebras are ordered by division, which
is similar to Tilson’s division ordering of categories. (For one-sorted algebras,
being a divisor means being a quotient of a subreduct.) As in Tilson’s work,
these notions are linked by a Covering Lemma, which establishes an adjoint-like
connection between the derived algebra and wreath product constructions. Us-
ing this lemma, finding a decomposition of an algebra (that is, finding a wreath
product which the algebra divides) amounts to finding a relational morphism
whose image is the right-hand wreath factor and whose derived algebra divides
the left-hand wreath factor.

For finite unary algebras, the resulting decomposition theory is essentially
the “one-sided” decomposition theory of finite transformation semigroups, as
per Krohn-Rhodes. For finite semigroups considered as algebras with a bi-
nary multiplication operation, the resulting decomposition theory is related to
the “two-sided” theory of Rhodes-Weil. All decompositions using their double
semidirect product can be simulated with the new wreath product by adding
certain unary operations (specifically, endomorphisms) to the clone of operations
of the left-hand wreath factor. In fact, adding certain other unary operations
(constants) leads to a new and simplified proof of the Rhodes-Weil decompo-
sition theorem for the new product. The methods used suggest that the new
decomposition theory might be stronger than the Rhodes-Weil theory. That is,
the complexity of a finite semigroup—the minimum number of groups required
to decompose it—might in some cases be strictly lower using the new product.
However, counting groups in this manner is meaningless for decompositions in-
volving nonsolvable group factors, for, by a theorem of G. Bergman, every finite
algebra divides some nonsolvable group with an extra unary operation of the
kind needed to simulate the double semidirect product.

This observation leads us to restrict our attention to algebras which are
aprimal—no matrix power has a nonsolvable group divisor. (Matrix powers
generalize the construction taking a module M over a ring R to the module
Mk over the ring of k × k matrices over R.) Every such algebra decomposes
into simple algebras of (tame congruence theory) type 1, 2, or 5. By theorems
of Hobby-McKenzie, simple algebras of type 1 and 2 divide matrix powers of
sets and cyclic groups, respectively. Analysis of the type 5 case begins with the
order structure found by Hobby-McKenzie. We show that if the order has a
maximum element, then the algebra is aperiodic—no matrix power has a group
divisor. Such orderings appear frequently in derived algebras in the type 5 case.
This suggests that aprimal algebras might decompose into simple type 1 and
2 algebras and aperiodic algebras. A stronger conjecture substitutes “matrix
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powers of semilattices” for “aperiodic algebras”. Counting type 2 factors in de-
compositions leads to a nontrivial complexity theory for aprimal finite algebras.

Algebras recognize languages by way of programs over algebras, generalizing
Barrington’s programs over semigroups. The notions of division, matrix power,
and wreath product (slightly modified) give an algebraic analogue of oracle
reduction of languages. Hence part (perhaps all) of NC1 circuit complexity
theory is a “homomorphic image” of the complexity theory of aprimal algebras.
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Introduction

A fundamental problem in general algebra is classification. As the generality
of the structures of interest increases, the likelihood of their being completely
understood decreases. We must settle for a partial understanding, which means
that we must decide what differences matter and what differences do not. We
must decide not what is important for all purposes but only what is important
for a particular purpose. This investigation begins with the manifesto that what
matters about finite algebras is what they can compute.

An algebra (A,F ) can be thought of as a computer in the following way:
the elements of A are the data objects—that is, the states which variables
range over—and the operations F are the primitive instructions. The algebra
is specified in terms of generators (usually finitely many) for F , but what is
essential to the algebra is the clone they generate, which is to say the functions
that they can compute. This idea has its roots in the idea of an automaton,
which is essentially a finite transformation monoid, which is essentially a unary
algebra. Most of the basic ideas in this work come from looking at algebras as
generalized transformation monoids or generalized automata.

Our first step should be a way of ordering algebras that corresponds to how
much they can compute, since that is what we care about. A computer with
fewer programs and with fewer data objects should be lower in the ordering,
as should a computer made by forgetting (in a consistent way) the difference
between certain data objects. This is the ordering of division: (A,F ) divides
(B,G) if (A,F ) is a quotient of a subalgebra of a reduct of (B,G).

We should also have ways of building large computers out of small ones.
The main construction tools are wreath product and matrix power. The wreath
product idea appears in both automata and group theory. The automata version
is the one that finds its place here. Wreath products model sequential compu-
tation. The paradigmatic example is base 10 arithmetic, in which calculation
of digits of higher significance depends on the calculations with digits of lower
significance. The matrix power idea comes (by way of tame congruence theory)
from rings of matrices but also has a computational significance. Matrix pow-
ers are not sequential, which means that data flows in both directions between
coordinates, and hence are a model for parallel processing.

These tools, taken together, do lead to a classification of finite algebras, via
what John Rhodes calls a global theory. In general, a global decomposition
theory uses some set of constructions to build all objects of interest out of
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INTRODUCTION 2

primary objects, which are not built out of any smaller objects. An initial
classification arises from considering which primary objects are pieces of a given
object. In other words, we study classes which are closed under the constructions
and which exclude certain primary objects. A more refined classification comes
from asking how many pieces and what kinds of pieces we need to build objects.
In other words, we use our constructions to build new classes out of the classes
defined by exclusion. Determining which such classes an algebra belongs to is a
way of measuring the complexity of the algebra.

The constructions we use for a global theory of algebras are wreath prod-
uct, matrix power, and division. Many of the basic building blocks of global
semigroup decomposition theory reappear here—simple groups and two-element
semigroups—but a complete list is not known. Two of the classes defined by
excluding certain of these primes, the classes of solvable and of strongly solvable
algebras, were originally studied in tame congruence theory. Two new classes,
of aprimal and of aperiodic algebras, are rich with examples; their global de-
composition theories promise to be interesting.



Chapter 0

Preliminaries

This list of definitions is not intended to be complete but rather to supplement
the standard definitions found in many textbooks (see, for example, [4] or [12]).
The variations should be noted carefully. Most are not dictated by personal
preference but are derived from the particular subject matter in the chapters
ahead.

0.1 Sets, functions, and relations

Functions are usually written to the right of their arguments; parentheses are
used to group complex expressions for the argument or function and may be
omitted in simple cases; composition is from left to right and is denoted by
juxtaposition or by · when required for clarity.

The product operation on sets is denoted ×; the projection Ai → A on the
j-th factor is denoted πi,j . Given functions f : A → B and g : A → C, we use
f × g to mean the product map A → B × C, which sends a 7→ (af, ag). For
f : A → B and g : A′ → C, we use (f, g) to mean the map A × A′ → B × C
which sends (a, a′) 7→ (af, a′g).

A relation R ⊆ A × B is fully defined if for all a ∈ A there is a b ∈ B such
that aRb; R is injective (from A to B) if aRb and a′Rb together imply a = a′.
The inverse of R, that is, {(x, y) : yRx} is denoted R−1. If R ⊆ A2, then a block
of R is a subset X ⊆ A such that X2 ⊆ R and no larger set has this property.
If R is an equivalence relation, the blocks of R are the equivalence classes.

A variable representing an n-tuple is written with an overbar, and its com-
ponents are accessed with subscripts: for example, ā ∈ An means ā is an n-tuple
of elements of A and ā = (a1, . . . , an). We sometimes (abusively) write (ā, b̄) for
((a1, b1), ..., (an, bn)) and aRb for a1Rb1, . . . , anRbn, and so on. Juxtaposition
of sequences means concatenation:

(a, b, ...)(p, q, ...) = (a, b, ..., p, q, ...),
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CHAPTER 0. PRELIMINARIES 4

and
(a, b, ...)n = (a, b, ...)(a, b, ...)...(a, b, ...) (n times).

0.2 Operations, clones, and algebras

Some of the definitions here are not standard. They belong to an approach
to general algebra known as non-indexed algebra. This approach is used here
because it is the most natural setting in which to think of algebras as “n-
ary transformation monoids.” This fiction yields most of the definitions in
Chapter 1.

An operation on a set A is simply a function An → A for some n ≥ 0. The
number n is known as the arity of the operation. A clone is a collection F
of operations on a set A such that (i) F includes all projection maps πn,i and
(ii) F is closed under composition, that is, whenever f1, . . . , fn : Am → A and
g : An → A are all in F , the m-ary operation (f1 × . . . × fn)g is also in F .
For n ≥ 0, Fn denotes the set of n-ary opertions in F . We call F n-ary (or
essentially n-ary) if F is generated (under (i) and (ii) of the definition of clone)
by Fn. A subclone of F is a clone G such that G ⊆ F .

An algebra is a pair (A,F ) where F is a clone of operations on A. Elements of
F are referred to as operations of (A,F ); A is called the universe of (A,F ). (Note
that, under these conventions, a semigroup is equal to its opposite semigroup,
even though the two need not even be isomorphic in the ordinary sense.) In
describing the universe of an algebra, we sometimes use the usual definition of
an ordinal n as the set {0, . . . , n− 1}.

We frequently express a clone in terms of generators: if f, g, . . . are operations
on A and F,G, . . . are sets of operations on A, the notation (A, f, g, . . . , F,G, . . .)
means the algebra whose clone is generated by {f, g, . . .}∪F ∪G∪ . . .. When we
need to explicitly refer to the clone of an algebra specified in this way, we use the
notation Clo (A,F ) or Clon (A,F ) for just the n-ary members of Clo (A,F ).
Note that, under our convention, (A, ∅) means the algebra whose clone is the
least clone on A, that is, the clone consisting precisely of the projections. These
algebras are sometimes referred to as sets.

An algebra is called primal if its clone is the clone of all operations on the
universe; the primal algebra with universe A is denoted (A,PA). We use the
notations FA, SA, and CA to denote the set of all unary functions, permutations,
and constant maps, respectively, on A. If a ∈ A, then ca denotes the constant
map A → A with value a. Operations of (A,F,CA) are called polynomials of
the algebra (A,F ); the clone they form is denoted Pol (A,F ); the set of n-
ary members of this clone is denoted Poln (A,F ). An algebra (A,F ) is called
polynomially complete if (A,F,CA) = (A,PA). We say that (A,F ) and (A,G)
are polynomially equivalent if Pol (A,F ) = Pol (A,G).
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0.3 Subalgebras, reducts, quotients, and prod-

ucts

Let (A,F ) be an algebra. ForX ⊆ A, we useXF to denote the image ofX under
the operations in F , that is XF = {(a1, . . . , an)f : a1, . . . , an ∈ A, f ∈ Fn for
some n}. If F is a clone, (XF )F = XF , and XF is known as the subuniverse
generated by X under the action of F . A subalgebra of (A,F ) is an algebra
(B,F ) with B ⊆ A and BF = B. A reduct of (A,F ) is an algebra (A,G) with
G ⊆ F . If X ⊆ A, then we set F |X = {f |X : f ∈ Fn for some n and Xnf ⊆ X}.
Here, f |X denotes the usual restriction of f to Xn, which is in general a function
Xn → A. Note that (X,F |X) is a subalgebra of a reduct of (A,F ); in fact it
has the largest clone of any subreduct of (A,F ) with universe X . The induced
algebra of (A,F ) on a subset X is the algebra (X, (Pol (A,F ))|X ), which we
sometimes denote by (A,F )|X .

A homomorphism from (A,F ) to (B,G) is a pair (ϕ, ψ) where ϕ : A → B
and ψ is a sequence of maps ψ0 : F0 → G0, ψ1 : F1 → G1, . . . such that for each
n ≥ 0 and a1, . . . , an ∈ A, we have

(a1, . . . , an)fϕ = (a1ϕ, . . . , anϕ)(fψn).

In this case, we write (ϕ, ψ) : (A,F ) → (B,G). In practice, subscripts on the
ψn are omitted, and just one letter is used for both ϕ and ψ. An isomorphism
is, as usual, an invertible homomorphism. We say (A,F ) embeds in (B,G) and
write (A,F ) ≤ (B,G) if (A,F ) is isomorphic to a subreduct of (B,G).

If ϕ : (A,F ) → (B,G) is a homomorphism, then its kernel, kerϕ, is the
binary relation {(x, y) ∈ A2 : xϕ = yϕ}. The binary relations obtained in
this way are called congruences ; the set of congruences of (A,F ) is denoted
by Con (A,F ). Alternately, a congruence is a reflexive, symmetric, transitive
binary relation θ on A such that whenever x1θy1, . . . , xnθyn and f ∈ Fn we
have (x1, . . . , xn)fθ(y1, . . . , yn)f . Given θ ∈ Con (A,F ), a ∈ A, and f ∈ Fn, we
let a/θ = {a′ : aθa′} and A/θ = {a/θ : a ∈ A}; we define f/θ : (A/θ)n → A/θ
by (a1/θ, . . . , an/θ)(f/θ) = ((a1, . . . , an)f)/θ; and we let F/θ = {f/θ : f ∈ F}.
The maps x 7→ x/θ and f 7→ f/θ describe a homomorphism ϕ : (A,F ) →
(A/θ, F/θ) with kerϕ = θ. We call (A/θ, F/θ) the quotient by θ or the quotient
modulo θ of (A,F ).

The non-indexed product of algebras (A,F ) and (B,G) is the algebra (A,F )×
(B,G) = (A × B,F × G), where A × B is the usual product of sets and
(F × G)n = {(f, g) : f ∈ Fn, g ∈ Gn} (one easily checks that F × G is a
clone—it is in fact the product of F and G in the category of clones). Note that
(A,F ) ≤ (A,F )× (B,G) and, symmetrically, (B,G) ≤ (A,F )× (B,G). (To see
this, note that (A,F ) ∼= (A,F )× (b, ∅) for any b ∈ B and the latter algebra is a
subreduct of the full product.)

The k-th non-indexed power of (A,F ) is denoted (A,F )k. The usual direct
product of algebras is not definable in the non-indexed setting. Nevertheless, the
k-th direct power may be defined as (Ak, (f, . . . , f) : f ∈ F ), where (f, . . . , f)
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acts coordinatewise, i.e.,

((a1,1, . . . , a1,k), . . . , (an,1, . . . , an,k))(f, . . . , f)

= ((a1,1, . . . , an,1)f, . . . , (a1,k, . . . , an,k)f),

assuming the arity of f is n. This algebra is denoted by (Ak, F ). Note that
(Ak, F ) ≤ (A,F )k. Use of the same letter for the clone of an algebra and of its
direct powers is abusive, but it is acceptable because these clones are isomorphic.
For notational simplicity, we are being vague about whether F is a collection of
specific operations on A or an abstract entity which is “represented on” A by
means of some functor.

Similar reasoning justifies the following conventions:

1. Suppose B ⊆ A and BF = B. Then (B,F ) is shorthand for (B,F |B), the
subalgebra of (A, F) with universe B.

2. Suppose θ ∈ Con (A,F ). Then (A/θ, F ) is shorthand for (A/θ, F/θ), the
quotient algebra of (A,F ) by θ.



Chapter 1

The Covering Lemma

This chapter owes an enormous debt to Bret Tilson, whose 1987 paper “Cat-
egories as algebra: An essential ingredient in the theory of monoids” presents
the ideas leading up to his original version of the covering lemma. His setting is
the “one-sided” decomposition theory of monoids: the theory of decompositions
using the standard wreath product of monoids. This is essentially a decompo-
sition theory of transformation monoids (tms), though Tilson’s presentation is
in terms of abstract monoids. The concepts in this chapter result from view-
ing unary algebras as tms in the obvious way and boosting the definitions up
into higher arities. The concrete approach (transformations or operations on a
set) has some advantages over the abstract approach Tilson used: the concrete
wreath product is associative, and the covering lemma is essentially a bicondi-
tional.

1.1 Relational morphisms of algebras

Definition A relation ϕ between algebras (A,F ) and (B,G) is a subreduct of
their non-indexed product, that is, ϕ ≤ (A,F )× (B,G). If a ∈ A and b ∈ B, we
write aϕb just when (a, b) belongs to the universe of ϕ. If f ∈ Fn and g ∈ Gn,
we write fϕg just when (f, g) is an n-ary operation of ϕ. A relational morphism
ϕ from (A,F ) to (B,G) is a relation between (A,F ) and (B,G) which is fully
defined (on (A,F )), that is, which satisfies

1. for each a ∈ A there is a b ∈ B such that aϕb; and

2. for each f ∈ F there is a g ∈ G such that fϕg.

In this case, we write ϕ : (A,F ) → (B,G).

Note that a relational morphism is a homomorphism just when its universe
is a function. Relational morphisms can be thought of as many-valued homo-
morphisms. One can define a relational morphism from (A,F ) to (B,G) as a
homomorphism to the power algebra of (B,G) (excluding the empty element).

7
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To define a relation ϕ ≤ (A,F ) × (B,G), we typically specify a set X of
pairs of elements and a set Y of pairs of operations which together generate ϕ.
For this relation to be a relational morphism, the following must hold:

1. {a : (a, b) ∈ X for some b} generates A under the action of F ; and

2. {f : (f, g) ∈ Y for some g} generates F .

Definition If ϕ ≤ (A,F ) × (B,G), then ϕ−1 denotes the relation, called the
inverse of ϕ, between (B,G) and (A,F ) such that

1. for each (a, b) ∈ A×B, bϕ−1a if and only if aϕb; and

2. for each (f, g) ∈ F ×G, gϕ−1f if and only if fϕg.

Also, we define aϕ = {b : aϕb}, fϕ = {g : fϕg}.

Note that the inverse of a homomorphism is, in general, a relation of algebras.
Such relations, when fully defined, are typical examples of injective relational
morphisms, defined below.

Definition A relational morphism ϕ : (A,F ) → (B,G) is said to be injective
if, whenever a 6= a′ ∈ A, we have aϕ ∩ a′ϕ = ∅. We say that ϕ is surjective if
bϕ−1 6= ∅ for all b ∈ B and gϕ−1 6= ∅ for all g ∈ G

One can easily show that an injective relational morphism is also injective
on operations, in the sense that, whenever f 6= f ′ ∈ F , we have fϕ ∩ f ′ϕ = ∅.

1.2 Many-sorted algebras and division

A many-sorted algebra is essentially a concrete category with finite products,
that is, a category with finite products together with a functor, preserving finite
products, from it to the category of sets and functions. A one-sorted algebra is
a concrete category with finite products such that every object is a finite power
of a single base object. Keeping this in mind will help the reader make sense of
the upcoming definitions.

Definition A many-sorted algebra (msa) is an indexed family of the form
A = (Ai : i ∈ I;Fı̄,j : ı̄ ∈ In, n ≥ 0, j ∈ I), where

1. I is a set, called the index set of the msa,

2. for i ∈ I, Ai is a set, referred to as the sort (or universe) indexed by i,

3. for ı̄ = (i1, . . . , in) ∈ In and j ∈ I, Fı̄,j is a set of functions Ai1×· · ·×Ain
→

Aj , known as the (n-ary) operations of signature ı̄→ j,

4. if im = j (notation as above) for some m then Fı̄,j includes the m-th
projection operation, denoted πı̄,im

or simply πı̄,m, and
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5. if g ∈ F̄,k, ̄ = (j1, . . . , jn) ∈ In, ı̄ ∈ Im, and f1 ∈ Fı̄,j1 , . . . , fn ∈ Fı̄,jn
,

then (f1 × · · · × fn)g ∈ Fı̄,k.

A msa is called finite if its set of sorts is finite and each sort is itself finite
(and hence the set of operations of a particular signature is finite). A local
algebra of the above msa is an algebra of the form (Ai, G) where Gn = F(i,...,i),i

for each n. This algebra is sometimes denoted by Ai or by A|i. If a msa has
just one sort, we identify the msa with its unique local algebra.

Notation (i) We will frequently use the set of sorts itself as the index set. (ii)
As with algebras, we define the operations of a msa by specifying generators.
Therefore (A1, A2, . . . ; ∅) means the msa with sorts A1, A2 . . . and no operations
but the various projection operations required by the definition (these operations
are easily seen to be closed under composition).

Remark Index sets are used here primarily to eliminate one level of subscripts
from the notation. They are not preserved by morphisms of msas.

An important way of comparing msas is division, which Tilson invented for
categories (without representation or product structure). Actually, a division is
a special kind of relational morphism of msas, which is a special kind of relation
of msas, which is a subreduct of a product of msas. Since none of these other
concepts are needed in this work, we define division directly.

Definition A division from a msa A = (Ai : i ∈ I;Fı̄,j : ı̄ ∈ In, n ≥ 0, j ∈ I)
to a msa B = (Bk : k ∈ K;Gk̄,l : k̄ ∈ Kn, n ≥ 0, l ∈ K) is an aggregate
∆ = (δ, δi : i ∈ I, δı̄,j : ı̄ ∈ In, n ≥ 0, j ∈ I) such that

1. δ is a function from I to K,

2. δi is a fully defined, injective relation from Ai to Biδ,

3. δı̄,j is a fully defined, injective relation from Fı̄,j to Gı̄δ,jδ,

4. whenever ı̄δk̄ (that is, i1δk1, i2δk2, . . . inδkn), we have πı̄,mδı̄,im
πk̄,m,

5. whenever a1δi1b1, . . . , anδin
bn, and fδı̄,jg, we have āfδj b̄g, and

6. whenever f1δı̄,j1g1, . . . , fnδı̄,jn
gn, and f0δ̄,j′g0, we have f̄ f0δı̄,j′ḡg0.

In this situation, we write ∆ : A ≺ B. In general, we say that A divides B,
or A is a divisor of B, written A ≺ B, if there exists a division ∆ : A ≺ B.

