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Abstract—We study Turing machines over sets with atoms,
also known as nominal sets. Our main result is that deterministic
machines are weaker than nondeterministic ones; in particular,
P 6=NP in sets with atoms. Our main construction is closely
related to the Cai-Fürer-Immerman graphs used in descriptive
complexity theory.
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I. INTRODUCTION

Motivation. Perhaps the first computational complexity result
learned by a student of Computer Science is the n log n
lower bound on sorting in the “comparison model”. Although
widely known, this fact is unusual from the standpoint of
mainstream computation theory: in the comparison model,
arbitrarily large numbers can be manipulated in a single step
of computation, but they can only be accessed by checking
whether they are greater, equal or smaller than other numbers.
This contrasts with the main tool of computation theory that
is Turing machines; there, complex objects such as numbers
are normally encoded as strings over a finite alphabet (so
that, e.g., comparing two numbers requires several steps of
computation), but these encodings are then open to arbitrary
manipulation (so that e.g. numbers can be added).

Turing machines. In this paper, we study Turing machines
that operate over infinite alphabets that can only be accessed
in limited ways. As an initial step, we restrict attention to
alphabets whose letters are finite structures built of atoms
(taken from a fixed countably infinite set) that can only
be tested for equality. The set of all atoms is denoted A.
Individual atoms will be written down as underlined positive
integers 1, 2, etc; the underlining is used to distinguish the
atoms from integers, since atoms have no structure (like order
or successor) except for equality.

For example, an input or work alphabet of a Turing machine
may contain letters of the following shape:
• atoms themselves,
• (ordered) pairs (or, in general, n-tuples) of distinct atoms,
• (unordered) sets of atoms of size 2.

More complex examples are used in the following sections.
Note that each shape of letters comes with an obvious action
of bijective atom renaming. Sometimes this action is trivial
even if the renaming is not; for example, the permutation that
swaps 3 and 5 does not alter the set {3, 5}.

We are interested in Turing machines that operate on
alphabets of such shapes, as well as store their letters as
parts of their state. The set of letters of a given shape is
normally infinite, so we need to speak of machines with

infinite state spaces. However, we shall restrict the behaviour
of such machines by requiring that their transition relations are
invariant with respect to bijective atom renaming. For example,
if a machine M in a state that stores a set of atoms {3, 5},
upon seeing the atom 3 on the tape, moves to a state where
just the atom 5 is stored, then M in a state that stores {8, 2},
upon seeing 2 must move to a similar state where just 8 is
stored. This property, formalised later using sets with atoms,
corresponds exactly to the intuition of a machine that “only
cares for atom equality”.

Example I.1. Over the input alphabet of atoms A, consider
the language of words where some letter appears at least twice:

L = {a1 · · · an ∈ A : ai = aj for some i < j}

This language is easily recognised by a nondeterministic
Turing machine (indeed, a left-to-right nondeterministic au-
tomaton) with atoms, with (infinite) state space {0,>} + A
where 0 is initial, > is accepting and the transition relation is
defined by the graph:

...

Alternatively, this may be seen as a machine with three
“control states” 0,> and A, where in the state A a single
atom is additionally stored. This is a machine that reads the
input word from the left, nondeterministically guesses the first
occurrence of a letter that appears more than once, and then
checks that it indeed appears afterwards.

The language L can also be recognised by a deterministic
Turing machine that, for each letter in the input word, stores
it in the state and checks whether it appears more than
once. An extended work alphabet is needed for this to allow
marking of the currently processed letter; more importantly, a
deterministic machine cannot process the input word in one
left-to-right pass. �

The above is quite similar to how classical Turing machines
recognise the counterpart of L in the world of finite alphabets
without atoms. The next example shows an additional aspect
of nondeterminism that appears in the presence of atoms.



Example I.2. Let the input alphabet consist of sets of the
form:

{(a, b, c), (b, c, a), (c, a, b)} for a, b, c ∈ A distinct. (1)

Such a letter is a triple of atoms up to cyclic shift, and it can
be visualised as a rotating triangle on a plane, for example:
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Consider the language of those sequences of such triples:
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where every two consecutive triples share at least two atoms,
that can be glued together in a matching chain like this:
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To recognise this language, a Turing machine first nondeter-
ministically “freezes” the leftmost triangle in some position
(or, equivalently, chooses an atom from it that shall not touch
the second triangle in the chain), and then progresses to the
right deterministically, checking that each subsequent letter
can be affixed to the emerging chain.

One might think that a deterministic Turing machine can
recognise this language by trying each of the three possible
fixed positions of the leftmost letter one by one, much as
nondeterminism is resolved in the classical world. However,
this is impossible in our model! In particular, a transition
function that maps a rotating triangle to a fixed triple of atoms:

�
ba
c

7→ (a, b, c) (4)

is not invariant with respect to bijective atom renaming. In-
deed, the cyclic permutation (a 7→ b 7→ c 7→ a) does not alter
the triangle, but it does change the resulting triple. Intuitively,
a function is unable to distinguish one of the three possible
outcomes, as it can only access equality tests on atoms;
“freezing” a rotating triangle is an act of nondeterminism, and
it cannot be done by a deterministic machine. On the other
hand, a nondeterministic transition relation:

(a, b, c) �
ba
c

oo

��

// (b, c, a)

(c, a, b)

is fine (i.e., if a triangle and a triple are related then they are
so after any bijective atom renaming). �

The language in the above example can be recognised by a
deterministic machine: one that stores in its state all three atom
triples arising from the leftmost letter, and processes them in
parallel. However, this does not generalise: one of our main
results is that, with a more complex alphabet, deterministic
machines with atoms are weaker than nondeterministic ones.

Our contribution. We model atoms by using an alternative
model of set theory called sets with atoms (or nominal sets,
or Fraenkel-Mostowski sets). Turing machines with atoms are
defined by interpreting the standard definition in the alternative
model. The focus of our study is on the difference between
determinism and nondeterminism. Our main contributions are:

1) Theorem III.1 says that in the presence of atoms, de-
terministic decidability is weaker than nondeterministic
decidability. Even more, there is a language that is
decidable in nondeterministic polynomial time, but not
deterministically decidable (even not deterministically
semi-decidable). In particular, P 6=NP in sets with atoms,
and PSPACE 6=NPSPACE. Our proof may be adapted to
show that no interesting nondeterministic complexity
class is contained in deterministically semi-decidable
languages. The main construction used in Theorem III.1
is closely related to Cai-Fürer-Immerman graphs [15].

2) Corollary V.3 says that even though they are weaker than
nondeterministic machines, deterministic machines still
have some good properties, in particular closure under
orbit-finite union, which is a form of guessing a fixed
number of atoms.

3) Theorem VI.3 characterises those input alphabets for
which deterministic and nondeterministic decidability
coincide.

4) Atoms are a natural way to speak of data that can be
accessed by an algorithm only in a limited way, e.g. by
testing equality. We briefly mention atoms equipped with
more structure. An interesting example is studied in
Theorem VII.2, which shows that checking the linear
independence of binary vectors requires exponential
time when vectors are equipped only with addition and
zero test. (Gaussian elimination tests independence in
polynomial time, but it uses more than just addition and
zero test.)

II. SETS AND MACHINES WITH ATOMS

We define sets with atoms following [11], and following [4]
for orbit-finiteness.

Consider a countably infinite set, denoted by A, whose
elements we call atoms. For most of the paper, we assume that
the atoms have no structure except for equality, and therefore
we use the name atom automorphism for any permutation of
the atoms. Occasionally, we call A the equality atoms (to dis-
tinguish from atoms with more structure which will be studied
in Section VII; there not all permutations are automorphisms.)
A set with atoms is any set that can contain atoms or other
sets with atoms, in a well-founded way. Formally, sets with
atoms are defined by ordinal induction: the empty set is the
only set at level 0, and sets at level α either are atoms (which
contain no elements) or contain sets at levels smaller than α.

Examples of sets with atoms include:
(a) any classical set without atoms,
(b) an atom 3, an ordered pair of atoms (3, 5) (encoded as a

set in a standard way, e.g. {{3}, {3, 5}}),



(c) {(3, 5, 8), (5, 8, 3), (8, 3, 5)}, i.e. the triple (3, 5, 8) con-
sidered up to cyclic shift,

(d) the set A, the set An of n-tuples of atoms, the set A(n)

of n-tuples of distinct atoms, the set
(A
n

)
of sets of atoms

of size n, etc.
One can perform standard set-theoretic constructions on sets
with atoms, including union, intersection, Cartesian product,
powerset etc.

Legal sets with atoms. For X a set with atoms and π an
atom automorphism, by π(X) we denote the set obtained
by application of π to the elements of X (this definition is
recursive; formally, this is again defined by ordinal induction).
We say that a set S ⊆ A supports X if X = π(X) for
every π which is the identity on S; such π is called an S-
automorphism. For example, (a) and (d) above are supported
by the empty set, and {3, 5, 8} supports (c). A set with atoms
is called legal if it has some finite support, each of its elements
has some finite support, and so on recursively. For example,
the legal subsets of A are precisely those which are either
finite or cofinite. The full powerset PA is not legal, but the
set PfsA of finitely supported sets of atoms is legal. Trivially,
every element of a legal set is legal.

We are only interested in sets with atoms that are legal.
From now on all sets with atoms are assumed to be legal.

Every legal set X has the least finite support with respect
to set inclusion (see e.g. [11, Prop. 3.4]). By the support of
X , we implicitly mean the least support.

A legal set supported by the empty set is called equivariant.
For example, A is equivariant, but {3} ⊆ A is not.

Relations and functions between sets with atoms can be
seen as sets with atoms themselves, as their graphs. A relation
R ⊆ X×Y is supported by S ⊆ A iff xRy implies π(x)Rπ(y)
for every S-automorphism π. Similarly, a function f : X →
Y is supported by S iff π(f(x)) = f(π(x)), for every S-
automorphism π. It follows that f(x) is supported by the union
of S with the least support of x.