If the δi and δı̄,j are in fact functions, we say that A embeds in B and write
A ≤ B.

Notation By convention, we frequently omit the subscripts from the compo-
nents of a division, and just use one letter, δ, say, for the entire division. For
example, this permits us to rewrite (5) above as:
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5’. whenever āδb̄ and fδg, we have āfδb̄g.
Note that here we are also using the convention, established in (Chapter 0)

under which āδb̄ means a1δb1, . . . , anδbn. This convention is suggested by the
categorial approach to msas and divisions.

Remark about defining divisions. As long as δ satisfies (1)-(5) above, the
closure of δ under compositions as in (6) will still satisfy (1)-(5), as well as (6).
Therefore, we usually don’t bother to check (6). Also, we needn’t check that
the δı̄,j relations are injective (condition (3)), since this is implied by the other
conditions: if two distinct operations of the same signature have a common δ-
image it is easy to show (using (2) and (5)) that there are distinct elements in
some sort which have a common δ-image.

Just as one-sorted msas may be identified with algebras, divisions of one-
sorted msas may be identified with injective relational morphisms. Since an
injective relational morphism is just the inverse of a surjective homomorphism
defined on a subreduct, we have

Proposition 1 (A,F ) ≺ (B,G) iff (A,F ) is a quotient of a subreduct of (B,G).2

Also, the notion of embedding in the definition of division is consistent with
the meaning of “embed” introduced for algebras in Chapter 0: (A,F ) is iso-
morphic to a subreduct of (B,G) iff there is an embedding in the sense just
defined.

Definition When A and B are msas such that A ≺ B and B ≺ A, we say
that A and B are divisionally equivalent, written A ∼ B. If A is divisionally
equivalent to a trivial algebra, then we say that A is divisionally trivial.

Proposition 2

1. For finite algebras, divisional equivalence is the same as isomorphism:

(A,F ) ∼ (B,G) ⇔ (A,F ) ∼= (B,G).

2. A is divisionally trivial iff each sort of A is a singleton. 2

In general, divisionally equivalent msas are not isomorphic and need not
even have the same number of sorts. However their local algebras are related
by the following.

Proposition 3 If δ : A ≺ B, then for each index i of A, Ai ≺ Biδ. Hence,
A ∼ B implies each Ai divides some Bj and vice versa. 2

Warning It does not follow from A ∼ B that each Ai is divisionally equiva-
lent to some Bj . Also, the converse of the proposition is not true: let A =
({0}, {1, 2}; ∅) and B = ({0}, {1, 2}; f1, f2) where fi : {0} → {1, 2} is the
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constant map with value i. Then A{0} = B{0} = ({0}, ∅) and A{1,2} =
B{1,2} = ({1, 2}, ∅). However, B has two distinct unary operations of signa-
ture {0} → {1, 2}, whereas A has no pair of distinct unary operations having
the same signature. This implies that there is no division B ≺ A.

This example is familiar to monoid theorists. However, contrary to monoid
theory, there are divisionally nontrivial algebras which B does not divide, such
as ({0, 1}, ∅). The latter is (up to isomorphism) the smallest divisionally non-
trivial algebra and is, furthermore, (up to divisional equivalence) the smallest
divisionally nontrivial msa.

1.3 The derived algebra of a relational morphism

The derived algebra (msa, actually) of a relational morphism is a sort of ker-
nel, analogous with the normal subgroup kernel of a homomorphism of groups.
Unlike the kernel congruence in universal algebra, however, it has an algebraic
structure that is typically weaker than the domain algebra. As in group theory,
it is useful to think of the kernel as encapsulating the information “lost” by
the morphism. The purpose of division is to make these vague measurements
precise.

Definition Suppose ϕ : (A,F ) → (B,G) is a relational morphism. The derived
algebra of ϕ, denoted by Dϕ, is a msa whose set of sorts is indexed by B. The
sort with index b ∈ B is the set {(a, b) : a ∈ A, aϕb}. For b̄ ∈ Bn and b0 ∈ B,
operations of signature b̄ → b0 are given by triples (f, g, b̄) with f ∈ Fn, g ∈
Gn, fϕg, and b̄g = b0. The action of (f, g, b̄) on pairs (ā, b̄) with āϕb̄ follows the
rule

(ā, b̄)(f, g, b̄) = (āf, b̄g) = (āf, b0).

The operations specified in the definition are easily seen to be closed under
compositions. The next lemma shows that the clone of the derived algebra is
generated by triples formed from the pairs which generate the morphism. This
fact will be used frequently and without mention in subsequent descriptions of
derived algebras.

Lemma 4 Suppose ϕ : (A,F ) → (B,G) is a relational morphism. Let X
generate the operations of ϕ. Then the operations of Dϕ are generated by the
set of triples of the form (f, g, b̄) with (f, g) ∈ X. 2

Warning about indexing the derived algebra
In the setting of indexed algebras, we could define, in the obvious way,

an indexed derived algebra. (Associated with an n-ary symbol f and the n-
tuple of sorts (b1, . . . , bn) is an n-ary operation from those sorts to the sort
(b1, . . . , bn)fB . . . .) One could then speak of the identities satisfied by the de-
rived algebra and easily show that these identities would include those satisfied
by (A,F ). However, one can find a finite group G with an abelian normal
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subgroup N such that the derived algebra of the quotient morphism does not
satisfy the abelian law. To do this, it is sufficient that there is an inner auto-
morphism of G that is not the identity map on N . For then there are g ∈ G
and n ∈ N such that ng 6= gn. It follows that the binary multiplication opera-
tion Ng ×Ng → Ng2, which sends (ng, 1g) 7→ ngg and (1g, ng) 7→ gng, is not
abelian.

Additionally, there is a finite semigroup S with an ideal I which is in fact a
group such that the derived algebra of the quotient morphism does not satisfy
any identity of the form xxn = x with n > 0. In this case, it suffices that the
semigroup not be a union of groups.

By contrast, we will see in later chapters that the derived algebra in the
first example, stripped of indexing information, divides the abelian group N
with certain added unary operations. This new algebra is abelian in the sense
of universal algebra (see [8]). In the second example, the nonindexed derived
algebra divides the group I with certain added unary operations, and these
added operations do not interfere with such propertiers as being abelian or
solvable.

The conclusion I draw from these examples is that the indexing informa-
tion should not be included in the derived algebra, because this information
“remembers” too much about the domain algebra. The derived algebra should
remember no more than does the kernel of a group homomorphism.

The following lemma has a trivial proof, but it says something important:
the operations at a local algebra of Dϕ correspond to the operations of G which
“stabilize” elements of B.

Lemma 5 In the notation of the previous lemma, the operations of the local
algebra at b are just the triples (f, g, (b, . . . , b)) where fϕg and (b, . . . , b)g = b.2

Proposition 6 Suppose ϕ : (A,F ) → (B,G) is a relational morphism. Then:

1. Dϕ ≤ (A,F ).

2. If ϕ is injective, Dϕ is divisionally equivalent to a trivial algebra.

3. If (B,G) is trivial, then Dϕ
∼= (A,F ).

Proof. For (1), define a relation δ from Dϕ to (A,F ) by (a, b)δa and (f, g, b)δf .
It is easy to see that δ is closed, is fully defined, and is an injective function on
each sort. Part (2) follows from the observation that |bϕ−1| = 1 for all b ∈ B.
For (3), note that if (B,G) is trivial, then Dϕ is isomorphic to (A,F ) via the
division in (1). 2

Lemma 7 Suppose ϕ : (A,F ) → (B,G) and ϕ′ : (A,F ) → (B′, G′) are rela-
tional morphisms with (B′, G′) ≤ (B,G) and ϕ′ ≤ ϕ. Then Dϕ′ ≺ Dϕ. 2
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This lemma is often used when we are given a set {f1, f2, . . .} which generates
F and a set {g1, g2, . . .} ⊆ G such that f1ϕg1, f2ϕg2, . . . , in which case we can
obtain a morphism ϕ′ generated by {(f1, g1), (f2, g2), . . .} without making the
image algebra or the derived algebra of ϕ′ any larger than those of ϕ. In
particular, in the decomposition theory of an algebra with one basic operation
we need consider only relational morphisms to algebras with one basic operation.
Also, we can use this lemma to assume that relational morphisms are surjective
both on elements and on operations.

1.4 The wreath product

Definition Let (C,H) and (B,G) be algebras. Their wreath product, denoted
(C,H) ◦ (B,G), is the algebra with universe C × B having, for each n, each
h̄ ∈ HBn

n , and each g ∈ Gn, an n-ary operation (h̄, g), which acts by

(c̄, b̄)(h̄, g) = (c̄(b̄h̄), b̄g).

It is easy to see that these operations form a clone. This clone is written
H ◦B G, and so (C,H) ◦ (B,G) can be written (C ×B,H ◦B G).

Lemma 8 Suppose |B| is finite.

1. H ◦B G is generated by the following list of operations:

(a) each (h̄, g) where h̄ : Bn → Hn is a constant function, and

(b) for each b ∈ B, the ternary operation qb defined by

((y1, x1), (y2, x2), (y3, x3))qb =

{
(y2, x1) if x1 = b
(y3, x1) otherwise.

2. If H and G are finitely generated, then H ◦B G is finitely generated. 2

Sketch of proof. For (1), let (h̄, g) ∈ (H ◦B G)n. Write B = {b1, b2, . . . bm}. To
construct (h̄, g) in terms of the specified operations, first use the qb operations
to construct the mn-ary operation

((y1, x1), . . . , (ymn , xmn)) 7→







(y1, x1) if x1 = b1, x2 = b1, . . . , xn = b1
(y2, x1) if x1 = b2, x2 = b1, . . . , xn = b1
(y3, x1) if x1 = b3, x2 = b1, . . . , xn = b1
...

...
(ymn , x1) if x1 = bm, x2 = bm, . . . , xn = bm

Next, compose this with the operations of the form (x1, . . . , xn)h̄, substituting
(b1, . . . , b1)h̄ for y1, and so on. Choose some operation of the form (. . . , g) and
put this together with the result of the previous composition using the binary
decomposition operation

(π1, π2) : ((y1, x1), (y2, x2)) 7→ (y1, x2).
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For (2), observe that the operations in part (a) of the list in (1) are generated
by a finite sublist:

1. each (h̄, π1) where h̄ is a constant with value a generator of H ,

2. each (π1, g) where g ∈ G, and

3. the binary decomposition operation (π1, π2).

The operations of part (b) are finite in number because |B| is finite. 2

Remark The first collection of operations is just the set of operations of the
non-indexed product (C,H) × (B,G).

Two points bear thinking about here. First, the wreath product is an es-
sentially non-indexed kind of product. Applying the wreath product to pairs
of algebras drawn from two varieties produces a class of algebras that is not
even contained in a variety. (The number of operations in H ◦B G grows with
|B|.) However, there is a related product that is defined on varieties. Also, the
wreath product is defined on hypervarieties. This is investigated in Chapter ???

Second, algebras isomorphic to a wreath product are clearly very special.
(We examine their congruences and other structural properties in the next chap-
ter.) Therefore, we cannot expect wreath decompositions to lead to any sort
of classification up to isomorphism. We will instead classify algebras using the
relation of division. This relation is extremely broad; its looseness will pose a
serious problem when we consider such algebras as lattices, nonsolvable groups
and semigroups, Boolean algebras, and so on.

This difficulty will lead us to study the class of aprimal algebras which
excludes these algebras. A more general theory may require a more sophisticated
product which can be applied directly to msas (possibly as in Tilson’s recent
research) or a finer notion to replace reduct or both.

The wreath product defined here is closely related to the various products
considered by semigroup theorists. We may, as mentioned earlier, identify unary
algebras with transformation monoids: the unary algebra (A,F ) corresponds to
the transformation monoid (A,Clo1 (A,F )); the wreath product of unary alge-
bras corresponds to the wreath product of tms. The wreath product of algebras
is also related, but in a less straightforward way, to the “two-sided” products of
semigroups. We may simulate the double semidirect product (and therefore the
block product as well) as follows. Let (S,+) and (T, ·) be semigroups (the + is
not necessarily commutative). Let α be a double action of T on S. (For details,
see [Rhodes-Tilson].) Then the double semidirect product of (S,+) and (T, ·) is

(S,+) ∗ ∗α(T, ·) = (S × T, ((s, t), (s′, t′)) 7→ (st′ + ts′, tt′)),

where st′ denotes the result of t′ acting on the right of s, and so on. This is
easily expressed as a subreduct of

(S,+, x 7→ xt : t ∈ T , x 7→ tx : t ∈ T ) ◦ (T, ·).
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The first algebra is not a semigroup but rather a semigroup with added unary
operations that happen to be endomorphisms. This topic is explored further in
Chapter 7, which includes a version of the Krohn-Rhodes theorem based not on
the above simulation but on more straightforward decompositions obtained by
adding polynomial operations.

The wreath product of algebras is also related to the shift product defined
by McKenzie in [8], which is a reduct of the wreath product.

Observe that wreath product is sequential, that is, the right-hand coordinate
of the output of an operation depends only on the right-hand coordinates of the
inputs and the right-hand coordinate of the operation itself, whence the next
proposition.

Proposition 9 The projection map C × B → B induces a homomorphism π :
(C,H) ◦ (B,G) → (B,G). 2

It is easy to show that there is, in general, no projection morphism onto
the left factor. (In fact, in the next chapter we will determine the congruence
lattice of a wreath product and see that all congruences are comparable with
ker π.) Therefore, we may safely refer to π as the projection homomorphism of
(C,H) ◦ (B,G).

Proposition 10 The wreath product is a monoid operation on isomorphism
classes of algebras, with the identity element represented by a trivial algebra:

1. (1, ∅) ◦ (A,F ) ∼= (A,F ) ◦ (1, ∅) ∼= (A,F ).

2. ((C,H) ◦ (B,G)) ◦ (A,F ) ∼= (C,H) ◦ ((B,G) ◦ (A,F )).

Proof. The proof of (1) is left to the reader. The proof of (2) is messy but
not hard. An n-ary operation of ((C,H) ◦ (B,G)) ◦ (A,F ) is given by a pair
(h̄ × ḡ, f) with h̄ × ḡ ∈ (HBn

n × Gn)An

, h̄ ∈ (HBn

n )An

, ḡ ∈ GAn

n , and f ∈ Fn.
This operation acts by the rule

((c̄, b̄), ā)(h̄× ḡ, f) = ((c̄, b̄)(ā(h̄× ḡ)), āf) = ((c̄(b̄(āh̄)), b̄(āḡ)), āf).

An n-ary operation of (C,H) ◦ ((B,G) ◦ (A,F )) is given by a pair (k̄, (ḡ, f))

with k̄ ∈ H
(B×A)n

n , ḡ ∈ GAn

n , and f ∈ Fn. This operation acts by the rule

(c̄, (b̄, ā))(k̄, (ḡ, f)) = (c̄((b̄, ā)k̄), (b̄(āḡ), āf)).

The isomorphism is given by the following maps:

((c, b), a) 7→ (c, (b, a))

(h̄× ḡ, f) 7→ (k̄, (ḡ, f)),

where (b̄, ā)k̄ = b̄(āh̄)). 2

The wreath product is not in general commutative, as one can easily show
by example (or by the fact that only one of the projection functions induces a
homomorphism).
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Proposition 11 The wreath product has the following additional properties.

1. (C,H)×(B,G) is a reduct of (C,H)◦(B,G), and hence (C,H) and (B,G)
are both subreducts of (C,H) ◦ (B,G).

2. (C,H) ≤ (C′, H ′) and (B,G) ≤ (B′, G′) together imply

(C,H) ◦ (B,G) ≤ (C′, H ′) ◦ (B′, G′).

3. (C,H) ≺ (C′, H ′) and (B,G) ≺ (B′, G′) together imply

(C,H) ◦ (B,G) ≺ (C′, H ′) ◦ (B′, G′).

4. ((C,H) ◦ (B,G)) × ((C′, H ′) ◦ (B′, G′))

≤ ((C,H) × (C′, H ′)) ◦ ((B,G) × (B′, G′)).

Proof. For (1), observe that (H×G)n consists of all operations (h, g) of (H◦BG)n

such that h is a constant function Bn → Hn. The rest of (1) now follows from
the remarks in (???0.2) concerning the non-indexed product. For (2), simply
restrict operations of H ′ ◦B′ G′ to (the embedded image of) C ×B.

We now prove (3). We may assume (C,H) is the quotient mod θ of some
subreduct (C′′, H ′′) of (C′, H ′) and (B,G) is the quotient mod ψ of some
subreduct (B′′, G′′) of (B′, G′). Let θ × ψ denote the equivalence relation
{((x, y), (u, v)) : xθu and yψv} on C′′ × B′′. Note that θ × ψ need not be
a congruence on (C′′, H ′′) ◦ (B′′, G′′). In essence, the proof will find a reduct of
(C′′, H ′′) ◦ (B′′, G′′) for which θ × ψ is a congruence and the quotient by θ × ψ
is (C,H) ◦ (B,G).

We define a division δ : (C,H) ◦ (B,G) ≺ (C′′, H ′′) ◦ (B′′, G′′) as follows.
First, for (c, b) ∈ C × B, we define (c, b)δ = {(c′′, b′′) : c′′/θ = c, b′′/ψ = b}.
Observe that this is an injective relation from C ×B to C′′ ×B′′.

Now, let (h̄, g) ∈ (H ◦B G)n. Choose g′′ ∈ G′′
n so that g′′/ψ = g. Define

h̄′′ : B′′n → H ′′
n as follows. For (b′′1 , . . . , b

′′
n) ∈ B′′n, choose (b′′1 , . . . , b

′′
n)h̄′′ ∈ H ′′

n

so that ((b′′1 , . . . , b
′′
n)h̄′′)/θ = (b′′1/ψ, . . . , b

′′
n/ψ)h̄. Clearly, (h̄′′, g′′) ∈ (H ′′◦BG

′′)n.
Take (h̄, g)δ(h̄′′, g′′). (As usual, such δ-related pairs of operations are understood
as the generators for all pairs in the relation from H ◦B G to H ′′ ◦B′′ G′′.)

We now check that δ-related elements are preserved by δ-related operations.
Suppose (c1, b1)δ(c

′′
1 , b

′′
1), . . . , (cn, bn)δ(c′′n, b

′′
n) and (h̄, g)δn(h̄′′, g′′). Then b1 =

b′′1/ψ, . . . , bn = b′′n/ψ, so (since ψ is a congruence)

(b1, . . . , bn)g = ((b′′1 , . . . , b
′′
n)g′′)/ψ.

We also have

((b′′1 , . . . , b
′′
n)h̄′′)/θ = (b′′1/ψ, . . . , b

′′
n/ψ)h̄ = (b1, . . . , bn)h̄.

Therefore,

((c′′1 , . . . , c
′′
n)(b′′1 , . . . , b

′′
n)h̄′′)/θ = (c′′1/θ, . . . , c

′′
n/θ)((b

′′
1 , . . . , b

′′
n)h̄′′)/θ

= (c1, . . . , cn)(b1, . . . , bn)h̄.
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This shows that
(c̄, b̄)(h̄, g) δ (c̄′′, b̄′′)(h̄′′, g′′).

Since δ is injective, by the observation above, it follows that δ is a division.
To prove (4), we must find an embedding from

((C ×B) × (C′ ×B′), (H ◦B G) × (H ′ ◦B G′))

into
((C × C′) × (B ×B′), (H ×H ′) ◦B×B′ (G×G′)).

On elements, the map is ((c, b), (c′, b′)) 7→ ((c, c′), (b, b′)). On n-ary opera-
tions, the map is ((h̄, g), (h̄′, g′)) 7→ (k̄, (g, g′)), where ((b1, b

′
1), . . . , (bn, b

′
n))k̄ =

((b1, . . . , bn)h̄, (b′1, . . . , b
′
n)h̄′). The map on elements is clearly injective, and rou-

tine calculations show that the maps on elements and on operations together
form a morphism. 2

Lemma 12 Let π : (C,H) ◦ (B,G) → (B,G) be the projection. Each local
algebra of Dπ is isomorphic to (C,H).

Proof. Operations of the local algebra with elements C × b are of the form
(h̄, g, (b, . . . , b)), where (b, . . . , b)g = b. So we have an isomorphism Dπ|b ∼=
(C,H) sending (c, b) 7→ c and (h̄, g, (b, . . . , b)) 7→ (b, . . . , b)h̄. 2

1.5 The Covering Lemma

The Covering Lemma ties together the concepts of relational morphism, derived
algebra, division and wreath product. It does so by saying that the derived alge-
bra of a morphism specifies (via the division preorder) exactly the information
needed to reconstruct the domain algebra (up to division) from the image alge-
bra using the wreath product. In the subsequent chapters, the Covering Lemma
is used to find decompositions by constructing morphisms and consolidating
their derived algebras, which is usually easier than directly finding divisions
into a wreath product.

In a sense, the Covering Lemma converts a many-to-many coordinate system
(a relational morphism) into a one-to-many coordinate system (a division into
a wreath product)....

Lemma 13 (The Covering Lemma) Let π denote the projection homomor-
phism (C,H) ◦ (B,G) → (B,G).

1. Suppose ϕ : (A,F ) → (B,G) is a relational morphism with Dϕ ≺ (C,H).
Then there is a division δ : (A,F ) ≺ (C,H) ◦ (B,G), and δπ = ϕ.

2. Suppose δ : (A,F ) ≺ (C,H) ◦ (B,G). Then Dδπ ≺ (C,H).
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Proof. (1) Let ε denote the division Dϕ ≺ (C,H). Define the relation δ as
follows. For a ∈ A, b ∈ B, c ∈ C, we put aδ(c, b) whenever aϕb and (a, b)εc. For
f ∈ Fn, g ∈ Gn, h̄ ∈ HBn

n , we put fδn(h̄, g) whenever fϕng and for all b̄ ∈ Bn

we have (f, g, b̄)εnb̄h̄. Since ϕ and ε are both fully defined, so is δ. Clearly,
δπ = ϕ.

Observe that if {a, a′}δ(c, b) then {(a, b), (a′, b)}εc. Since ε is injective, a =
a′. Therefore, δ is injective on elements and, by earlier remarks, on operations,
as well.

To show that δ is admissible, suppose that a1δ(c1, b1), . . . , anδ(cn, bn) and
that fδn(h, g). Then a1ϕb1, . . . , anϕbn and fϕng, and so āfϕb̄g. Also, (a1, b1)εc1,
. . . , (an, bn)εcn and (f, g, b̄)εnb̄h̄. Applying the pair of operations to the pairs
of elements, we get (āf, b̄g)εc̄(b̄h̄)), and so āfδ(c̄(b̄h̄), b̄g). Therefore, δ is a
division.

(2) Define ε : Dδπ ≺ (C,H) as follows. Set (a, b)ǫc whenever aδ(c, b) and
set (f, g, b̄)εb̄h̄ whenever fδ(h̄, g). If (a, b) belongs to a sort of Dδπ, then aδπb,
and so there is a c ∈ C such that aδ(c, b), and so (a, b)εc. If (f, g, b̄) is an n-ary
operation of Dδπ, then fδπg, and so there is an h̄ ∈ HBn

n such that fδ(h̄, g),
and so (f, g, b̄)εb̄h̄. These remarks show that ε is fully defined.

To see that ε is injective, let (a, b) and (a′, b) belong to the same sort of
Dδπ. Suppose (a, b)εc and (a′, b)εc. Then aδ(c, b) and a′δ(c, b), which, since δ
is injective, implies that a = a′.

For admissibility, let (a1, b1)εc1, . . . , (an, bn)εcn and (f, g, b̄)εnb̄h̄, where
h̄ ∈ HBn

n . Then a1δ(c1, b1), . . . , anδ(cn, bn) and fδn(h̄, g). Applying the
pair of operations to the pairs of elements, we have āfδ(c̄(b̄h̄), b̄g), and so
(āf, b̄g)εc̄(b̄h̄). 2

Remark Replacing “relational morphism” with “homomorphism” and ≺ with
≤ preserves the truth of both parts of the Covering Lemma, with little change
in the proof.

Corollary 14 Let π be projection (C,H) ◦ (B,G) → (B,G). Then Dπ ∼
(C,H).

Proof. Applying the Covering Lemma to δ = id : (C,H) ◦ (B,G) ≺ (C,H) ◦
(B,G), we have Dπ ≺ (C,H). By Lemma 1.12, any local algebra of Dπ is
isomorphic to (C,H), so (C,H) ≺ Dπ. 2



Chapter 2

Methods of decomposition

The work of decomposition theory involves finding relational morphisms and
consolidating their derived algebras in order to use the Covering Lemma. Find-
ing a relational morphism ϕ : (A,F ) → (B,G) can be difficult, because we
typically need both Dϕ and (B,G) to be somewhat less complex (in terms of
division) than (A,F ) itself. We can obtain a rough approximation to a re-
lational morphism by means of a structure that is in some sense internal to
(A,F ). Such a structure, called a cover, is a system of subsets which cover the
universe and are preserved by the operations. To a certain degree, covers are
to relational morphisms what congruences are to homomorphisms. However,
the cover of a relational morphism does not determine the relational morphism
up to isomorphism, in the way that a congruence determines a homomorphism.
Nevertheless, the derived algebra of any relational morphism having a specified
cover is bounded above by (divides) the derived algebra of the cover.

The image of the relational morphism is how (A,F ) “acts on” the cover.
In many examples, semigroups for instance, F acts ambiguously on the cover,
and constructing the morphism involves making choices to resolve this ambigu-
ity. The problem becomes still more subtle when we consider morphisms with
multiplicities: elements in the image having the same inverse image sets.

Consolidating a many-sorted algebra means finding a division into a one-
sorted algebra. One cannot expect to do this in general without the latter
being more complex than the former. The ()[alg] construction introduced in this
chapter does this in a canonical way, preserving many essential properties of
the msa. The resulting algebra is no more complex than a matrix power of any
other consolidation. (The ()[alg] construction is itself a kind of matrix power.)
Therefore, making full use of the construction will force us into the perspective
that matrix power does not change complexity. This statement is justified and
its consequences examined in this chapter and in Chapter 4.

19
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2.1 Covers

Let (A,F ) be an algebra, and let P(A) denote the power set of A. A family
C ⊆ P(A) is called admissible if whenever n ≥ 0, f ∈ Fn, and C1, . . . , Cn ∈ C,
there is a C ∈ C such that (C1 × · · · × Cn)f ⊆ C. Given any morphism
ϕ : (A,F ) → (B,G), the family Cϕ = {bϕ−1 : b ∈ B} is admissible. If ϕ is
a homomorphism, Cϕ is a partition. This is not true for morphisms in general
(nor is the converse true), but Cϕ always has two properties: it is admissible and
the union of its members is A. A family C with the latter properties is called an
admissible cover, or simply a cover, of the algebra, and we say that C covers1

(A,F ). Covers may be compared by the following relation: we write C ≤ D if
each C ∈ C is contained in some D ∈ D and we write C ∼ D if C ≤ D and D ≤ C.
Let ∇A denote the cover {A} and let ∆A denote the cover {{a} : a ∈ A}. If for
each cover C of (A,F ) either C ∼ ∇A or C ∼ ∆A, we call (A,F ) cover simple.

Proposition 15 Suppose ϕ : (A,F ) → (B,G). Then Cϕ ∼ ∆A iff Cϕ = ∆A

iff ϕ is a division. Also, Cϕ ∼ ∇A iff there is a b ∈ B such that bϕ−1 = A. If
(A,F ) is finite and C1 and C2 are covers, then C1 ∼ C2 iff C1 and C2 have the
same maximal elements. 2

Lemma 16 (A,F ) and (A,Pol (A,F )) have the same covers. 2

Proposition 17 If (A,F ) is finite and has a Mal’cev polynomial then every
cover C is equivalent to Cϕ for some homomorphism ϕ. If such an algebra is
simple, then it is cover simple as well.

Proof. Let m be the Mal’cev polynomial and C a cover for (A,F ). By the
lemma, we may assume m is a term.

Let D,E ∈ C be maximal. If D ∩E 6= ∅, then, choosing x ∈ D ∩E, we have

(D × {x} × E)m ⊇ ({x} × {x} × E)m ∪ (D × {x} × {x})m = E ∪D.

Since D and E are maximal in C, we get D = E ∪D = E. This shows that the
maximal sets in C form a partition. This partition must be admissible. 2

In particular, polynomially complete algebras and finite simple groups are
cover simple, as are two-element algebras, of course. For lattices, being cover
simple is equivalent to having no proper nontrivial tolerances, which is equiva-
lent to being tight plus simple, which is equivalent to being polynomially order
complete (see [8]). In general, cover simple implies simple but not conversely. A
useful criterion is given by the following. A tolerance on an algebra is a binary
relation which is reflexive, symmetric, and preserved by the operations.

Proposition 18 Suppose (A,F ) is finite. Then the following are equivalent:

1. (A,F ) is cover simple.

1This terminology is not related to the name of the Covering Lemma
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2. (∀{a, b} ⊆ A, a 6= b)(∃f ∈ Pol (A,F ))({a, b} × · · · × {a, b})f = A.

3. Both of the following conditions hold:

(a) (A,F ) has no proper, nontrivial tolerances, and

(b) (∃{a1, b1}, . . . , {an, bn} ⊆ A)(∃f ∈ F )({a1, b1}×· · ·×{an, bn})f = A.

Proof. (1 ⇒ 2) Suppose {a, b} is a counterexample to (2). Define

C = {({a, b} × · · · × {a, b})f : f ∈ Pol (A,F )}.

By hypothesis, A 6∈ C. Also, C is trivially preserved by F . Hence C is a proper,
nontrivial (because {a, b} ⊆ C) cover on (A,F ). (2 ⇒ 1) and (2 ⇒ 3) are left
to the reader. (3 ⇒ 2) Let {a, b} ⊆ A, a 6= b. The tolerance ρ generated by
(a, b) is A2, by (3a). Therefore, for each i ∈ 1, . . . , n, there is a gi ∈ F such that
({a, b} × · · · × {a, b})gi ⊇ {ai, bi} Then (g1 × · · · × gn)f satisfies (2). 2

Associated with an admissible k-ary relation on (A, F), that is, a subalgebra
of (Ak, F ), we have a cover

Cρ = {X ⊆ A : x1, . . . , xk ∈ X ⇒ (x1, . . . , xk) ∈ ρ,
and X is maximal with this property}.

In other words, Cρ consists of the blocks of ρ as defined in Chapter 0.
Recall (from [12] or [4]) that a majority operation is a ternary operation m

satisfying the equations

xxym = xyxm = yxxm = x.

It is well known that an algebra with such a term (a lattice, for example)
generates a congruence-distributive variety.

Proposition 19 If (A,F ) is finite and has a majority polynomial m, then every
cover C is equivalent to Cρ for some tolerance ρ.

Proof. Let m be the majority polynomial and C a cover for (A,F ). By
Lemma 2.2, we may assume m is a term.

Set aρb iff {a, b} is contained in a member of C. Clearly, C ≤ Cρ.
For the converse, we must show that blocks of Cρ (which are the same as the

blocks of ρ as defined in Chapter 0) are contained in blocks of C. This follows
easily from the following statement, which we prove by induction on n:

For all a1, . . . , an, b ∈ A,

{a1, . . . , an} is contained in a member of C and, for all i, bρai

⇓
{b, a1, . . . , an} is contained in a member of C.
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For n = 1, the hypothesis is just that bρa1, whence {b, a1} is contained in a
member of C by the definition of ρ.

For n > 1, suppose {a1, . . . , an} is contained in a member of C and, for all
i, bρai. Define, for each i, Xi = {b, a1, . . . , ai−1, ai+1, . . . , an}. By inductive
assumption, each Xi is contained in a member of C. Hence

X
def
= ({a1, . . . , an} ×X1 ×X2)m

is contained in a member of C. But b = a1bbm ∈ X , a1 = a1ba1m ∈ X , a2 =
a2a2bm ∈ X , and, for i > 2, ai = aiaiaim ∈ X . Hence X ⊇ {b, a1, . . . , an}. 2

The last proposition does not appear to be true when m is replaced by the
Jónsson terms, which exactly characterize congruence distributivity.

We now turn from the study of covers as systems of subsets to the study of
the algebraic structure induced on covers.

Definition If C covers (A,F ), then DC, the derived algebra of the cover C, is
the msa

(C, {F |(C1,...,Cn),C0
: C1, . . . , Cn, C0 ∈ C})

where
F |(C1,...,Cn),C0

= {f |C1×···×Cn
: (C1 × · · · × Cn)f ⊆ C0}.

If θ ∈ Con (A,F ), we define Dθ = DC where C is the partition corresponding to
θ.

The next lemma can be useful to get an upper bound on Dϕ.

Lemma 20 Suppose ϕ : (A,F ) → (B,G). Then Dϕ ≺ DCϕ
. 2

Warning C1 ≤ C2 6⇒ DC1
≺ DC2

.

We now turn to the problem of reversing the construction of Cϕ, that is, the
problem of converting a given cover into relational morphism. Of course, an
admissible partition leads to the usual quotient homomorphism. Therefore, a
natural question to ask is: when does a cover C on (A,F ) induce a relational
morphism to an algebra in the variety generated by (A,F )? For partitions, the
answer is affirmative. A more general answer requires that we find a way for
F to act on C, so that we have a morphism from (A,F ) to (C, F ) given by the
membership relation A→ C and a clone homomorphism on F .

One case in which we can do this is when C covers (A,F ) and for all f ∈ Fn

and C1 . . . Cn ∈ C there is a unique C ∈ C such that C ⊇ (C1 × · · · × Cn)f .
Then F acts on C in a natural way. Specifically, we have an algebra (C, F ) with
action given by (C1, . . . , Cn)f = C, where C is the unique C ∈ C such that
C ⊇ (C1 × · · · × Cn)f). Such a cover we call definite or unambiguous.
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2.2 The structure of wreath product algebras

Let (C, H) and (B, G) be algebras and let π denote projection (C,H)◦(B,G) →
(B,G). The cover Cπ = {C × {b} : b ∈ B} of this morphism neatly separates
the structure of (C,H) ◦ (B,G) into two levels, the lower deriving its structure
from (C,H) and the upper from (B,G).

Proposition 21 Assume C is finite. Suppose E ⊆ P(C ×B) and
⋃
E = (C ×

B). Then E is a cover on (C,H) ◦ (B,G) iff either

1. E ∼ {J × {b} : J ∈ J , b ∈ B} for some cover J of (C,H), or

2. E ∼ {C × I : I ∈ I} for some cover I of (B,G).

Note that in (1) E ≤ Cπ and in (2) E ≥ Cπ.

Proof. The “if” part is left to the reader. For “only if,” assume that E is a
cover.

First, suppose E ≤ Cπ. Then any E ∈ E can be written E = J × {b}
for some J ⊆ C and b ∈ B. For b ∈ B, let Jb = {J ⊆ C : J × {b} ∈ E}.
Clearly, Jb is a cover of (C,H). Now let b0, b1 ∈ B and suppose J ∈ Jb0 . Let
d ∈ H ◦B G be the binary operation ((c, b), (c′, b′)) 7→ (c, b′). Since E is a cover,
(J×{b0})× ({c}×{b1})d = J×{b1} is contained in some member of E (for any
c). So J is contained in a member of Jb1 . Arguing dually and combining, we
conclude Jb0 ∼ Jb1 for any b0, b1 ∈ B. Hence E ∼ {J × {b} : J ∈ Jb0 , b ∈ B}.

Now, suppose E 6≤ Cπ. This means that there are (c1, b1), (c2, b2) ∈ E, for

some E ∈ E , with b1 6= b2. Hence I
def
= {Eπ : E ∈ E} is a nontrivial cover on

(B,G).
Suppose J × {b} and J ′ × {b′} are contained in members of E . Define a

ternary operation f of H ◦B G by

((y0, x0), (y1, x1), (y2, x2)) 7→

{
(y1, x1) if x0 = b1
(y2, x1) if x0 = b2

.

Then

{(c1, b1), (c2, b2)} × (J × {b}) × (J ′ × {b′})f ⊇ (J ∪ J ′) × {b}.

Since E is a cover, (J ∪J ′)×{b} is contained in a member of E . Since C is finite
and E is a cover, repeating this argument shows that C × b is contained in a
member of E . Given I ∈ I, choose E ∈ E so that Eπ = I. Then, with d the
binary operation defined above, we have ((C × b)×E)d = C × I contained in a
member of E . Therefore, E ≥ {C × I : I ∈ I}. The opposite relation is clear,
and the desired equivalence follows. 2

In Chapter 5, this proposition will be used in combination with the obser-
vation about covers of Mal’cev algebras (Lemma 2.3) to show that solvable-
aperiodic complexity is unbounded.
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The next Corollary follows directly from the last proposition when C is finite.
The Corollary can be proved without the finiteness assumption using the ideas
of the above proof and the fact that a congruence is transitive.

Corollary 22 For any equivalence relation θ on C×B, θ ∈ Con (C,H)◦(B,G)
iff either

1. θ ≤ kerπ and there is a ψ ∈ Con (C,H) such that

θ = {((c, b), (c′, b′)) : b = b′, cψc′} or

2. θ ≥ kerπ and there is a ρ ∈ Con (B,G) such that

θ = {((c, b), (c′, b′)) : bρb′}.

By this proposition, Con (C,H) ◦ (B,G) is the result of gluing Con (B,G)
on top of Con (C,H), identifying only the top element of Con (C,H) with
the bottom element of Con (B,G). This proposition actually follows from an
analogous result in [11] about the shift product, since the latter is a reduct of
the wreath product.

2.3 Matrix powers

We will need another construction tool to supplement the wreath product in
order to get a satisfactory decomposition theory for any large class of algebras.
This is not surprising, given the diversity of algebras. A closely related con-
struction, the ()[alg] construction, provides an easy way of consolidating derived
msas.

As far as I know, matrix powers first appeared in full generality in [8].

Definition Let (A,F ) be an algebra and let k be a natural number. Then the
k-th matrix power of (A,F ) is (A,F )[k] = (Ak, F [k]), where

(F [k])n = {f1 × · · · × fk : fi ∈ Fkn, for each i}.

To unwind this definition a bit, let f1, . . . , fk ∈ Fkn and a1, . . . , an ∈ Ak.
Then the n-ary operation f1 × · · · × fk of the matrix power acts as follows.

(ā1, . . . , ān)(f1 × · · · × fk) = ((ā1, . . . , ān)f1, . . . , (ā1, . . . , ān)fk).

(By abuse of notation, we use (ā1, . . . , ān) to mean both an n-tuple of k-tuples—
on the left-hand side of the equation—and the nk-tuple formed by concatenating
the k-tuples a1, . . . , an—on the right-hand side.) Notice that each coordinate
of the output can depend on any coordinates of the input, unlike operations in
the wreath product. The computational intuition here is that the “program”
f1 × · · · × fk “runs” the programs f1, . . . , fk in parallel on the same input data
and combines their outputs into a k-tuple.
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The “matrix” terminology comes from the case of R-modules, that is, alge-
bras of the form (M,+, ()−1, 0, R) where (M,+, ()−1, 0) is an Abelian group
and R is a ring added to the clone as unary operations. In this setting,
(M,+, ()−1, 0, R)[k] is essentially the module (Mk,+, (−−)−1, 0, Rk×k), where
Rk×k denotes the ring of k by k matrices over R acting on Mk in the usual way.

If we think of an algebra (A,F ) as a concrete category with finite products
such that each object is a finite power of a single object a, then (A,F )[k] is
simply the full subcategory on finite powers of ak.

The following proposition expresses the k-th non-indexed power (A,F )k as
the k-th direct power (Ak, F ) with an additional “diagonal” operation and ex-
presses the k-th matrix power (A,F )[k] as the k-th direct power with two added
operations: the diagonal operation and a coordinate shift operation.

Proposition 23 Let (A,F ) be an algebra and let k > 0. Define d : Ak2

→ Ak

by

(x1,1, . . . , x1,k, x2,1, . . . , x2,k, . . . , xk,1, . . . , xk,k)d = (x1,1, x2,2, . . . , xk,k).

Define s : Ak → Ak by

(x1, . . . , xk)s = (x2, . . . , xk, x1).

Then:

1. (A,F )k = (Ak, F, d), and

2. (A,F )[k] = (Ak, F, d, s).

In particular, (Ak, F ) is a reduct of (A,F )k, which is a reduct of (A,F )[k].

Proof. (1) Clearly, d = (πk,1, . . . , πk,k) is an operation of (A,F )k. Con-
versely, any operation (f1, . . . , fk) of (A,F )k can be expressed as (f1, . . . , fk) =
((f1, . . . , f1), . . . , (fk, . . . , fk))d.

(2) As before, d is an operation of (A,F )[k], as is s = πk,2 ×· · ·×πk,k ×πk,1.
Conversely, any n-ary operation f1 × · · · × fk of (A,F )[k] can be expressed as
follows. Let x̄1, . . . , x̄n ∈ Ak. Then

(x̄1, . . . , x̄n)(f1 × · · · × fk) =

(x̄1s
0, . . . , x̄1s

k−1, x̄2s
0, . . . , x̄2s

k−1, . . . , x̄ns
0, . . . , x̄ns

k−1)(f1, . . . , fk).

(Recall that applying (f1, . . . , fk) to a nk-tuple of k-tuples means applying the
nk-ary operation f1 to the first coordinates of the k-tuples, applying f2 to the
second coordinates of the k-tuples, and so on.) Expressing (f1, . . . , fk) using d
as before completes the proof. 2

Corollary 24 Let (A,F ) be an algebra.

1. Con (A,F )k ∼= (Con (A,F ))k.
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2. Con (A,F )[k] ∼= Con (A,F ).

3. Pol (A,F )[k] ∼= (Pol (A,F ))[k].

Proof. Exercise. 2

Note that Con (Ak, F ) is not in general constructible from Con (A,F ) in
any uniform lattice theoretic way. Consider the group (2,+), for instance.

Lemma 25

1. (A,F )[k] ≤ (A,F )[m] for k ≤ m.

2. If (A,F ) ≺ (B,G), then (A,F )[k] ≺ (B,G)[k].

Proof. For (1), choose a ∈ A. We embed (A,F )[k] ≤ (A,F )[m] via the map

(x1, . . . , xk) 7→ (x1, . . . , xk, a, . . . , a)

and, for f1, . . . , fk ∈ Fkn,

f1 × · · · × fk 7→ f ′
1 × · · · × f ′

k × π × · · · × π,

where each f ′
i ∈ Fmn and is defined by

((x11, . . . , x1m), . . . , (xn1, . . . , xnm))f ′
i = ((x11, . . . , x1k), . . . , (xn1, . . . , xnk))fi,

and π is the projection map

((x11, . . . , x1m), . . . , (xn1, . . . , xnm))π = xnm.

For (2), first suppose (A,F ) is a subreduct of (B,G). Then clearly (A,F )[k]

is a subreduct of (B,G)[k]. Now suppose (A,F ) = (B/θ,G) for some θ ∈
Con (B,G). Define a congruence ψ ∈ Con (B,G)[k] by

(x1, . . . , xk)ψ(y1, . . . , yk) ⇐⇒ x1θy1, . . . , xkθyk.

Then (B,G)[k]/ψ ∼= (B/θ,G)[k] = (A,F )[k]. 2

Lemma 26 The matrix power and wreath product constructions commute:

((C,H) ◦ (B,G))[k] ∼= (C,H)[k] ◦ (B,G)[k].

Proof. On elements, we map

((c1, b1), . . . , (ck, bk)) 7→ ((c1, . . . , ck), (b1, . . . , bk)).

On n-ary operations, we map

(h̄1, g1) × · · · × (h̄k, gk) 7→ (f̄ , g1 × · · · × gk),
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where
(b̄1, . . . , b̄n)f̄ = (b̄1, . . . , b̄n)h̄1 × · · · × (b̄1, . . . , b̄n)h̄k.

It is easy to check that this map is a homomorphism and is bijective both on
elements and on operations. 2

From the category theoretic point of view, the last proposition seems natural.
Matrix powers commute with most “arrow-theoretic” ideas. See McKenzie’s
paper on Morita equivalence of varieties. We will use (and prove) the fact
that matrix powers preserve the congruence lattice and its type labelling in the
upcoming sections on aprimal algebras.

McKenzie shows that matrix powers induce functors on varieties which pre-
serve many ideas. However, matrix powers and subreducts are particularly
powerful in combination, preserving fewer ideas, as the following propositions
reveal. The first says that matrix powers and subreducts can be used to con-
struct polynomial closures of clones.

Proposition 27 Let (A,F ) be a finitely generated algebra, generated by some
k elements. Then (A,F,CA) ≤ (A,F )[k+1].

Proof. Let X = {a1, . . . , ak} generate A under F . Consider the full subreduct of
(A,F )[k+1] on A×{a1}×· · ·×{ak}. This algebra is isomorphic to (A,F,CX) =
(A,F,CA). 2

Although matrix powers preserve the labelled congrence lattice of tame con-
gruence theory, the types occuring in reducts of an algebra are not preserved,
as shown by the next two facts. The first is from [10].

Theorem 28 (Maurer-Rhodes) If (S, ·) is a simple nonabelian group, then
(S,Pol (S, ·)) is primal. Therefore, (S, ·)[|S|+1] has a primal subreduct.

Proposition 29 (2,∧,∨)[2] has a primal subreduct.

Proof. Consider the subreduct with elements (0, 1) and (1, 0) and operations

(∧,∨) : ((x1, y1), (x2, y2)) 7→ (x1 ∧ x2, y1 ∨ y2)

and
π2,2 × π2,1 : (x, y) 7→ (y, x).

On {(0, 1), (1, 0)}, the former is a semilattice operation and the latter is the
nonidentity permutation. Hence the subreduct is a two-element Boolean alge-
bra. 2

I am indebted to Pawel Idziak for showing me how to obtain this fact using
only the second matrix power. One consequence is that any algebra with a type
4 (or 3) congruence interval has a matrix power with a primal divisor and hence
has a matrix power with any given divisor. The indecomposability theorems
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of the next chapter show that no nonindexed power (or even wreath power) of
(2,∧,∨) has a primal subreduct.

The next lemma tells us how high a matrix power we must look at to tell
whether (A,F )[k] has a given subreduct.

Lemma 30 Let (A,F ) and (B,G) be finite algebras with (B,G) ≤ (A,F )[k] for

some k. Then (B,G) ≤ (A,F )[|A
B |] and (B,G) ≤ (A,F,CA)[|A

B |−|A|].

Proof. Write B = {b1, . . . , bn}. Choose k minimal so that (B,G) ≤ (A,F )[k].
AssumeB ⊆ Ak. If, for some i 6= j, we have ((b1)i, . . . , (bn)i) = ((b1)j , . . . , (bn)j),
then projection onto coordinates {1, . . . , k}\{i} induces an embedding (B,G) ≤
(A,F )[k−1], which is impossible, by choice of k. Since the number of distinct
n-tuples of elements of A is |An|, this proves that k ≤ |An|, from which follows
the first part of the lemma.

Now choose k minimal so that (B,G) ≤ (A,F,CA)[k]. Assume B ⊆ Ak.
If, for some i and for some a ∈ A, we have ((b1)i, . . . , (bn)i) = (a, . . . , a), then
projection onto coordinates {1, . . . , k} \ {i} induces an embedding (B,G) ≤
(A,F,CA)[k−1]. Since the number of distinct nonconstant n-tuples of elements
of A is |An|− |A|, this proves that k ≤ |An|− |A|, from which follows the second
part of the lemma. 2

The exponent in the lemma might not be optimal, but we cannot in general
reduce it very much, as shown by examples in Chapter 4. In general, there is
no such theorem for division in place of subreduct. Of course, there will be
such a theorem for any (B,G) which satisfies the following: for all (A,F ), if
(B,G) ≺ (A,F ) then (B,G) ≤ (A,Pol (A,F )). Cyclic groups of prime order,
the two-element primal algebra (i.e., the two-element Boolean algebra), the
two-element lattice, and the two-element semilattice all have this property, by
theorems in tame congruence theory. This will be discussed in Chapter 4.

Proposition 31 A matrix power of a primal algebra is primal. 2

2.4 The ()[alg] consolidation

Unlike the consolidations used in semigroup theory, ()[alg] introduces no un-
natural zero elements. In fact, providing we are working in a setting in which
matrix powers preserve “complexity” (whatever that is), finding the complex-
ity of an algebra requires only decompositions obtained from ()[alg] and the
Covering Lemma. It is therefore possible (but a bit less elegant) to approach
decomposition theory in such a setting without the use of msas.

In this section all algebras and msas are finite.

Definition Let (A,F) be a msa. We define (A,F)[alg] to be the algebra

(×A,F(×A)n,×A : n = 0, 1, 2 . . .).
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In other words, (A,F)[alg] is algebra whose universe is A1×· · ·×Am, (where A =
{A1, . . . , Am}) and whose n-ary operations are those of the form fA1

×· · ·×fAm
,

where each fAi
is an mn-ary operation of F with signature

(A1, . . . , Am, A1, . . . , Am, . . . , A1, . . . , Am
︸ ︷︷ ︸

n copies of A1, . . . , Am

) → Ai.

A specialized version of this construction was devised by M. Valeriote, who
applied it to many-sorted unary algebras to obtain a class of type 1 algebras
in the McKenzie-Valeriote structure theory for decidable locally finite varieties
[???]. The general version used here was suggested to me by R. McKenzie.

Thinking of (A,F) as a concrete category with finite products each of whose
objects is a product of copies of objects a1, . . . ,ak, (A,F)[alg] is the full subcat-
egory on powers of a1 × · · · × ak. From this point of view, the proof of the next
proposition becomes obvious: we simply restrict the given division to the full
subcategory on powers of a1 × · · · × ak.

Lemma 32 If (A,F) ≺ (B,G) then (A,F)[alg] ≺ (B,G)[k] where k is the num-
ber of sorts of (A,F). 2

Next we show that ()[alg] does indeed produce consolidations.

Lemma 33 (A,F) ≺ (A,F)[alg].

Proof. Let {1, . . . , k} index (A,F). We construct a division δ : (A,F) ≺
(A,F)[alg] as follows. On a sort Ai, we define

xδ = {ȳ ∈ ×A : yi = x}.

For operations of signature (i1, . . . , in) → j, we define

fδ = {ḡ ∈ Clon (A,F)[alg] : (x1,1, . . . , xn,k)gj = (x1,i1 , . . . , xn,in
)f}.

It follows easily that δ is a division. 2

Corollary 34 (The Covering Lemma with ()[alg]) Let π denote the projec-
tion homomorphism (C,H) ◦ (B,G) → (B,G).

1. If ϕ : (A,F ) → (B,G) is a relational morphism, then

(A,F ) ≺ D[alg]
ϕ ◦ (B,G).

2. If (A,F )
δ
≺ (C,H) ◦ (B,G), then

D
[alg]
δπ ≺ (C,H)[|B|].
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Proof. Use the previous lemma and the Covering Lemma. (For (2) note that
the number of sorts of Dδπ is |B|.) 2

When ϕ is a homomorphism, D
[alg]
ϕ depends only on kerϕ and can be ex-

pressed in the following way, which simplifies notation in some of the upcoming
proofs.

Lemma 35 Suppose ϕ : (A,F ) → (B,G) is a homomorphism. Write B =
{b1, . . . , bk}, A1 = b1ϕ

−1, . . . , Ak = bkϕ
−1. Then

D[alg]
ϕ

∼= (A1 × · · · ×Ak, H)

where

Hn = {h1 × · · · × hk : for all i, hi = fi|(A1×···×Ak)n

for some fi ∈ Fnk with (A1 × · · · ×Ak)nfi ⊆ Ai}.

Proof. Exercise. 2

Following the example of Proposition 2.15, we can construct a msa which
doesn’t have a primal divisor, but whose ()[alg] does. To do so, let A = {A1, A2}
with A1 = {0, 1} = A2. Let F be generated by the following operations

u : A1 → A2, 0u = 0, 1u = 1,

v : A2 → A1, 0v = 0, 1v = 1,

f : A1 ×A2 → A1, (x, y)f = x ∧ y,

g : A1 ×A2 → A1, (x, y)g = x ∨ y.

It’s easy to see that (A,F)[alg] ∼= (2,∧,∨)[2]. The point of this example (in
combination with the lemma comparing ()[alg] with ()[k]) is that ()[alg] is “safe”—
it does not introduce primal algebras—precisely when ()[k] is. Another way to
say this is: if (A,F ) can be decomposed into algebras from various classes
closed under matrix powers, then the last corollary also gives a decomposition
into algebras from the classes. This is one motivation for the study of classes
closed under matrix power and division, which we will take up at length in
Chapter 4.

We now show that the construction ϕ ; Dϕ ; D
[alg]
ϕ preserves an important

congruence-lattice property.

Lemma 36 If ϕ : (A,F ) → (B,G) is a homomorphism such that kerϕ is

minimal among the nonzero elements of Con (A,F ), then the algebra D
[alg]
ϕ is

simple.
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Proof. Write B = {b1, . . . , bk}, A1 = b1ϕ
−1, . . . , Ak = bkϕ

−1. Let (x1, . . . , xk)

and (y1, . . . , yk) be two distinct elements of D
[alg]
ϕ (or, rather, of the isomorphic

algebra defined in Lemma 2.21, with which algebra we shall henceforth work).
We may assume that x1 6= y1. By the minimality of kerϕ we have sequences

x1 = z1,1, z1,2, . . . , z1,m = y1,
...

xk = zk,1, zk,2, . . . , zk,m = yk,

such that each {zi,j, zi,j+1} is the image of {x1, y1} under some unary poly-
nomial of (A,F ). Since {x1, y1} is contained in the congruence class A1 and
zi,1 ∈ Ai, {zi,1, zi,2} ⊆ Ai. Inducting, we get {z1,1, z1,2, . . . , z1,m} ⊆ Ai. Hence
(z1,j, . . . , zk,j) ∈ A1 × · · · ×Ak.

It is not hard to see that any pair {(z1,j, . . . , zk,j), (z1,j+1, . . . , zk,j+1)} is the

image of {(x1, . . . , xk), (y1, . . . , yk)} under some unary polynomial of D
[alg]
ϕ . 2

In fact, in the setting of the Lemma, Dϕ is itself simple in a natural sense.
In general, we may study tame congruence theory in the category of msas and
their morphisms. A thorough development of these ideas would probably be
worthwhile but would be tangential to the present work.

By applying this lemma and the Covering Lemma, we can decompose any
finite algebra (A,F ) into simple algebras. Furthermore, the types of this se-
quence of simple algebras may be chosen to correspond to the types of intervals
in a maximal chain of Con (A,F ) (we will prove this in Chapter 6). This fact
appears useful but cannot be the prime decomposition theorem we seek. First,
simple algebras are wild—much more so than in semigroup theory. Decompos-
ing them further is where the bulk of the work will take place. Second, every
algebra divides algebras of types 3, 4, and 5 (the type 3 and 4 cases were han-
dled in this chapter; for the type 5 case, see Chapter 6). So the “fact” is really
a triviality. The aprimal setting (Chapter 4) is the largest setting in which this
method of decomposition is nontrivial.



Chapter 3

Indecomposable algebras

In semigroup theory, the wreath indecomposables are easy to classify. In the
general setting, the only way to obtain a reasonably small set of “primes” is to
allow matrix powers in our decompositions. Before we investigate this technique,
we prove as much as possible about wreath indecomposables and give some
examples.

Definition Let (A,F ) be a finite algebra. Then (A,F ) is said to be morphism
indecomposable if, whenever ϕ : (A,F ) → (B,G) is a relational morphism to a
finite algebra, either

1. (A,F ) ≺ Dϕ, or

2. (A,F ) ≺ (B,G).

We say that (A,F ) is wreath indecomposable if, whenever (A,F ) ≺ (C,H) ◦
(B,G), with C and B finite, we have either

1. (A,F ) ≺ (C,H), or

2. (A,F ) ≺ (B,G).

We say that (A,F ) is indecomposable up to matrix powers if, whenever (A,F ) ≺
(C,H) ◦ (B,G), with C and B finite, we have either

1. (A,F ) ≺ (C,H)[k] for some k, or

2. (A,F ) ≺ (B,G)[k] for some k.

Note that, by the Covering Lemma, morphism indecomposability implies
wreath indecomposablity. Also, wreath indecomposability implies indecompos-
ability up to matrix powers. There are algebras which are not wreath indecom-
posable but are indecomposable up to matrix powers. Wreath indecomposability
is here only for comparison and plays no major role in the decomposition theory.
All wreath indecomposable algebras I know of can be shown to be morphism

32
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indecomposable. My conjecture is that the two are distinct. Evidence for this
is the fact that the ()[alg] construction can introduce new divisors, as shown in
the previous chapter. To prove strong theorems, we always try to find wreath
decompositions (as opposed to just relational morphisms) and show morphism
indecomposability.

Proposition 37 The two-element set (2, ∅) is morphism indecomposable.

Proof. Divisionally, (2, ∅) is the smallest nontrivial algebra. 2

3.1 Indecomposability and iterable operations

Some more general proofs of morphism indecomposability hinge on the notion
of an iterable operation. To give a clear definition of this concept we need a
kind of exponentiation for operations.

Definition Suppose f : An → A. We define, for each i, an operation f i :
Ani

→ A recursively as follows. First, f0 = idA. Next, for i > 0, we set

(x1, . . . , xni)f i =

((x1, . . . , xn)f, (xn+1, . . . , x2n)f, . . . , (xni−n+1, . . . , xni)f)f i−1.

This notation, when n = 1, agrees with the usual exponentiation of opera-
tions A→ A. Also, many properties of exponentiation hold for this generaliza-
tion: (fk)l = fkl, in (A,F ) × (B,G) we have (f, g)n = (fn, gn), etc.

Definition An operation f : An → A is called iterable if, for any i > 0, f i

generates f (equivalently, for any i > 0, (A, f i) = (A, f)).

The next proposition says that iterable includes two familiar senses of the
word “idempotent”, the first from semigroup theory and the second from uni-
versal algebra.

Proposition 38 Let A be a finite set.

1. Suppose f : A→ A. Then f is iterable if and only if f2 = f .

2. Suppose f : An → A and, for all a ∈ A, (a, . . . , a)f = a. Then f is
iterable.

Proof. The “if” part in (1) is obvious. For the converse, suppose f is iterable.
Since f is unary, f is iterable if and only if (∀i > 0)(∃j > 0)f ij = f . Since A is
finite, we may choose i > 0 such that (f i)2 = f i. Find j > 0 such that f ij = f .
But then f2 = (f ij)2 = f ij = f .

To prove (2) for a given i, observe that

(x1, . . . , xn)f = (x1, . . . , xn, x1, . . . , xn, . . . , x1, . . . , xn)f i
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follows from the hypothesis by an easy inductive argument. 2

If ϕ : (A,F ) → (B,G) is a relational morphism, then the subalgebra struc-
ture of (B,G) tells us how the sorts of Dϕ “connect”, i.e., whether there is
an “arrow” from one given sort to another. The next lemma reduces the class
of relational morphisms one has to look at to give certain proofs of indecom-
posability to a class in which this sort of connectivity is universal: there is
communication between every pair of sorts, in both directions. First we need a
technical definition that is needed in the proof of the lemma.

Definition Let (A,F ) be an algebra, andX ⊆ F . We define the tree-composites
of operations in X recursively as follows.

Each g ∈ X is a tree-composite of X .
If f1, . . . , fn are m-ary tree-composites of X and g ∈ X , then the operation

given by

(x1,1, . . . , xn,m) 7→ ((x1,1, . . . , x1,m)f1, . . . , (xn,1, . . . , xn,m)fn)g

is a tree-composite of X .

Note that, if all operations in X are surjective, then all tree-composites of
X are surjective. Also, fk is a tree-composite of {f}.

Lemma 39 Let (A,F ) be a finite cover simple algebra such that F is generated
by a set X of surjective operations. If ϕ : (A,F ) → (B,G) is a relational
morphism with B finite and ϕ not injective, then there is a relational morphism
ϕ′ : (A,F ) → (B′, G′) with (B′, G′) ≤ (B,G) and ϕ′ ≤ ϕ such that

1. Dϕ′ ≺ Dϕ,

2. (B′, G′) has no proper, nonempty subalgebras,

3. Aϕ′B′, that is, aϕ′b for all a ∈ A and b ∈ B′,

4. for all b, b′ ∈ B′, there is a surjective operation in Dϕ′ of signature (b)n →
b′ for some n, and

5. G′ is generated by Xϕ′.

Proof. Since ϕ is not injective, Cϕ 6= ∆A. Therefore, since (A,F ) is cover simple,
Cϕ ∼ ∇A, and there is a b0 ∈ B such that b0ϕ

−1 = A.
Let B′ be a minimal nonempty subuniverse of (b0(Xϕ), Xϕ). Let G′ be the

clone generated by {g|B′ : g ∈ Xϕ}. Statement (2) follows immediately.
For a ∈ A and b ∈ B′, set aϕ′b iff aϕb. Let the clone of ϕ′ be generated

by {(f, g|B′) : f ∈ X, fϕg}. Since X generates F , ϕ′ is fully defined on F .
Statement (5) is obvious.
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Suppose b ∈ B′. Since B′ ⊆ b0(Xϕ), we can find (f, g) ∈ ϕ′ such that
b = (b0, . . . , b0)g and f is a tree-composite of operations in X . Then f is
surjective since the operations in X are. So from Aϕb0 we deduce

A = (A× · · · ×A)f ϕ (b0, . . . , b0)g = b.

This proves (3), and, moreover, shows that ϕ is fully defined on A. Statement
(1) follows from Lemma 1.7.

Suppose b, b′ ∈ B′. By minimality, b′ ∈ bG′, and there is a pair (f, g) ∈ ϕ′

such that f is a tree composite of X and (b, . . . , b)g = b′. So f is surjective, as
is the operation (f, g, (b, . . . , b)) of Dϕ′ . This proves (4). 2

An operation f on A is said to be idempotent if, for all a ∈ A, (a, . . . , a)f = a.
Note that if F is generated by indempotent operations then F is generated by
surjective operations. In fact, all operations in F are idempotent and hence
surjective.

Theorem 40 Let (A,F ) be a finite cover simple algebra such that F is gener-
ated by surjective operations. Then (A,F ) is morphism indecomposable if either

1. F is generated by a single iterable operation, or

2. F is generated by idempotent operations.

Proof. (1) Write (A,F ) = (A, f), with f iterable. Suppose ϕ : (A, f) →
(B, g) is a relational morphism to a finite algebra. If ϕ is injective, then ϕ :
(A, f) ≺ (B, g). If ϕ is not injective, then we apply the lemma to get ϕ′ :
(A, f) → (B′, G′). Choose g′ ∈ G′ with fϕ′g′. Since B′ is finite, we can
find b ∈ B′ and i > 0 such that (b, . . . , b)g′i = b. So Dϕ′ |b has the operation
(f i, g′i, (b, . . . , b)). But since f is iterable, this operation generates an operation
of the form (f, h, (b, . . . , b)) for some h ∈ G′. Since bϕ−1 = A, (A, f) ≺ Dϕ′ ≺
Dϕ.

(2) Assume F is idempotent and (A,F ) → (B,G) is a relational morphism
to a finite algebra. If ϕ is injective, then ϕ : (A,F ) ≺ (B,G). If ϕ is not
injective, then we apply the Lemma to get ϕ′ : (A,F ) → (B′, G′). By (4) of
the Lemma, there is an identity map between each pair of sorts of D′

ϕ. Choose
a sort b and compose each (f, g, (b, . . . , b)) with the appropriate identity map
so that the image is in sort b. This shows that (Dϕ′)|b ∼= (A,F ). But by the
lemma, Dϕ′ ≺ Dϕ. 2

Example 1 The following algebras are morphism indecomposable.

1. A finite simple group (G, ·). One way to see this is to let n = |G| and
replace binary multiplication with n-ary multiplication f : (x1, . . . , xn) 7→
x1 · . . . · xn. Since a group of order n satisfies xn = 1, (x, . . . , x)f = 1,
and so c1 (the constant map with value one) is in the clone generated by
f . Since (x, y, 1, . . . , 1)f = x · y, f generates the original group operation
·, and (G, ·) = (G, f). We now show that f is iterable. Let i > 0. Clearly,
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(x, . . . , x)f i = 1, so f i generates c1. Composing f i with sufficiently many
copies of c1 produces f again. Finite simple groups are cover simple, so
now we apply part (1) of the theorem.

2. A simple algebra (A, f) with f a Mal’cev operation (i.e., we have (xyy)f =
x = (yyx)f). Recall from Chapter 2 that a simple algebra with a Maltsev
operation is cover simple. A Maltsev operation is idempotent. Apply part
(2) of the theorem.

3. The two-element semilattice (2,∧) and the two-element lattice (2,∧,∨).
Meet and join are idempotent.

4. A tight, simple lattice. Tight plus simple implies cover simple, and lattice
operations are idempotent.

Warning A simple nonabelian group with a proper nontrivial subgroup of
constant operations is not wreath indecomposable (and therefore not morphism
indecomposable). More precisely, let (G, ·) be any group with a subgroup H .
Then

(G, ·, CH) ≺ (G, ·, AH) ◦ (H, ·, CH),

where
AH = {x 7→ hxh−1 : h ∈ H}.

To see this, define ϕ : (G, ·, CH) → (H, ·, CH) by

g ϕ h for all g ∈ G and all h ∈ H
· ϕ ·

ch ϕ ch for all h ∈ H.

Then we have δ : Dϕ ≺ (G, ·, AH), by setting

(g, h) δ gh−1 for all g ∈ G and all h ∈ H
ch δ c1 for all h ∈ H

(·, ·, (h, h′)) δ fh for all h, h′ ∈ H,

where fh is given by (x, y) 7→ xhyh−1. Note that c1 ∈ Clo (G, ·, AH) since (G, ·)
satisfies xn = 1 for some n.

Of course, such a decomposition doesn’t really get anywhere. When (G, ·)
is simple, (G, ·, CH) is indecomposable up to matrix powers. Also, when H =
{1}, (G, ·, CH) = (G, ·), which is morphism indecomposable, as shown in the
examples above. When H = G, (G, ·, CH) is primal. We usually use (n, Pn)
to denote the primal algebra on n elements. These algebras are also morphism
indecomposable, but we cannot show this by the above methods. (I know of no
way to conclude from the noninjectivity of a morphism ϕ : (n, Pn) → (B,G)
that (n, Pn) ≺ Dϕ.) Actually, the previous theorem can be used to show that
primal algebras are indecomposable up to matrix powers, because (n, Pn) is the
polynomial closure of (n, d) where d is a discriminator operation, (n, d) is cover
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simple, and d is Mal’cev. Indecomposability up to matrix powers is sufficient
for the remainder of this work; nevertheless, the following proof of morphism
indecomposability is of some interest.

Theorem 41 The primal algebra (n, Pn) is morphism indecomposable for all
n.

Proof. Consider the n-valued Post algebra (n,∧,′ ), where x∧y = min(x, y) and
x′ = (x + 1) mod n. A little work (using Rosenberg’s theorem, for example)
reveals this to be primal, so (n,∧,′ ) = (n, Pn). Observe that ∧ and ′ are
surjective. Also, primal algebras are cover simple, so primal algebras satisfy the
hypotheses of Lemma 3.3. Hence for the present proof we need consider only
morphisms satisfying the conclusions of the lemma.

Let ϕ : (n, Pn) → (B,G) be a relational morphism such that (B,G) has
no proper, nonempty subalgebras, nϕB, and so on. Now we use the identity
(n, Pn) = (n, s, c0, . . . , cn−1), where ci : n→ n is the constant map with value i
and s is the 4-ary switching operation:

(u, v, x, y)s =

{
x if u = v
y if u 6= v.

We may assume that G is generated by sϕ ∪ c0ϕ ∪ . . . ∪ cn−1ϕ. The proof now
falls into two cases.

First, we suppose that whenever ciϕg, cjϕh, and i 6= j, we have Im (g) ∩
Im (h) = ∅. Let

Bi = {b ∈ B : b ∈ Im (g) for some g ∈ ciϕ}.

The Bi are pairwise disjoint, by the supposition. Observe that Bj(ciϕ) ⊆ Bi.
Also,

(Bi ×Bj ×Bk × Bl)(sϕ) ⊆

{
Bk if i = j
Bl if i 6= j.

Let B′ = B1 ∪ . . . ∪ Bn−1. In particular, B′ is closed under G, because sϕ ∪
c0ϕ ∪ . . . ∪ cn−1ϕ generates G. Furthermore, the above remarks show that the
partition {B1, . . . , Bn−1} is a cover of (B′, G) and that this cover induces a
quotient morphism from (B′, G) onto (n, Pn).

Second, we suppose that there are pairs ciϕg and cjϕh with i 6= j and
Im (g) ∩ Im (h) 6= ∅. So we have operations (ci, g, b0) and (cj , h, b1) in Dϕ with
b0g = b1h. Since B has no proper, nonempty subalgebras and ci and cj are
constant operations, we may assume b0 = b1. Since (n, Pn) is cover simple, we
can find b ∈ B and, for each m, a constant operation (cm, gm, b0) with b0gm = b.
Iterating s starting from the sort indexed by b leads to a sort b′ such that there
is an identity map b → b′ and the local algebra at b′ has s. Using the identity
maps, the local algebra also has all constants, completing the proof. 2

More generally, it is possible to prove that adding constant operations pre-
serves morphism indecomposability for the algebras shown to be morphism in-
decomposable by the theorem before the preceding one. The proof is similar to
the above proof.
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Conjecture 1 Matrix powers preserve morphism (and wreath) indecomposabil-
ity.

3.2 Indecomposability up to matrix powers

In the following chapters we study classes of algebras closed under division,
matrix power, and wreath product. In this setting it is natural to study al-
gebras indecomposable up to matrix powers, of which we have the following
characterization.

Lemma 42 Let (A,F ) be a finite algebra. The following are equivalent:

1. (A,F ) is indecomposable up to matrix powers.

2. Whenever ϕ : (A,F ) → (B,G) is a relational morphism to a finite algebra,
either

(a) (A,F ) ≺ (D
[alg]
ϕ )[k] for some k, or

(b) (A,F ) ≺ (B,G)[k] for some k.

Proof. Use the Covering Lemma and the properties of ()[alg] and ()[k]. 2

I know of no way to show all cover simple algebras are indecomposable up
to matrix powers (or in any other sense). However, in the case of one basic
operation, we have the following.

Theorem 43 Let (A, f) be cover simple and finite. Then (A, f) is indecompos-
able up to matrix powers.

Proof. Clearly, f is surjective. Suppose ϕ : (A, f) → (B, g) is a relational
morphism to a finite algebra. If ϕ is not injective, then there is a b ∈ B such
that bϕ−1 = A. Define xd = (x, . . . , x)g. Find b ∈ B and k > 0 so that bdk = b.

Let n be the arity of f . Then we have an embedding (Ak, h) ≤ D
[alg]
ϕ where h

is n-ary and acts by

((x1,1, . . . , x1,k), . . . , (xn,1, . . . , xn,k))h =

((x1,2, . . . , xn,2)f, . . . , (x1,k, . . . , xn,k)f, (x1,1, . . . , xn,1)f).

Let C = {(a, . . . , a) : a ∈ A}. Then C is closed under h, and (C, h) ∼= (A, f).

This shows that (A, f) ≤ D
[alg]
ϕ . 2

I expect that the converse is false. The proof of the theorem is useful beyond
the lemma itself: for (A, f) cover simple and finite, any ϕ : (A, f) → (B, g) for

which there is a b ∈ B such that bϕ−1 = A will have (A,F ) ≺ D
[alg]
ϕ .



Chapter 4

Aprimal algebras

There are a number of reasons for studying classes closed under matrix power
and division:

• Algebras are enormously general. Varieties go some of the way towards
sorting out this generality. Classes closed under matrix power and division
go somewhat farther. Another way of saying this is that, up to matrix
power and division, there are fewer “primes”.

• Wreath decomposition tools work well in this setting. Division allows us to
decompose simple algebras. (Simple algebras cannot usefully be embedded
in wreath products, because of the projection homomorphism.) Matrix
powers are needed for the ()[alg] construction and for the decomposition
theorems for simple type 1 and 2 algebras (see Chapter 6).

• Such classes correspond to classes of computers closed under simulation
and parallelism. Division is simulation. Matrix power is parallel process-
ing. (See ???)

• Looking at algebras as concrete categories, division and matrix power
together constitute a broad notion of being “inside” an algebra.

• Some well known classes are of this kind: the solvable and strongly solvable
classes of Hobby-McKenzie [8].

• The resulting classification agrees with a useful classification of semigroups
(see Chapter 7).

There are of course drawbacks inherent in this approach: a nonsolvable group,
a nontrivial lattice, or a nontrivial Boolean algebra generates the largest class,
the class of all finite algebras.

In this chapter, all algebras are finite, and indecomposable means indecom-
posable up to matrix power.

39
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4.1 Classes defined by exclusion and by con-

struction

In Birkhoff’s setting of indexed algebras, the most interesting classes are those
closed under the homomorphic image, subalgebra, and direct product construc-
tions. In our nonindexed setting, we make more algebras isomorphic by ignoring
the way in which generators for the clone are chosen. The interesting classes
are therefore larger. The nonindexed analogues of Birkhoff’s constructions are
division and nonindexed product. To make the classes even larger, we use ma-
trix power. Our wreath decomposition theory studies classes closed under these
operations and classes formed by taking wreath products of such classes. Basic
theorems connect classes maximal among those excluding various indecompos-
ables with classes generated by other indecomposables.

Definition Let K be a class of algebras. We define

1. IK = {(B,G) : for some (A,F ) ∈ K, (B,G) ∼= (A,F )}

2. MK = {(A,F )[l] : (A,F ) ∈ K, l ≥ 0}

3. RK = {(A,G) : for some (A,F ) ∈ K, G ⊆ F}

4. SK = {(B,F |B) : for some (A,F ) ∈ K, B ⊆ A and BF ⊆ B}

5. HK = {(B,G) : for some (A,F ) ∈ K, there is a surjective homomorphism
(A,F ) → (B,G)}

6. DK = HSRK = {(B,G) : (B,G) ≺ (A,F ) for some (A,F ) ∈ K}.

Lemma 44 Let K be a class of algebras.

1. If O is any operator from the definition above, then OK ⊇ K.

2. IMMK = IMK, RRK = RK, SSK = SK, HHK = HK.

3. SHK ⊆ HSK, RHK ⊆ HRK, RSK ⊆ SRK.

4. DK = HSRK, hence by (1), (2), and (3) DDK = DK.

5. MDK ⊆ DMK, hence by (4) DMDMK = DMK.

Proof. Proofs of (1-3) are identical or similar to ones in Birkhoff’s theory. State-
ment (1) for O = M requires that we identify (A,F )[1] with (A,F ). Statements
(4) and (5) follow by lemmas in Chapter 2. 2

Definition Let (A,F ) be an algebra. We define Excl(A,F ), the exclusion
class of (A,F ), to be the largest class K of algebras such that (A,F ) 6∈ K and
DMK = K. More generally, let L be a class of algebras. We define Excl(L),
the exclusion class of L, to be the largest class K of algebras such that K∩L = ∅
and DMK = K.
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Of course, to show DMK = K we need show only DMK ⊆ K.

Definition Let K and L be classes of algebras. We define

1. K ◦ L = {(A,F ) ◦ (B,G) : (A,F ) ∈ K and (B,G) ∈ L}.

2. WK = K ∪ K ◦ K ∪K ◦ K ◦ K ∪ . . ..

3. K × L = {(A,F ) × (B,G) : (A,F ) ∈ K and (B,G) ∈ L}.

Note that ◦ is associative on classes of algebras just as it is on algebras. The
product in (3) is essentially the varietal product studied in universal algebra.

Lemma 45 Let K be a class of algebras.

1. WMK = MWK

2. WDK ⊆ DWK

Proof. By Chapter 2. 2

The next lemma says that exclusion classes of indecomposable algebras are
closed under wreath product. Recall that here indecomposable means indecom-
posable up to matrix powers.

Lemma 46 If L consists entirely of indecomposable algebras, then Excl(L) ◦
Excl(L) ⊆ Excl(L), and therefore W(Excl(L)) ⊆ Excl(L).

Proof. Let (C,H), (B,G) ∈ Excl(L). Suppose (A,F ) ∈ L and (A,F ) ≺ (C,H)◦
(B,G). Then either (A,F ) ≺ (C,H)[k], for some k, or (A,F ) ≺ (B,G)[k],
for some k. But since Excl(L) is closed under DM, (A,F ) ∈ Excl(L), a
contradiction. 2

I expect that classes of finite algebras closed under finite nonindexed product
and under taking divisors will be describable as “pseudo-hypervarieties”, that is,
classes of finite algebras defined by pseudo-hyperidentities. A hyperidentity is an
ordinary identity universally quantified over all element and operation symbols
occurring in it or, to put it another way, an identity in the language of clones.
A pseudo-hyperidentity would likely involve implicit operations on the clone,
in addition to the explicit operations on the clone given by the composition
operations and the nullary operations whose values are projection operations.
(See Reiterman, etc.) It should be interesting to ask how closure under M affects
the pseudo-hyperidentites holding in a class. Also, what pseudo-hyperidentities
define the classes discussed in the next section?
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4.2 Four primary classes

In this section, we consider the class of solvable algebras and the class of strongly
solvable algebras, which were defined (differently) in [8], and describe these
classes in terms of Excl and in terms of DMW, using theorems from tame
congruence theory. We also investigate two new exclusion classes, that of apri-
mal (or “weakly solvable”) algebras and that of aperiodic algebras (generalizing
aperiodic semigroups). Chapter 6 takes some first steps toward understanding
these two classes in terms of DMW.

Definition

1. Solv = Excl(2,∧).

2. StrSolv = Excl{(2,∧), (p,+) : p is prime}.

3. Aper = Excl{(p,+) : p is prime}).

4. Aprim = Excl(2,∧,¬).

Algebras in Solv are termed solvable; algebras in StrSolv, strongly solvable;
algebras in Aper, aperiodic; algebras in Aprim, aprimal. Note that excluding
cyclic groups is the same as excluding all groups, and excluding the two-element
semilattice (or Boolean algebra) is the same as excluding all semilattices (or
Boolean algebras). Also, by Lemma 4.3, these classes are in fact DMW classes.

An immediate consequence of the definition of Aprim is that, if (A,F ), (B,G) 6∈
Aprim, then DM{(A,F )} = DM{(B,G)}. Hence there is only one DM-class
properly containing Aprim, namely, the class of all finite algebras. We will soon
prove that no nontrivial DMW-class is properly contained in StrSolv.

Proposition 47 We have the following relations among the classes:

1. StrSolv = Aper ∩ Solv

2. Aper ∪ Solv ⊆ Aprim

Proof. To show Aper ⊆ Aprim, use the fact that (2,+) ≤ (2,∧,¬). 2

Since Aprim is closed under wreath products, W(Aper ∪ Solv) ⊆ Aprim. It
seems reasonable to guess that W(Aper∪Solv) = Aprim. This is in fact true for
semigroups in Aprim, as we will see in Chapter 7, when we give a version of the
Krohn-Rhodes theorem for semigroups using the wreath product of algebras.
Hence the conjecture would, if true, amount to a analogue of the Krohn-Rhodes
theorem for aprimal algebras. Also, the conjecture would lead to a complexity
measure (see Chapter 5) on aprimal algebras by counting the minimal number
of solvable factors in any decomposition involving only solvable and aperiodic
algebras. This measure is defined for semigroups, is bounded above by the “two-
sided” complexity of semigroups studied in [14] and [15]. There are aprimal
algebras of arbitrary solvable aperiodic complexity (see Chapter 5).
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Examples 2

1. All unary algebras are strongly solvable. Strongly solvable can be thought
of as a generalization of unary.

2. A group is solvable in this sense iff it is solvable in the usual sense.

3. Aperiodic semigroups are exactly those with no nontrivial subgroups. For
proofs and characterizations of aprimal, solvable, and strongly solvable
semigroups, see Chapter 7.

4. Lattices, Boolean algebras, discriminator algebras, and so on are not apri-
mal by examples in Chapter 2.

The next two theorems connect the definitions of Solv and StrSolv above
with the descriptions in Hobby-McKenzie of solvable and strongly solvable al-
gebras. Parts of their proofs require terminology from tame congruence theory.
However, the statements of these theorems do not involve such terminology, so
a brief review of tame congruence theory is postponed until Chapter 6, where
it is needed to state some theorems.

Theorem 48 Let (A,F ) be an algebra. The following are equivalent:

1. (A,F ) ∈ Excl{(2,∧), (p,+) : p is prime} = StrSolv.

2. (A,F ) ∈ DMW{(2, ∅)}.

3. There do not exist distinct a, b ∈ A and f ∈ Pol2 (A,F ) with (a, b)f =
(b, a)f = a and (b, b)f = b.

4. (2,∧) 6≤ (A,Pol (A,F )) and, for all p, (p,+) 6≤ (A,Pol (A,F ))

Proof. To see that (1) ⇒ (4), note that StrSolv is by definition closed under
matrix powers and subreducts. Hence, by Lemma 2.13, whenever (A,F ) ∈
StrSolv, we also have (A,Pol (A,F )) ∈ StrSolv.

In the language of tame congruence theory, (4) implies that the types in
Con (A,F ) are all 1. By Theorem 7.2 of [8], (3) is true.

Suppose (3). By Theorem 7.2 of [8], all types in the congruence lattice are
1. We will prove in Chapter 6 that this implies (2).

Now assume (2). If we had (2,∧) ≺ (A,F )[k], then

(2,∧) ≺ (2, ∅)[k1] ◦ . . . ◦ (2, ∅)[kn].

Since (2,∧) is indecomposable, (2,∧) ≺ (2, ∅)[ki] for some i. But (2, ∅)[ki] is
strongly solvable in the sense of Chapter 3 of [8], and (2,∧) is not. The same
argument works for group divisors, and we have proved (1). 2

Note that (2) of the Theorem implies that StrSolv is contained in any non-
trivial DMW class, since (2, ∅) is the smallest nontrivial algebra (with respect
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to division). Intuitively, strongly solvable algebras contain very little informa-
tion. One way to say this is that complexity measures over aprimal algebras
should not count the strongly solvable factors appearing in a wreath decompo-
sition. Computationally, operations in a strongly solvable algebra correspond to
the record-keeping tasks that any nontrivial machine can do whether or not it
is capable of any kind of arithmetic or logical operations. (Here what a machine
“can do” includes what it can do if it is run in parallel with copies of itself or
in a sequential product with copies of itself.)

Theorem 49 Let (A,F ) be an algebra. The following are equivalent:

1. (A,F ) ∈ Excl(2,∧) = Solv.

2. (A,F ) ∈ DMW{(p,+) : p is prime}.

3. There do not exist distinct a, b ∈ A and f ∈ Pol2 (A,F ) with (a, a)f =
(a, b)f = (b, a)f = a and (b, b)f = b.

4. (2,∧) 6≤ (A,Pol (A,F ))

Proof. To see that (1) ⇒ (4), note that Solv is by definition closed under
matrix powers and subreducts. Hence, whenever (A,F ) ∈ Solv, we also have
(A,Pol (A,F )) ∈ Solv. Obviously, (3) ⇔ (4). For (3) ⇒ (2), we use Theorem 7.2
of [8] to show that all types in Con (A,F ) are 1 or 2. Then we apply the
decomposition theorem in Chapter 6.

Now assume (2). If we had (2,∧) ≺ (A,F )[k], then

(2,∧) ≺ (p1,+)[k1] ◦ · · · ◦ (pn,+)[kn].

Since (2,∧) is indecomposable, (2,∧) ≺ (pi,+)[ki] for some i. But (pi,+)[ki] is
solvable in the sense of Chapter 3 of [8], and (2,∧) is not. 2

Part (3) of either theorem is the primary means of checking membership;
in particular, we can use it to decide membership in StrSolv and Solv. The
membership problem of Aprim is slightly more difficult and that of Aper is
much more difficult than those of StrSolv and Solv. Also, Aper and Aprim have
not yet been characterized in terms of DMW.

Lemma 50 Let (2, G) ∈ {(2,∧), (2,∧,∨), (2,∧,¬), (p,+) : p is prime}. For
any algebra (A,F ), if (2, G) ≺ (A,F ), then (2, G) ≤ (A,Pol (A,F )).

Proof. This follows (with a little work) from Lemmas 4.15, 4.17, 4.20, and 9.14
of [8]. See the proof of Theorem 4.10. 2

Theorem 51 Let (A,F ) be an algebra. The following are equivalent:

1. (A,F ) ∈ Excl(2,∧,¬) = Aprim.

2. (A,F ) ∈ Excl(2,∧,∨).
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3. (A,F ) ∈ Excl(B,G), where (B,G) is a primal algebra with |B| > 1.

4. (A,F ) ∈ Excl(S, ·), where (S, ·) is a simple nonabelian group.

5. (2,∧,¬) 6≤ (A,F )[|A|2].

Proof. (1) ⇒ (2) is because (2,∧,¬) ≤ (2,∧,∨)[2]. (See 2.?) (2) ⇒ (1) is because
(2,∧,∨) is a reduct of (2,∧,¬). (1) ⇔ (3) is because every primal algebra is
isomorphic to a matrix power of (2,∧,¬) and (2,∧,¬) divides every primal
algebra. (3) ⇒ (4) is because (S, ·, CS) is primal and this algebra is a subreduct
of a matrix power of (S, ·). (4) ⇒ (3) is because (S, ·) divides a sufficiently
large primal algebra. (1) ⇒ (5) is by definition. To prove (5) ⇒ (1), assume
(2,∧,¬) ≺ (A,F )[k]. By the lemma, (2,∧,¬) ≤ (A,F )[k]. By Lemma 2.16,

(2,∧,¬) ≤ (A,F )[|A|2]. 2

In the language of tame congruence theory, aprimal algebras are those whose
matrix powers have no type 3 (or, equivalently, type 4) divisors. Be warned,
however, that there are type 5 algebras which have type 3 divisors and are
therefore not aprimal (see Example 6.2). Algebras which are not aprimal can
be thought of as computationally complete. See ???.

The exponent in (5) may not be optimal, but we cannot in general reduce it
below (|A| − 1)/2, as the following example shows.

Example 3 Let k > 0. We construct an algebra (A,F ) with (2,∧,¬) ≤
(A,F )[k], but (2,∧,¬) 6≺ (A,F )[k−1], and |A| = 2k + 1.

Let A = {0, a1, . . . , ak, b1, . . . , bk}. For i = 1, . . . , k, define fi : A2k → A as
follows:

(a1, . . . , ak, a1, . . . , ak)fi = (a1, . . . , ak, b1, . . . , bk)fi =
(b1, . . . , bk, a1, . . . , ak)fi = bi
(b1, . . . , bk, b1, . . . , bk)fi = ai

and fi otherwise takes the value 0. Let F be the clone generated by f1, . . . , fk.
Then, in (A,F )[k], the binary operation f1 × · · · × fk is a Sheffer operation on
{(a1, . . . , ak), (b1, . . . , bk)}. However, F2k−1 has no operations other than the
projections and the constant c0, because each fi takes the value zero if any two
of its 2k inputs are equal. The binary operations of (A,F )[k−1] are built from
operations of F2k−2, and so (A,F )[k−1] has no Boolean divisors.

Corollary 52 For algebras with finitely generated clones, membership in Aper,
Solv, and StrSolv are all decidable.

Proof. Let (A,F ) be an algebra such that F is finitely generated. Solvability
and strong solvability of (A,F ) can be checked as follows. Compute Pol2 (A,F ).
An effective method of doing this is given in Theorem 4.3 of [12]. If there is
a pair (a, b) ∈ A2 with a 6= b and a polynomial f ∈ Pol2 (A,F ) such that
f is a semilattice operation on {a, b}, then (A,F ) is not solvable; otherwise,
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(A,F ) is solvable. To check strong solvability, look for distinct a, b ∈ A and
f ∈ Pol2 (A,F ) with (a, b)f = (b, a)f = a and (b, b)f = b.

To check whether (A,F ) is aprimal, we must check whether (2,∧,¬) ≤

(A,F )[|A|2]. But this is equivalent to following condition:

there exist f1, . . . , f|A|2 ∈ F2|A|2 and ā, b̄ ∈ A|A|2 such that

the operation f1 × · · · × f|A|2 : A2|A|2 → A|A|2 is a Sheffer
operation on {ā, b̄}.

So we compute F2|A|2 (as in Thm. 4.3 of [12]) and then check, for each choice

of f1, . . . , f|A|2 ∈ F2|A|2 and ā, b̄ ∈ A|A|2 with ā 6= b̄, whether this operation is a
Sheffer operation. 2

The following theorem gives the best criterion for aperiodic that I know.

Theorem 53 Let (A,F ) be an algebra. The following are equivalent:

1. (A,F ) ∈ Excl{(p,+) : p is prime} = Aper.

2. (p,+) 6≤ (A,F )[k] for all prime p and all k.

Proof. (1) ⇒ (2) is trivial. For (2) ⇒ (1), suppose (p,+) ≺ (A,F )[k]. By defini-
tion, there is (B,G) ≤ (A,F )[k] and θ ∈ Con (B,G) such that (B,G)/θ ∼= (p,+).
The interval (θ, 1B) is type 2. By Lemma 4.20 of [8], there is (C, g) ≤ (B,G)
such that g is a Mal’cev operation on C (that is, (C, g) satisfies the identity
xxyg = y = yxxg.) By Theorem 9.14 of [8], every type in Con (C, g) is
2 or 3. In paticular, the interval (0C , δ) is type 2 or 3, where δ is a mini-
mal nonzero congruence on (C, g). But then the (0C , δ)-traces are are either
groups or two-element boolean algebras. Since these algebras are subreducts of
(C,Pol (C, g)) ≤ (B,Pol (B,G), they are also (by Lemma 2.13) subreducts of
(B,G)[l] ≤ (A,F )[kl] for some l. 2

I do not know whether the property of being aperiodic is decidable. (Aperi-
odicity of semigroups is decidable, because our notion of aperiodic agrees with
the traditional one—see Chapter 7.) The difficulty checking aperiodic results
from the following two facts:

1. Aper is defined as the exclusion class of an infinite set of algebras (namely,
the cyclic groups of prime order) which cannot be reduced, and

2. excluding these algebras requires checking arbitrarily high matrix powers,
by an example analogous to Example 4.2.

There may be a bound on the size of prime numbers occuring as the orders of
cyclic group divisors of matrix powers of a given aprimal algebra (with a finitely
generated clone), and it seems likely that such a bound would be computable
from the parameters of the algebra (the size of the universe, the number and
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arities of basic operations, the operation tables themselves). Decidability of
aperiodicity would follow in this case, for, by the methods used in the proof
of 4.8, we can decide whether a particular prime occurs as the order of a cyclic
group divisor of a matrix powers of the given algebra.

Decidability would also follow from a decomposition theorem for aperiodic
algebras. For, on one hand, if every aperiodic algebra decomposes into algebras
drawn from some recursively enumerable set of aperiodic algebras, then the set
of isomorphism classes of aperiodic algebras can itself be enumerated by enu-
merating the basic aperiodics, their matrix powers, wreath products, divisors,
and so on. On the other hand, (isom. classes of) non-aperiodic algebras can be
enumerated by enumerating all algebras while looking for groups in their matrix
powers.

However, the examples Chapter 7 suggest that the decomposition theory of
aperiodics is quite involved. For instance, some aperiodics do not decompose
into matrix powers of semilattices (though aperiodic semigroups do). The alge-
bra of Example 6.3 has this property, but it does decompose into a semilattice
and a group. This phenomenon suggests that finding a basic set into which all
aperiodics decompose may become a significantly harder problem if we require
that algebras in the basic set be aperiodic. Yet we must make this requirement
if we wish to obtain a decomposition theorem of the kind required for a proof
of decidability along the lines of the preceeding paragraph.



Chapter 6

Decomposing aprimal

algebras

All algebras in this chapter are finite.

6.1 A little tame congruence theory

We review a enough ideas from tame congruence theory to make the statements,
if not the proofs, of the upcoming theorems intelligible to the neophyte. For the
complete treatment, see [8].

We say that M ⊆ A is a minimal set of (A,F ) if:

1. |M | > 1,

2. there is a g ∈ Pol1 (A,F ) with Ag = M , and

3. if h ∈ Pol1 (A,F ) and Ah ⊆ Ag, then either Ah = Ag or |Ah| = 1.

Two subsets X , Y of A are said to be polynomially isomorphic in (A,F ) if there
are f, g ∈ Pol1 (A,F ) with Xf = Y and Y g = X . A basic theorem of tame
congruence theory says that if (A,F ) is simple, then all of its minimal sets are
polynomially isomorphic. It follows that the algebras (M,Pol (A,F )|M ) are
all isomorphic, where M ranges over minimal sets. Such algebras are known as
minimal (or permutational). Any unary operation of a minimal algebra is either
constant or a permutation. Up to polynomial equivalence, algebras with this
property fall into five types, via the work of Pálfy (Thm. 4.7 of [8]), as follows:

type 1 unary algebras

type 2 vector spaces

type 3 (2,∧,¬)

type 4 (2,∧,∨)

48
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type 5 (2,∧).

(Note that, since all minimal sets in the type 5—or 3 or 4—case have two
elements, condition (3) of the definition above is vapid in type 5.) Hobby and
McKenzie make use of these properties to assign a type in 1..5 to simple algebras
and, more generally, to certain intervals in congruence lattices.

6.2 The Dϕ and ()[alg] constructions preserve type

Among the intervals which can be assigned a unique type are the two-element
intervals. In this section, we show that if ϕ is a homomorphism and kerϕ is

a minimal congruence, then D
[alg]
ϕ is a simple algebra of the same type as the

two-element interval (0, kerϕ).

Lemma 54 If ϕ : (A,F ) → (B,G) is a homomorphism such that kerϕ is
minimal among the nonzero elements of Con (A,F ), and the interval (0, kerϕ)

has type t, then the algebra D
[alg]
ϕ is simple and has type t.

Proof. We showed in Chapter 2 (Lem. 2.22) that, under these hypotheses, D
[alg]
ϕ

is simple. We show here that this algebra has type t.
Let θ = kerϕ, let A1, . . . , Ak be the θ-classes, let M be a (0, θ)-minimal set,

and let N be a (0, θ)-trace of M (that is, a nontrivial θ-class of M). Then, by

Lemma 2.21, we may identify D
[alg]
ϕ with (A1 × · · · ×Ak, H), where

Hn =

{

h1 × · · · × hk :
for all i, hi = fi|(A1×···×Ak)n for some fi ∈
Fnk with (A1 × · · · ×Ak)nfi ⊆ Ai

}

.

We may assume N = A1 ∩M . Now choose a2 ∈ A2, . . . , ak ∈ Ak, and consider
the set N ′ = N × {a2} × · · · × {ak}. We show that N ′ is a minimal set of
(A1 × · · · ×Ak, H).

Let e ∈ Pol1 (A,F ) be an idempotent with Ae = M . Then A1e ⊆ M and
A1e ⊇ Ne = N . Since A1 is a θ-class, A1e ⊆ A1. Putting all this together,
N ⊆ A1e ⊆ A1 ∩M = N , whence A1e = N . So N ′ is the image of the unary
polynomial (x1, . . . , xk) 7→ (x1e, a2, . . . , ak) of (A1 × . . . × Ak, H). This proves
part (2) of the definition of minimal set.

For part (3), we must show that there is no nontrivial polynomial image
properly contained in N ′. Assuming this fails, let P be minimal among such
images. Then, since (A1 × · · · × Ak, H) is simple, Lemma 2.8 of [8] says that
P = (A1 × · · · × Ak)h, where h = (h1, . . . , hk) ∈ Pol1 (A1 × · · · × Ak, H)
and h2 = h. Now consider the unary polynomial f : x 7→ (x, a2, . . . , ak)h1 of
(A,F ) We have Nf = (N × {a2} × · · · × {ak})h1 = N ′h1. But, since Ph = P ,
P = N ′h1 × {a2} × · · · × {ak} is nontrivial and properly contained in N ′ =
N × {a2} × · · · × {ak}. So N ′h1 = Nf is nontrivial and properly contained in
N . This contradicts the fact that N is inside the minimal set M .

Finally, we must show that the type of the minimal set N ′ is t. This follows
from the easy observation that (N ′,Pol (A1×· · ·×Ak, H)|N ′) ∼= (N,Pol (A,F )|N ). 2
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A similar proof shows that matrix power preserves not only the congruence
lattice, but the type labelling on it. We prove a special case of this below.

6.3 Decomposing solvable and strongly solvable

algebras

Suppose (A,F ) is solvable. By the previous section, we can decompose (A,F )
into simple algebras corresponding in a natural way to the two-element intervals
in a maximal chain of Con (A,F ). By theorems in [8], each interval is of type 1
or 2, so the simple algebras are of type 1 or 2, and we can embed these algebras
in matrix powers of (2, ∅) or (p,+), for appropriate p, respectively.

Theorem 55

1. If (A,F ) is simple and type 1, then (A,F ) ≤ (2, ∅)[k], for some k.

2. If (A,F ) is simple and type 2, then (A,F ) ≤ (p,+)[k], for some prime p
and some k. Furthermore, (p,+) ≤ (A,Pol (A,F )).

Proof. These statements follow easily from Theorems 13.3 and 13.5 in [8], using
Lemma 2.13 to obtain polynomials in a subreduct of a sufficiently high matrix
power. 2

Theorem 56

1. If (A,F ) is strongly solvable, (A,F ) ≤ (2, ∅)[k1] ◦ · · · ◦ (2, ∅)[kn] for some
k1, . . . , kn.

2. If (A,F ) is solvable, (A,F ) ≤ (p1,+)[k1] ◦ · · · ◦ (pn,+)[kn] for some primes
p1, . . . , pn and integers k1, . . . , kn. Unless (A,F ) is strongly solvable, we
can choose each pi so that (pi,+) ≤ (A,Pol (A,F )).

Proof. If (A,F ) is solvable, then we know from Theorem 7.2 in [8] that all
types in the congruence lattice are 1 or 2. Let θ be a minimal nonidentity
congruence. Applying the Covering Lemma to the corresponding quotient mor-

phism ϕ, (A,F ) ≤ D
[alg]
ϕ ◦ (A/θ, F ). But D

[alg]
ϕ is simple and of type 1 or 2 by

Lemma 6.1.
If the type is 1, then D

[alg]
ϕ ≤ (2, ∅)[k1] ≤ (p1,+)[k1], for some k1 and any

p1. Unless (A,F ) is strongly solvable, we may choose p1 so that (p1,+) ≤
(A,Pol (A,F )).

If the type is 2, then D
[alg]
ϕ ≤ (p1,+)[k1], for some p1 and k1. By the previous

theorem, (p1,+) ≤ (A,Pol (A,F )).
In each case, we apply the Covering Lemma to obtain (A,F ) ≤ (p1,+)[k1] ◦

(A/θ, F ). Since (A/θ, F ) is solvable, (2) follows by induction.
The proof of (1) is easier, and is left as an exercise. 2
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Actually, applying the Covering Lemma to the homomorphism ϕ in the proof
yields a division which need not be an embedding. However, there is such an
embedding when (A,F ) = (A,Pol (A,F )) (see Chapter 2). Since (A,Pol (A,F ))
is solvable if (A,F ) is, and (A,F ) ≤ (A,Pol (A,F )), the general statement of
the theorem follows.

Since wreath product and matrix power commute, we could have writ-
ten the decomposition in (1) as (A,F ) ≺ ((2, ∅) ◦ · · · ◦ (2, ∅))[k], where k =
max{k1, . . . , kn}. A similar remark holds for (2).

When (2) is applied to a solvable group (Hobby-McKenzie’s sense of solvable
agrees with the usual notion for groups), the groups (p1,+), . . . , (pn,+) are the
Jordan-Hölder factors (up to repetitions).

Exercise A Coordinate System for Solvable Algebras Show that an
algebra is solvable iff it is a subalgebra of some algebra of the following form.
Let k1, . . . , kn be positive numbers, and let p1, . . . , pn be prime. The universe
is {0, . . . , p1 − 1}k1 × · · · × {0, . . . , pn − 1}kn . Each binary operation has the
following form:

((x̄1, . . . , x̄k−2, x̄k−1, x̄k), (ȳ1, . . . , ȳk−2, ȳk−1, ȳk)) 7→

(L1(x̄1, . . . , x̄k, ȳ1, . . . , ȳk) · x̄1 +M1(x̄1, . . . , x̄k, ȳ1, . . . , ȳk) · ȳ1,

...

Lk−2(x̄k−1, x̄k, ȳk−1, ȳk) · x̄k−2 +Mk−2(x̄k−1, x̄k, ȳk−1, ȳk) · ȳk−2),

Lk−1(x̄k, ȳk) · x̄k−1 +Mk−1(x̄k, ȳk) · ȳk−1),

Lk · x̄k +Mk · ȳk)

where x̄i, ȳi ∈ {0, . . . , pi − 1}ki and the Li and Mi are functions from tuples
of integers to square matrices of integers of the appropriate size. (Note that
that algebra does not necessarily have all such operations.) Operations of other
arities have an analogous form.

6.4 Properties of simple type 5 algebras

Consider the problem of finding a decomposition of a aprimal algebra (A,F )
into aperiodic and solvable pieces. By the Covering Lemma and Lemma 6.1, we
can reduce this problem to simple algebras all having types from Con (A,F ).
Types 3 and 4 do not occur in a aprimal algebra. So (A,F ) decomposes into
simple algebras of types 1, 2, and 5. Having type 1 or 2 yields strong global
properties for a simple algebra (the embeddings into matrix powers of (2, ∅) or
(p,+)).

Hence we can reduce our problem to the case of simple algebras of type
5. These algebras are very problematic. There is no matrix representation
for simple algebras of type 5, except of course for the embedding in a matrix
power of (2,∧,¬). Such an embedding can be found for any algebra. This
cannot be improved upon in general: as Example 6.2 below shows, there are
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simple type 5 algebras in which (2,∧,¬) itself embeds. Of course, such an
algebra is not aprimal. We can, however, construct simple type 5 algebras with
arbitrary (aprimal) subreducts (see Example 6.2, below). So no useful matrix
representation can hold for simple type 5 algebras in general. In a sense, the
reduction to the simple type 5 case is no reduction at all!

In semigroup theory, this case is handled with an ordering; the cover of maxi-
mal principal H-order ideals leads to a decomposition. Tame congruence theory
provides a generalization of this ordering (Theorem 6.4, which we can try to
use to obtain decompositions. The motivation for this project is Corollary 6.10,
which says that if the inverse image sets of a relational morphism each lie below
a maximal element of the ordering, then the derived algebra is aperiodic.

A relation R ⊆ An is called an admissible relation of an algebra (A,F ) if R
is closed under the operations of (An, F ).

Theorem 57 (Hobby-McKenzie, Thm. 13.6) Let (A,F ) be any finite sim-
ple algebra of type 4 or 5. There are six subalgebras ρ0, ρ1, ζ0, ζ1, ξ0, ξ1 of (A2, F )
such that 0A ⊂ ρi ⊆ ζi ⊆ ξi(i = 0, 1), ρ1 = ρ−1

0 , ζ1 = ζ−1
0 , ξ1 = ξ−1

0 , ξ0 ∩ ξ1 = 0A,
and

1. ρ0 and ρ1 are the minimal reflexive admissible relations on (A,F ), and
ρ0 ∪ ρ1 = 0A ∪ {N2 : N is a minimal set of (A,F )};

2. ζ0 and ξ0 are connected partial orderings of A, and ζ0 is the transitive
closure of ρ0;

3. for every admissible partial ordering µ of (A,F ) such that 0A < µ, either
ζ0 ≤ µ ≤ ξ0orζ1 ≤ µ ≤ ξ1.

At the moment, we are interested only in type 5. In this case, for each
minimal set N , the algebra (N,Pol (A,F )|N )) is isomorphic to (2,∧, c0, c1). If,
for this particularN , the zero element of the semilattice (N,Pol (A,F )|N )) is ρ0-
below the unit element, then the same is true for any minimal set N ′ (because
N and N ′ are polynomially isomorphic and polynomials preserve admissible
relations). If, on the other hand, the zero of N is ρ0-above the unit, then the
same is true for any minimal set N ′, and the zero of N is ρ1-below the unit. By
convention, we assume that ρ0 is the one which “orients” the minimal algebras
with the zero below the unit. Then ζ0 is referred to as the natural ordering of
(A,F ), and we frequently drop the subscript. Similarly, ρ0 is referred to simply
as ρ. For clarity, we often write x ≤ζ y when xζy and x ≤ρ y when xρy.

Lemma 58 Suppose (A,F ) is simple and of type 5. Then (A,F )[k] is simple
and of type 5.

Proof. First, (A,F )[k] is simple because Con (A,F )[k] ∼= Con (A,F ), by Corol-
lary 2.10.

Suppose the type of (A,F ) is 5. This means that (A,F ) has a minimal set
{a, b} of type 5. Equivalently, we have {a, b} ⊆ A and g ∈ Pol1 (A,F ) with
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1. {a, b} = Ag, and

2. ({a, b},Pol (A,F )|{a,b}) ∼= (2,∧).

We construct a minimal set for (A,F )[k]. Let ā = (a, a, . . . , a), c̄ = (b, a, . . . , a) ∈
Ak. Define g′ : Ak → Ak by (x1, . . . , xk) 7→ (x1g, a, . . . , a). Then Akg′ = {ā, c̄}.
By Corollary 2.10, g′ ∈ Pol1 (A,F )[k]. So {ā, c̄} is a minimal set of (A,F )[k].

To prove that the type is 5, we construct an isomorphism

ϕ : ({ā, c̄},Pol (A,F )[k]|{ā,c̄}) → (a, b,Pol (A,F )|{a,b}) ∼= (2,∧).

Let āϕ = a and c̄ϕ = b. If f̄ ∈ Poln (A,F )[k]|{ā,c̄}, we may write f̄ = f1 ×
ca × · · · × ca for some f1 ∈ Polnk (A,F )|{a,b}. Define f : {a, b}n → {a, b}
by (x1, . . . , xn)f = ((x1, a, . . . , a), . . . , (xn, a, . . . , a))f1. It is easy to see that
f ∈ Poln (A,F ) and also {a, b}nf ⊆ {a, b}. Hence f ∈ Pol (A,F )|{a,b}. Let
f̄ϕf . The pair f̄ϕf preserves the pairs āϕa and c̄ϕb, so ϕ is a morphism.
Showing that ϕ surjects on operations is left to the reader. This isomorphism
shows that the minimal set {ā, c̄} is of type 5 and therefore (A,F )[k] is of type
5. 2

Lemma 59 Suppose (A,F ) is simple of type 5, with natural ordering ζ. Then
the minimal sets of (A,F )[k] are precisely the sets of the form

{(a1, . . . , ak), (b1, . . . , bk)},

where

1. for some i, ai 6= bi, and

2. for each i, either ai = bi or {ai, bi} is a minimal set of (A,F ) with aiζbi.

Proof. First, let {ā, b̄} be a set of the specified form. By (1), a 6= b. Choose a
minimal set {c, d} with cζd and choose g ∈ Pol1 (A,F ) with Ag = {c, d}. Using
(2) and the definition of minimal, we can find g1, . . . , gk ∈ Pol1 (A,F ) such that,
for each i, if ai = bi then gi = cai

and if ai 6= bi then cgi = ai and dgi = bi.
Then {ā, b̄} is the image of Ak under the map (x, . . .) 7→ (xgg1, . . . , xggk), and
this map is in Pol1 (A,F )[k]. Therefore {ā, b̄} is a minimal set.

Now suppose M is a minimal set of (A,F )[k]. By the previous lemma, the
type of (A,F )[k] is 5, so all minimal sets have two elements. Write M = {ā, b̄}.
By definition, we have ḡ = g1 × . . . × gk ∈ Pol1 (A,F )[k] with Akḡ = {ā, b̄}.
Each gi is a k-ary polynomial of (A,F ). If g1 depends on some variable,
say the j-th, choose d1, . . . , dk so that the operation h1 defined by xh1 =
(d1, . . . , dj−1, x, dj+1, . . . , dk)g1 is not constant. Otherwise, let h1 be the unary
constant map whose value is the constant value of g1. Define h2, . . . , hk similarly.
Since ḡ is not constant, some gi depends on some variable. So h̄ = h1 × · · ·×hk

is not constant. Clearly Akh̄ ⊆ Akḡ. Therefore Akh̄ = Akḡ. By our construc-
tion, each hi depends on at most one variable. If any hi and hi′ depend on
distinct variables, then Akh̄ would have at least four elements. So there is a j
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such that each hi either is constant or depends on the j-th variable. Choose
i so that hi is nonconstant. Choose c, d ∈ A so that cζd and hi is noncon-
stant on {(c, . . . , c), (d, . . . , d)}. (This can be done because ζ is connected and
hi preserves ζ.) Then {(c, . . . , c), (d, . . . , d)}h̄ = {ā, b̄}. We may assume that
(c, . . . , c)h̄ = ā and (d, . . . , d)h̄ = b̄. Since ā 6= b̄, (1) is satisfied. Also, for each
i, if ai 6= bi, then hi is nonconstant, and (ai, bi) is the image of (c, d) under
the unary polynomial (x, . . . , x)hi. Therefore, {ai, bi} is a minimal set of (A,F )
and, since cζd, aiζbi. 2

In the following, if ζ is a binary relation on a set A then ζk denotes the
binary relation {((x1, . . . , xk), (y1, . . . , y1)) : x1ζy1, . . . , xkζyk} on Ak.

Lemma 60 Suppose (A,F ) is simple type 5 with natural ordering ζ. Then the
natural ordering of (A,F )[k] is ζk.

Proof. We must show that ζk is the transitive closure of {(ā, ā) : ā ∈ Ak} ∪
{(ā, b̄) : {ā, b̄} is a minimal set of (A,F )[k] and a is the zero of the induced
semilattice}. This follows easily from the previous lemma. 2

6.5 Which simple type 5 algebras are aperiodic?

Theorem 61 Suppose (A,F ) is simple type 5. If the natural ordering ζ on
(A,F ) has a maximum element, then (A,F ) is aperiodic.

Proof. By Theorem 4.10, (A,F ) is aperiodic if and only if (A,F )[k] has no group
subreducts, for all k. However, if (A,F ) satisfies the hypotheses of the theorem,
then so does (A,F )[k], by the preceding lemmas and by the observation that
if ζ has a maximum element then so does ζk. Hence to prove the theorem it
suffices to show that, for all (A,F ) satisfying the hypotheses, (A,F ) has no
group subreducts.

Let (A,F ) satisfy the hypotheses. Denote the maximum element by 1. Sup-
pose that there is a nontrivial group (C, f) with C ⊆ A and f ∈ F2. Let
D = {x ∈ A : for all c ∈ C, c ≤ζ x}. Clearly, 1 ∈ D, so D is nonempty.

Claim 1: (C ×D)f ⊆ D and (D × C)f ⊆ D. Let c0 ∈ C, d0 ∈ D. For any
c ∈ C, c = (c0, (c

−1
0 , c)f)f ≤ζ (c0, d0)f , where −1 denotes inverse in the group.

So (c0, d0)f ∈ D. This proves the first half of the claim, and the second half is
proved symmetrically.

Claim 2: (D × D)f ⊆ D. Let d0, d1 ∈ D. For any c ∈ C, c = (c, u)f ≤ζ

(d0, d1)f , where u denotes the identity element of the group. This proves the
claim.

Define a binary relation θ on C ∪D by θ = (C × C) ∪ (D ×D). Note that
C ∩D = ∅. (If not, there is a c0 ∈ C such that, for any c ∈ C, we have c ≤ζ c0.
This contradicts the facts that f is a nontrivial group operation on C and that
f preserves ≤ζ.) So θ is an equivalence relation.

Claims 1 and 2, together with the fact that (C × C)f ⊆ C, show that θ is
admissible and therefore a congruence of (C ∪ D, f), and that ((C ∪ D)/θ, f)



CHAPTER 6. DECOMPOSING APRIMAL ALGEBRAS 55

is a semilattice with absorbing element D/θ. By Lemma 4.15 of [8], there are
c ∈ C, d ∈ D, and an operation p ∈ Pol2 (A,F ) with table

p c d
c c d
d d d

Since c ≤ζ d, we can choose a, b with c ≤ζ a ≤ρ b ≤ζ d and a′, b′ with
c ≤ζ a

′ ≤ρ b
′ ≤ζ d such that p takes values as follows, for some e:

p c a′ b′ d
c c d
a e d
b d d
d d d

(Here, ρ corresponds to ζ as in 6.4.) Since ρ is preserved by unary polynomials,
e ≤ρ d, and {e, d} is a trace of (A,F ). Consequently, there are polynomial
isomorphisms between {a, b}, {a′, b′}, and {e, d}. Therefore, the induced algebra
(A,F )|{e,d} is a lattice, contradicting the assumption that (A,F ) is type 5. 2

Corollary 62 Semilattices are aperiodic.

Proof. Trivially, (2,∧) is simple type 5. The natural ordering is the usual
semilattice ordering with 0 < 1, so Theorem 6.8 shows that (2,∧) is aperiodic.
Any semilattice is in DMW(2,∧). 2

This corollary suggests the question: is Aper = DMW(2,∧)? For semi-
groups, this is true (see Chapter 7). However, it is not true in general, by
Example 6.3.

The main application of Theorem 6.8 lies in showing that a broad class of
relational morphisms defined on simple type 5 algebras have aperiodic derived
algebras. More precisely, the following corollary shows that, if each inverse
image set of a relational morphism lies below one of the maximal elements of
≤ζ, then the ()[alg] of the derived algebra is aperiodic.

Let (A,F ) be simple type 5. Observe that the principal order-ideals of ≤ζ

form a cover1

Cζ = {{x : x ≤ζ a} : a ∈ A}.

It is easy to see that D
[alg]
Cζ

is aperiodic. (D
[alg]
Cζ

is simple type 5 with ordering
equal to the product of the orderings on the principal order-ideals, and so we
can apply 6.8.) The next corollary is a much stronger statement but also much
harder to prove.

1The maximal principal order-ideals likewise form a cover, and this cover is equivalent to
Cζ , but the more refined cover has certain technical advantages.



CHAPTER 6. DECOMPOSING APRIMAL ALGEBRAS 56

Corollary 63 Let (A,F ) be a simple type 5 algebra with natural ordering ≤ζ .

If ϕ : (A,F ) → (B,G) is a relational morphism with Cϕ ≤ Cζ , then D
[alg]
ϕ is

aperiodic.

Sketch of proof. Much as in the proof of 6.8, we need only show that, in all
situations satisfying the hypotheses, Dϕ has no group subreducts in any local

algebra. (It is left to the reader to show that if (D
[alg]
ϕ )[l] has a group subreduct

then Dϕkl (where k = |B|) has a group subreduct in some local algebra, for a

naturally defined ϕkl : (A,F )[kl] → (B,G)[kl] satisfying the hypotheses.)
Assume ϕ : (A,F ) → (B,G) satisfies the hypotheses and (p,+) ≤ Dϕ for

some prime p. By Prop. 1.6, Dϕ ≤ (A,F ). Let g0, . . . , gp−1 ∈ A be the images
under the aforementioned embeddings of 0, . . . , p− 1, respectively. Choose f ∈
Fp such that f induces p-fold addition (that is, the operation (x1, . . . , xp) 7→
x1 + · · · + xp) on the embedded group elements g0, . . . , gp−1.

Observe that {g0, . . . , gp−1} lies under some s ∈ A, by the hypothesis that
Cϕ ≤ Cζ . Define, for x ∈ A, xd = (x, . . . , x)f . Choose t ∈ {s, sd, sd2, . . .} such
that tdn = t for some n > 0. Observe that, for each i, gi ≤ζ t, by the definition
of d, the fact that f preserves ζ, and the fact that f is a group operation and
hence surjective on {g0, . . . , gp−1}.

Since (t, . . . , t)fn = tdn = t, it follows that fn (exponentiation as in Chapter
3) induces an operation on the local algebra of DCζ

at {x ∈ A : x ≤ζ t}. But
since p-fold addition is iterable (See Chapter 3), the operation that fn induces
on {g0, . . . , gp−1} generates p-fold addition, which in turn generates ordinary

binary addition in the group. This contradicts the easy observation that D
[alg]
Cζ

is aperiodic. 2

6.6 “Filling in the blanks”

With Corollary 6.10 in hand, the approach to decomposing a simple type 5
algebra (A,F ) is as follows. If the natural ordering ≤ζ has a top element,
then the algebra is aperiodic. If not, consider the partial algebra structure F
induces on the set of maximal elements. If this partial algebra is in fact total,
then Lemma 6.11 below shows how to decompose the algebra in terms of an
aperiodic and the subalgebra formed by the top elements.

In general, however, we have to deal with a properly partial algebra. In a
special case, we can construct a relational morphism with aperiodic derived al-
gebra by “filling in the blanks” of the partial algebra (Lemma 6.12). The crucial
question is: can we fill in the blanks in such a way that the resulting algebra
is no more (and preferably less) complex than the original algebra? There are
examples showing that sometimes we can, and sometimes we can’t. In cases
where we can’t, but where there is nevertheless a satisfactory decomposition, it
appears that a more sophisticated version of filling in the blanks is at work.

Lemma 64 Let (A,F ) and ζ be as above. Suppose B ⊆ A is closed under F
and every ≤ζ-maximal x ∈ A is in B. Then (A,F ) ∈ D(Aper ◦ {(B,F )}).
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Proof. Define ϕ : (A,F ) → (B,F ) as follows. Set aϕb whenever a ≤ζ b and
set fϕf for all f ∈ F . Then ϕ is a relational morphism, because operations
preserve ζ and every a ∈ A is below some b ∈ B. Since Cϕ ≤ Cζ , Cor. 6.10

implies that D
[alg]
ϕ is aperiodic. 2

Of course, the last lemma says nothing useful when A = B.

An element 0 of an algebra (A,F ) is called absorbing if

(x1, . . . , xi−1, 0, xi+1, . . . xn)f = 0

for all i, n, x1, . . . , xn ∈ A, f ∈ F .

Lemma 65 Let (A,F ) be a simple type 5 algebra such that A = B ∪ 0, with
0 6∈ B. Assume that the ordering ζ is height 1, elements of B are atoms, 0 is a
minimum element, and 0 is absorbing. Suppose (B,F ′) is an algebra such that
for each f ∈ Fn there is an f ′ ∈ F ′

n with (b1, . . . , bn)f ′ = (b1, . . . , bn)f whenever
(b1, . . . , bn)f 6= 0. Then (A,F ) ∈ D(Aper ◦ (B,F ′)).

Proof. Repeat the proof of 6.11, but take fϕf ′ for all f ∈ F and f ′ ∈ F ′. Note
that 0ϕB, so when (b1, . . . , bn)f = 0, we have (b1, . . . , bn)fϕ(b1, . . . , bn)f ′. 2

6.7 Examples

Example 4 Let (A,F ) = ({0, a, b}, f, u), where f is the binary operation with
the following table:

f a b 0
a a b 0
b b a 0
0 0 0 0

and u is the unary operation a 7→ 0, b 7→ b, 0 7→ 0. Then (A,F ) has the following
properties:

1. (A,F ) is aprimal. (One can show this directly, using Theorem 4.8, or
simply decompose it into algebras which are already known to be aprimal,
as we do below.)

2. (A,F ) is simple and of type 5. The minimal sets are {0, a} and {0, b}.
The natural ordering is determined by 0 ≤ζ a, 0 ≤ζ b.

3. No type other than 5 occurs in the variety generated by (A,F ) (this takes
a little work).

4. (A,F ) ∈ D(Aper ◦ Solv). (In fact, (A,F ) ≺ (2,∧, c0) ◦ (2,+). One can do
this by filling in the blank u : a 7→ 0 with u′ : a 7→ a, so that u′ is the
identity map.)
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Example 5 Embedding arbitrary algebras in simple type 5 algebras
Let (B,G) be any algebra. Define an algebra (A,F ) as follows. The elements
are B plus a new zero: A = B ∪ {0}, where 0 6∈ B. For g ∈ Gn, define
g′ : An → A by g′|B = g and (x1, . . . , xn)g′ = 0 if any xi is 0. For b ∈ B, define
eb, fb : A→ A by

xeb = b if x 6= 0 0eb = 0
xfb = 0 if x 6= b bfb = b

Take F to be the clone generated by {g′ : g ∈ G} ∪ {eb : b ∈ B} ∪ {fb : b ∈ B}.
Then (A,F ) is simple because of the eb and fb operations. The minimal sets

are pairs {0, b} with b ∈ B, and the induced algebra ({0, b},Pol (A,F )|{0,b}) is a
semilattice, so (A,F ) is type 5. However, (B,G) ≤ (A,F ). We can decompose
(A,F ) much as in the previous example: (A,F ) ≺ (2,∧, c0) ◦ (B,G,CG). The
details are left to the reader (the constant operations come from the eb and fb

operations). This decomposition implies that (A,F ) is aprimal (or aperiodic) if
(B,G) is.

Example 6 Consider the algebra (A, f) = ({a, b, 0}, f), where f is the ternary
operation given by

(a,−,−)f a b 0
a a 0 0
b 0 b 0
0 0 0 0

(b,−,−)f a b 0
a 0 b 0
b b a 0
0 0 0 0

(0,−,−)f a b 0
a 0 0 0
b 0 0 0
0 0 0 0

A fair amount of work proves the following properties.

1. (A, f) is simple type 5.

2. (A, f) is aperiodic.

3. Any decomposition obtained by filling in blanks requires a factor which is
not aprimal.

4. (A, f) ≺ (2,∧, c0) ◦ (3,+), so (A,F ) ∈ D({(2,∧, c0)} ◦ Solv)

5. (A, f) does not decompose into matrix powers of semilattices (use the fact
that f is iterable).

This example shows that Aper is a complicated class, more so than the class
of aperiodic semigroups, which decompose into matrix powers of semilattices.
Also, it suggests that aprimal algebras may decompose into semilattices and
groups, even though (as the example shows) aperiodic algebras do not necessar-
ily decompose into semilattices.



Chapter 7

The decomposition theory

of semigroups

A semigroup is an algebra (S, ·) where · is binary and associative. The original
wreath decomposition theory of semigroups, due to K. Krohn and J. Rhodes [9],
works with transformation semigroups (using what is essentially the wreath
product of unary algebras as defined here). Another version (the “two-sided
theory”) is based on a reversal invariant product in place of the wreath prod-
uct [14] and [15]. (A product ⋆ is reversal invariant if (S, ·)rev ⋆ (T, ·)rev ∼=
((S, ·) ⋆ (T, ·))rev, where (S, ·)rev is the reverse semigroup (S, (x, y) 7→ y · x).)
The decomposition theory developed here uses the wreath product of algebras.
Since algebras are sets with clones of operations, a semigroup is equal to its
reverse, and ◦ is trivially reversal invariant. Additionally, the wreath product
of algebras is associative, whereas the two-sided products of [13] are not.

The wreath product of algebras is in no sense identical to the (left, right, or
double) semidirect products or the block product of [13]. In fact, if (S, ·) and
(T, ·) are semigroups, (S, ·) ◦ (T, ·) is rarely a semigroup. The wreath products
of algebras can, however, simulate semidirect products, as mentioned in Chap-
ter 1, by adding endomorphisms to the clone of the left factor. This suggests
that the factors in a semigroup decomposition theory will not be semigroups,
but semigroups with certain additional operations. The decompositions in this
section add polynomials rather than endomorphisms.

7.1 Ideals

Ideals (left, right, and two-sided) provide a way of using covers to decompose
semigroups. We review the definitions of ideals and the standard theorems
about them briefly here. Let (S, ·) be a semigroup. For X,Y ⊆ S, we define
XY = {xy : x ∈ X, y ∈ Y }. By (S1, ·) we mean the semigroup (S ∪ 1, ·) where
1 is a new element not in S and multiplication extends the multiplication in S
by taking 1x = x1 = x for all x ∈ S1. This construction is called adjoining a

59
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unit. By (S0, ·) we mean the semigroup (S ∪ 0, ·) where 0 is a new element not
in S and multiplication extends the multiplication in S by taking 0x = x0 = 0
for all x ∈ S0. This construction is called adjoining a zero.1 If (S, ·) satisfies
xy = 0 for all x, y ∈ S, then (S, ·) is called null.

A nonempty subset I ⊆ S is called a left ideal if SI ⊆ I, a right ideal if
IS ⊆ I, and a two-sided ideal (or simply ideal) if S1IS1 ⊆ I. If (S, ·) has a zero
0, then {0} is a two-sided ideal, known as the zero ideal or simply 0, which is
contained in all ideals. A two-sided ideal I gives rise to a congruence θI whose
classes are I and all singleton sets not contained in I. (The quotient by θI is
known as the Rees quotient determined by I). We sometimes use (S/I, ·) to
denote (S/θI , ·). The collection of two-sided ideals of (S, ·) will be denoted by
Rees (S, ·). As is easily seen, the operation X 7→ S1XS1 is an algebraic closure
operation on subsets of S; the nonempty closed sets are precisely the two-sided
ideals. Rees (S, ·) is an algebraic lattice (the least element is the intersection of
all two-sided ideals). Also, Rees (S, ·) embeds into the lattice Con (S, ·) via the
map I 7→ θI . Left and right ideals do not in general yield congruences, but see
Lemma 7.5 below.

Lemma 66 Let (S, ·) be a finite semigroup. Suppose (S, ·) has no left or right
ideal different from S and 0. Then (S, ·) is either a group, a group with a zero
adjoined, or a null semigroup.

Proof. Suppose (S, ·) is not null. Choose s, t ∈ S such that st 6= 0. Then St is a
left ideal different from 0, St = S, and the map x 7→ xt is a permutation of S.
Therefore tt 6= 0. Then tS is a right ideal different from 0, tS = S, and the map
x 7→ tx is a permutation of S. Choose n > 0 so that x 7→ xtn and x 7→ tnx are
both the identity map. This shows that (S, ·) has a unit, namely tn, denoted
hereafter by 1. It follows that, for all nonzero x ∈ S, xS and Sx are nonzero
ideals, hence are equal to S. So, for all nonzero x ∈ S, there are y, z ∈ S such
that yx = 1 = xz. Since y = y(xz) = (yx)z = z, the non-zero elements of S
form a group. 2

Let V be a left ideal of (S, ·). A right coset of V is a set V s, with s ∈ S1;
V s is a left ideal. The set of right cosets of V is denoted V \S. Note that if
V S1 = S, then V \S covers S. Also, if (S, ·) has a zero, then zero is a coset of
V . Since (V s)(V t) ⊆ V t, for all s, t ∈ S1, (S, ·) induces a semigroup structure
on V \S; the structure is just projection on the right: (V s)(V t) = V t, for all
s, t ∈ S1. (The equality is in V \S, not S.) Hence (V \S, ·) = (V \S, ∅). The
natural action of S on the right of V \S is denoted (V \S, ·S). Left cosets of a
right ideal W are treated analogously: they form a set S/W which has a natural
left action by S denoted (S/W,S·).

1In the following discussion, we will often consider statements involving zero, even though
the semigroup is not assumed to have a zero. If the semigroup in question has no zero, then the
statement should be evaluated after adjoining a zero to the semigroup. Alternately, one can
prove the decomposition theorems just for semigroups with zero and then derive the general
theorems using the natural embedding (S, ·) ≤ (S0, ·).
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A minimal nonzero (left/right/two-sided) ideal of (S, ·) is one which contains
no smaller (left/right/two-sided) ideal of (S, ·) different from zero. Note that a
left (for instance) ideal V is minimal nonzero iff for any v ∈ V , v 6= 0 implies
S1v = V . Note that two left ideals intersect in a left ideal (or the empty set),
and similarly for two right ideals, but a left and a right ideal do not necessarily
intersect in any kind of ideal. However, intersecting cosets of a left and a right
ideal produces a congruence, under the assumption of minimality, as shown by
Lemma 7.5 below. We will also show that translations by elements of (S, ·) on
such an intersection form a group (possibly with zero adjoined), known as the
Schützenberger group.

Lemma 67 Suppose V is a minimal nonzero left ideal of (S, ·). Let t ∈ S1.
Then the left ideal V t is either zero or minimal nonzero. The dual statement
holds for a left coset of a minimal right ideal.

Proof. Suppose V t 6= 0. Let vt ∈ V t, vt 6= 0, with v ∈ V . Since v 6= 0, S1v is a
nonzero left ideal contained in V and therefore equal to V . Then S1vt = V t. 2

Lemma 68 Assume (S, ·) is finite. Let V and W be minimal nonzero left and
right (respectively) ideals of (S, ·). Let s, t ∈ S1. If 0 6= s(V ∩W )t ⊆ V ∩W ,
then s(V ∩W ) = V ∩W = (V ∩W )t. In particular, a map V ∩W → V ∩W
of the form x 7→ sx or x 7→ xt is either zero or a permutation.

Proof. Assume 0 6= s(V ∩ W )t ⊆ V ∩ W . Since s(V ∩ W )t ⊆ sWt ⊆ sW ,
we have 0 6= s(V ∩ W )t ⊆ W ∩ sW . The set W ∩ sW is a nonzero right
ideal, so by minimality W = W ∩sW = sW . Therefore s(V ∩W ) ⊆ sV ∩sW ⊆
V ∩W . Equality follows because sV = V and because W is finite, hence x 7→ sx
permutes W . A dual argument shows that V ∩W = (V ∩W )t. 2

Lemma 69 Assume (S, ·) is finite. Let I be a minimal nonzero two-sided ideal
of (S, ·), and let V be a minimal nonzero left ideal contained in I. Then, for all
t ∈ S1 such that V t 6= 0, there is a t′ ∈ S1 such that V tt′ = V . Furthermore,
we may choose t′ so that x 7→ xtt′ is the identity on V . Dual statements apply
to a minimal nonzero right ideal contained in I.

Proof. If V t 6= 0, then, since V is minimal nonzero, V t is minimal nonzero, by
Lemma 7.2. Since I is minimal, V tS1 = I. Therefore there is a t′ ∈ S1 such
that V tt′ ∩ V 6= 0 and hence V tt′ = V . The second statement of the lemma
follows by exponentiating tt′. 2

Note that given I as in the previous lemma, such a V always exists, although
it may be equal to I.

Lemma 70 Suppose V and W are minimal nonzero left and right (respectively)
ideals of (S, ·). Let µ be the binary relation whose blocks are (sW ∩ V t) \ 0, for
s, t ∈ S1, together with all singleton sets not contained in one of these blocks.
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Then µ is a congruence. If V and W are contained in a minimal two-sided ideal
I, then the congruence is independent of the choice of V and W ; we denote this
congruence by µI .

Proof. Clearly, µ is reflexive and symmetric. For transitivity, we must show that,
for any s, t, q, r ∈ S1, sW ∩V t and qW ∩V r either are equal or intersect in zero.
We have (sW ∩V t)∩(qW ∩V r) = (sW ∩qW )∩(V t∩V r). By minimality, either
V t ∩ V r = V t = V r or V t ∩ V r = 0. Similarly, either sW ∩ qW = sW = qW
or sW ∩ qW = 0. If at least one of V t ∩ V r and sW ∩ qW is zero, then so is
(sW ∩ V t) ∩ (qW ∩ V r). If neither are zero, then sW ∩ V t = qW ∩ V r.

To finish the proof that µ is a congruence, we must show that µ is admissible
or, equivalently, that products of blocks are contained in blocks. We have the
following inclusions:

(sW ∩ V t) · (qW ∩ V r) ⊆ (sW ∩ V r)
u(sW ∩ V t) ⊆ (usW ∩ V t)
(sW ∩ V t)u ⊆ (sW ∩ V tu).

We must also show that, for xµx′ and yµy′, if xy = 0 then x′y′ = 0. This is
true because by minimality S1x = S1x′ and yS1 = y′S1. So if xy = 0 then
x′y′ ∈ S1x′y′S1 = S1xyS1 = 0.

For the second assertion, observe that if V ′ and W ′ are minimal nonzero
left and right (resp.) ideals contained in I, then by minimality of I we have
V S1 = I and so V t∩ V ′ 6= 0 for some t. By minimality of V t and V ′, V t = V ′,
and similarly for W ′. So V and V ′ have the same cosets, as do W and W ′. 2

The theory developed so far in this section is (despite slightly different termi-
nology) a fragment of the Green-Rees-Shuskevych picture of a minimal nonzero
two-sided ideal. For details, see [5]. The following lemma, while not standard
in semigroup theory, is needed to classify the basic and nearly basic pieces pro-
duced in semigroup decompositions using the wreath product of algebras.

Lemma 71 Let (S, ·) be finite and suppose V and W are minimal nonzero
left and right (respectively) ideals of (S, ·). Then (V ∩W, (Pol (S, ·))|V ∩W ) is
polynomially equivalent to either a group, a group with a zero adjoined, or a set
with a group action.

Proof. Suppose (Pol (S, ·))|V ∩W is essentially unary. A unary polynomial xf
can be written (x, . . . , x)g where (x1, . . . , xn)g = s0x1s1x2 . . . sn−1xnsn, and
s0, . . . , sn ∈ S1. Suppose 0 6= (V ∩W )f ⊆ V ∩W . Then (V ∩W )f ⊆ V ∩ V sn,
and hence V ∩ V sn 6= 0. Therefore V sn = V . Dually s0W = W . Since
(V ∩W )\0 is a congruence class (by the previous lemma), (V ∩W )ng ⊆ (V ∩W ).
Therefore g ∈ (Pol (S, ·))|V ∩W , and so g depends on only one variable, say
xi. By substituting arbitrary constants for the other variables we may write
xf = (x, . . . , x)g = sxt with s, t ∈ S1. Thus the clone (Pol (S, ·))|V ∩W is
generated by (constants together with) some set of maps of the form x 7→ sxt,
with s, t ∈ S1. By Lemma 7.3, if x 7→ sxt is in this clone then so are x 7→ sx and
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x 7→ xt, and furthermore each of the latter maps is either zero or a permutation.
Thus (V ∩W, (Pol (S, ·))|V ∩W ) is polynomially equivalent to a set with a group
action.

We may now assume that (Pol (S, ·))|V ∩W has an operation g which is not
essentially unary. Without loss of generality we can write (x, y, . . .)g = . . . xty . . .
for some t ∈ S1, where g depends on both x and y. For x, y ∈ V ∩W , xty ∈
V ∩W . Therefore, (Pol (S, ·))|V ∩W has the operation h defined by (x, y)h = xty.
Note that h is associative: xt(ytz) = (xty)tz. Also, h is not the zero map, since
g is not.

First, we show that (V ∩W,h) is a group or a group with zero. By Lemma 7.3,
x 7→ xty is either a permutation or zero on V ∩W , and similarly for y 7→ xty.
Suppose that, for some y0 6= 0, the map x 7→ xty0 is zero. Then, for all x, then
map y 7→ xty takes the value zero at 0 and at y0, hence at all y. But this would
imply that h is always zero. Therefore, for y 6= 0, x 7→ xty is nonzero and,
similarly, for x 6= 0, y 7→ xty is nonzero. Hence left and right translations by
nonzero elements in (V ∩W,h) are permutations, so the semigroup is in fact a
group or a group with zero adjoined, by Lemma 7.1.

All we have left to show is that (Pol (S, ·))|V ∩W = Pol (V ∩W,h). It is clear
that the former contains the latter. Let p ∈ (Poln (S, ·))|V ∩W . We can write

(x1, . . . , xn)p = s0xi1s1xi2s2 . . . sk−1xik
sk,

with s0 . . . sk ∈ S1 . Let e denote the identity of the group (V ∩W,h). Then
x 7→ etx and x 7→ xte are each the identity map on V ∩W . For x1, . . . , xn ∈
V ∩W , we have

(x1, . . . , xn)p = et((etx1te, . . . , etxnte)p)te
= (ets0e)txi1 t(es1e)txi2t(es2e)t . . . t(esk−1e)txik

t(eskte).

Observe that, for s ∈ S1, ese ∈ V ∩ W , since e ∈ V ∩ W . Therefore, p ∈
Pol (V ∩W,h). 2

7.2 Semigroup decompositions using minimal ide-

als

Let (S, ·) be a finite nontrivial semigroup. In this section we obtain a decompo-
sition of (S, ·) by exploiting the properties of a minimal two-sided ideal I. The
basic idea is to apply the covering lemma to the corresponding quotient homo-
morphism. However, the derived algebra of this map must itself be decomposed.

Lemma 72 Let I be a minimal nonzero two-sided ideal of (S, ·). Choose min-
imal nonzero left and right ideals V and W (resp.) contained in I. Set G =
V ∩W \ 0. Then

(S, ·) ≺ (G,Pol (S, ·)|G) ◦ (2,∧, c0, c1)
◦ ((S/W,S·, CS/W ) × (V \S, ·S,CV \S)) ◦ (S, ·)/θI .
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Proof. Consider the quotient homomorphism (S, ·) → (S, ·)/θI . By lemmas in
Chapter 2,

D
[alg]
θI

∼= (I, ·, {x 7→ sx, x 7→ xs : s ∈ S \ I}, {cst : s, t ∈ S \ I, st ∈ I})
≤ (I,Pol (S, ·)|I),

so we can complete the proof by decomposing the latter algebra into the first
three factors of the wreath product in the statement of the Lemma.

Consider the relational morphism

ϕ : (I, ·, {x 7→ sx, x 7→ xs : s ∈ S \ I}) → (S/W,S·, CS/W ) × (V \S, ·S,CV \S)

defined by

x ∈ sW ∩ V t 7→ (sW, V t)
· 7→ ((sW, V t), (s′W,V t′)) 7→ (sW, V t′)

x 7→ xr 7→ (sW, V t) 7→ (sW, V tr)
x 7→ rx 7→ (sW, V t) 7→ (rsW, V t)

cx, x ∈ sW ∩ V t 7→ (csW , cV t).

Note that ϕ is many valued at the zero, if there is one. Also, the operation
((sW, V t), (s′W,V t′)) 7→ (sW, V t′) is just the diagonal operation present in any
non-indexed product.

The x 7→ sx and x 7→ xs operations, for s ∈ S, induce isomorphisms of the
nonzero sorts of Dϕ. Therefore, by the Retraction Lemma of Chapter ???2, we
have a division Dϕ ≺ (V ∩W, (Pol (S, ·))|V ∩W ), the latter algebra being one
of the local algebras of Dϕ. If (S, ·) has no zero, this is just (G, (Pol (S, ·))|G).
Otherwise, we use the congruence µI |V ∩W to obtain the decomposition

(V ∩W, (Pol (S, ·))|V ∩W ) ≺ (G, (Pol (S, ·))|G) ◦ (2,∧, c0, c1).

2

A careful examination of the proof turns up the following. If (S, ·) has no
zero, the (2,∧, c0, c1) factor may be omitted from the decomposition. If I is
null, (2,∧, c0, c1) can be replaced with (2, c0). If neither of these two conditions
hold, (2,∧, c0, c1) divides (S,Pol (S, ·)). The first and last factors always divide
(S,Pol (S, ·)). The remaining factor is a product of unary algebras. By the
previous lemma, the (G, (Pol (S, ·))|G) factor is either a group (no zero) or a
unary algebra.

Theorem 73 Let (S, ·) be a finite semigroup. We have a decomposition (S, ·) ≺
(An, Fn) ◦ · · · ◦ (A1, F1), where each factor is either

1. a unary algebra, or

2. (up to pol. equiv.) a group or a two-element semilattice which divides
(S,Pol (S, ·)).
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Proof.Apply the lemmas inductively. 2

Note that the two-element semilattice is indecomposable. Unary algebras
can be further decomposed by the Krohn-Rhodes theorem. Groups can be
further decomposed by the next section.

7.3 Groups

Our decompositions of groups will roughly parallel the traditional theory. How-
ever, the indecomposable pieces we break groups down into will have slightly
more complicated clones than the Jordan-Hölder factors, being direct powers of
the latter with some added unary operations.

Recall that N �G (i.e., N a normal subgroup of G) is said to split if G has
a subgroup H such that NH = G and N ∩H = {1}.

Lemma 74 Let (G, ·) be a group, N �G. Then

(G, ·) ≺ (N, ·, {x 7→ gxg−1 : g ∈ G}, {x 7→ xn : n ∈ N}) ◦ (G/N, ·).

Furthermore, if N �G splits via H ≤ G, then

(G, ·) ≺ (N, ·, {x 7→ hxh−1 : h ∈ H}) ◦ (G/N, ·).

Proof. Let ϕ denote the quotient map (G, ·) → (G/N, ·). To apply the covering
lemma, we must show that Dϕ divides the left factor of the appropriate wreath
product. The sorts of Dϕ are the cosets of N ; the operations are (generated
by) all restrictions of · to pairs of cosets: for g, g′ ∈ G, there is an operation
Ng × Ng′ → Ngg′ sending (ng, n′g′) 7→ ngn′g′. To consolidate the msa, we
choose a set R of coset representatives, with R = H if the extension splits. If
the extension does not split, let H be the subgroup generated by R. Then we
define a msa D+

ϕ by adding to Dϕ right translations by elements of H (and
closing the new msa under compositions, of course).

We compute the local algebra at N of D+
ϕ . An operation f of this algebra

is of the form t1h1t2h2 . . . tnhn where each ti is a term operation in · and each
hi ∈ H . Applying the group identity xy = xyx−1x, we can write this as
(. . . (tn−2hn−1(tn−1hn(tn)h−1

n )h−1
n−1) . . .)(h1h2 . . . hn). Since 1 ∈ N and f is an

operation in the local algebra at N , we have h1h2 . . . hn = (1, . . . , 1)f ∈ N .
Also, h1h2 . . . hn ∈ H . Since the local algebras at Nr1 and Nr2 are isomorphic
via translations by r−1

1 r2 and r−1
2 r1, we can apply the Retraction Lemma (2.???)

to D+
ϕ to obtain

Dϕ ≺ D+
ϕ ∼ (N, ·, {x 7→ hxh−1 : h ∈ H}, {x 7→ xg : g ∈ H ∩N}).

Note that if the extension splits, H ∩N = {1}. 2

Notes:
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(1) The division produced by the proof is in fact an embedding, given explic-
itly as follows. Let R and H be as before. Let, for g ∈ G, C(g) be the unique
element of N such that C(g)g ∈ R. Then the embedding is

nr 7→ (n,Nr) (for r ∈ R)
· 7→ ((n,Nr), (n′, Nr′)) 7→ (nrn′r−1C(rr′)−1, Nrr′)

In the split case, C(rr′) = 1. In general C(rr′) ∈ H ∩N .
(2) When the extension splits the decomposition is similar to the correspond-

ing semidirect decomposition of groups. When, more generally, the subgroup
H generated by R as in the proof is proper, we can still get a proper decompo-
sition (G, ·) ≺ (N, ·, {x 7→ hxh−1 : h ∈ H}) ◦ (H, ·) even though the extension
is not split. The relational morphism corresponding to this decomposition is
not a homomorphism, and the division is not an embedding. (The morphism
(G, ·) → (H, ·) is nh 7→ h for n ∈ N , h ∈ H and · 7→ ·. Note that this is
many-valued on elements.)

(3) If (N, ·) is finite simple nonabelian, then the left factor in the decom-
position in the lemma is polynomially equivalent to (N, ·), by the theorem of
Maurer-Rhodes. If (N, ·) is abelian, the left factor, even up to polynomial equiv-
alence, is not necessarily a group but a module over a subring of the ring of inner
automorphisms of (G, ·).

(4) The type of a tame congruence is the same as the type of the correspond-
ing normal subgroup and this is not changed by adding the unary operations as
in the lemma.

Lemma 75 Let N be a minimal normal subgroup of a finite group (G, ·). Then
(N, ·) ∼= (Sk, ·), for some k and some simple group (S, ·).

Proof. Let H be a minimal normal subgroup of (N, ·). If H = N , then N is
simple. Otherwise, H is a proper normal subgroup of N whose G-conjugates
H1, . . . , Hn together generate N . Each Hi is a minimal normal subgroup of
(N, ·), so Hi ∩Hj = {1} for i 6= j. So (N, ·) ∼= (Hk, ·), for some k ≤ n. If H is
simple, we’re done. If not, repeat. 2

Note that, in the situation of the lemma, the group (S, ·) is a Jordan-Hölder
factor which is repeated k times.

Theorem 76 Let (G, ·) be a finite group, |G| > 1. Then (G, ·) ≺ (An, Fn) ◦
· · · ◦ (A1, F1), where each factor is, for some k > 0, one of the following, up to
polynomial equivalence:

1. (Sk, ·, α1, . . . , αm) where (S, ·) is a simple nonabelian group and a1, . . . , am ∈
Aut (Sk, ·)

2. a simple module whose underlying group is (Zk
p ,+) for some prime p.

Furthermore, each factor divides (G,Pol (G, ·)), and the underlying groups of
the factors are the same as the Jordan-Hölder factors with some repetitions
replaced by powers.
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Proof. Induct on |Con (G, ·)|. If (G, ·) is simple, there’s nothing to show.
Otherwise, apply the lemmas to a minimal normal subgroup N . 2

A module whose underlying group is (Zk
p ,+) is a reduct of (Zp,Pol (Zp,+))[k].

Trivially, (Sk, ·, a1, . . . , am) (notation as above) is a reduct of (S,Pol (S, ·))[k],
since (S,Pol (S, ·)) is primal and matrix powers of primal algebras are primal.
Hence, up to polynomial equivalence and matrix powers, every finite group de-
composes into its Jordan-Hölder factors. By Lemma 2.13, polynomials can be
obtained by taking a subreduct of a matrix power. Therefore every finite group
decomposes into matrix powers of its Jordan-Hölder factors. (Of course, every
finite algebra divides a sufficiently high matrix power of any finite SNAG.)

The unary operations that must be added to a normal subgroup to get
a decomposition may carry some interesting information about the extension.
Thus one might study classes of groups obtained by wreath products as in the
theorem but with various restrictions on which constants and automorphisms
may appear. It might also be interesting to look at classes of algebras defined
in the same manner with or without such restrictions (not all divisors of these
wreath products are groups!).

7.4 Aprimal semigroups

This section applies the ideas of Chapter 4 to semigroup decomposition theory.
Let (S, ·) be a finite semigroup. The kernel of (S, ·), denoted kerS, is the

smallest two-sided ideal of (S, ·). Since S is finite, kerS is always nonempty.

Theorem 77 Let (S, ·) be a finite semigroup. Then:

1. (S, ·) is aprimal iff every subgroup of (S, ·) is solvable.

2. (S, ·) is aperiodic iff every subgroup of (S, ·) is trivial.

3. (S, ·) is solvable iff (S, ·) is aprimal and (S/ kerS, ·) is null.

4. (S, ·) is strongly solvable iff (S, ·) is aperiodic and solvable.

Proof. (1) If (S, ·) has a nonsolvable subgroup, then there is a simple nonabelian
group (G, ·) such that (G, ·) ≺ (S, ·), so (S, ·) is not aprimal. Conversely, if every
subgroup is solvable, then, by the theorems of this chapter, (S, ·) decomposes
into factors which are, up to polynomial equivalence, either unary algebras,
semilattices, or modules, all of which are aprimal. Since Aprim is closed under
wreath product, (S, ·) is aprimal.

(2) If (S, ·) has a nontrivial subgroup, G, then (S, ·) is not aperiodic. Con-
versely, if every subgroup of (S, ·) is trivial, then, by Theorem 7.8, (S, ·) de-
composes into factors which are, up to polynomial equivalence, either unary
algebras or semilattices, all of which are aperiodic. Since Aper is closed under
wreath product, (S, ·) is aperiodic.
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(3) Suppose that (S/kerS, ·) is not null. Then there is an s ∈ S such that, for
all n, sn 6∈ kerS. Choose n so that (sn)2 = sn. Now consider the subsemigroup
T = {sn} ∪ kerS. The Rees quotient (T/kerS, ·) is a two-element semilattice,
and so (S, ·) is not solvable.

Conversely, suppose that (S/ kerS, ·) is null. Since kerS has no proper ideals
(no zero even, unless kerS = 0), Lemma 7.7 and the subsequent remarks show
that we can decompose (S, ·) using (S/ kerS, ·) and factors which do not involve
a semilattice. Next, choose a minimal ideal of (S/ kerS, ·), apply 7.7 to this null
ideal, and repeat. All factors in the resulting decomposition are solvable.

(4) This equivalence follows directly from the definitions. 2

Unfortunately, what are called here aprimal semigroups would be called
“solvable” by semigroups theorists. Statement (2) shows that our definition
of aperiodic agrees (for semigroups) with that of semigroup theory. In the
language of Green’s relations, the right-hand side of statement (3) says that
(S, ·) has exactly one regular J -class, and the right-hand side of (4) says that
(S, ·) has exactly one regular J -class and its H-classes are trivial.
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