A relation or function is supported by S (equivariant) if it
can be defined without mentioning any atoms outside of S
(resp. any atoms at all). For example, the only equivariant
function from A to A is the identity, and the only other
equivariant relations on A are the full and the empty relations
and the complement of the equality relation. A constant
function from A to A with value a ∈ A is supported by
{a}. The only equivariant functions from A2 to A are the
projections; the only equivariant function in the other direction
is the diagonal. There is no equivariant function from

(A
2

)
to

A, but
{({a, b}, a) : a, b ∈ A}

is a legal equivariant relation between
(A
2

)
and A. (Note that

it relates e.g. {3, 5} both to 3 and 5.)

Orbit-finite sets. For X a set with atoms and S ⊆ A, the
S-orbit of X is

{π(X) : π is an S-automorphism}.

For every S, the S-orbits form a partition of all sets with
atoms. The definition of support can be phrased using S-orbits:
a set with atoms is supported by S if and only if it is a union
(possibly infinite) of S-orbits. As S grows, the partition of sets
with atoms into S-orbits becomes more refined. However, the
following fact shows that having a finite number of S-orbits
does not depend on the choice of S:

Fact II.1. For every S ⊆ T finite sets of atoms, every S-orbit
is a finite union of T -orbits.

As a result, it is meaningful to define a set with atoms X to
be orbit-finite if it is partitioned into finitely many S-orbits by
some (or, equivalently, every) S that supports X . The sets A,
An, A(n) and

(A
n

)
are all orbit-finite. Sets like A∗ and PfsA

are not orbit-finite.
Turing machines. The definition of a Turing machine with
atoms is exactly the same as the classical one, but with finite
sets replaced by (legal) orbit-finite sets with atoms. Thus the
ingredients of a machine are: states Q, distinguished subsets
of initial and accepting states, an input alphabet A, a work
alphabet B ⊇ A, and a (legal) transition relation:

δ ⊆ Q×B ×Q×B × {−1, 0, 1}

(elements of the set {−1, 0, 1} encode directions of the head
move1). All these ingredients are required to be orbit-finite
sets with atoms. An input is a finite word w ∈ A∗ over the
input alphabet. Then one defines configurations, transitions
between configurations, runs as sequences of configurations,
acceptance, language recognised by a machine, etc., exactly
as in the classical case. A machine is deterministic if it has
one initial state and its transition relation is a partial function.

The model we have defined is an atom version of a one-tape
machine. Two- or three-tape machines would not contribute
anything new. One could think about machines with tapes
indexed by atoms, or a tape where the directions for the head
movement are indexed by atoms. We do not study such models
here.

Observe that we do not stipulate rejecting states and there-
fore do not assume machines to be total. Thus we focus on
semi-decidability, not on decidability, in this paper.

Example II.1. Assume that the input alphabet is A. We show
a deterministic Turing machine which accepts words where
all letters are distinct, and the atom 5 does not appear. (This
is the complement of the language from Example I.1, with
the additional condition on 5 thrown in to illustrate non-
equivariant machines.) The idea is that the machine iterates
the following procedure until the tape is empty: if the first
letter on the tape is different from 5, replace it by a blank and
load it into the state, scan the word to check that the just-erased
letter does not appear again, and go back to the beginning of
the tape. Formally speaking, the machine is defined as follows.

1Integers can be defined as sets without atoms, so they are also legal sets
with atoms. It is in this sense that we use −1, 0, 1 in the definition of the
transition relation. In particular, 1 is the von Neumann number {∅}, and it
should not be confused with the atom 1.



– The work alphabet is the input alphabet plus the blank
symbol (a designated symbol with empty support, used for
demarcating the input word). The work alphabet has two ∅-
orbits: one orbit for the atoms, and one singleton orbit for the
blank symbol.

– There are three states init , return and accept with empty
support, and a set of states A − {5}. A state a from this set
is denoted scan(a). Altogether there are four orbits for the
states: singleton ∅-orbits for init , return and accept , and one
{5}-orbit for the scan states. One can think of a state scan(a)
as consisting of a control component, namely the word scan ,
and a register storing the atom a.

– The state init is initial and the state accept is accepting.
– The transition relation is actually a partial function, and

therefore the machine is deterministic. The following set of
transitions (which form a single {5}-orbit) corresponds to
loading the first letter into the state, erasing it, and moving
the head to the right:

(init , a)→ (scan(a), blank , 1) for a ∈ A− {5}

The following set of transitions makes the head move to the
end of the tape as long as the atom seen in the first letter does
not reappear:

(scan(a), b)→ (scan(a), b, 1) for a 6= b ∈ A− {5}.

The set above also has one {5}-orbit, since every pair of
distinct atoms that are both different from 5 can be mapped
to any other such pair by a {5}-automorphism of the atoms.
The following set of transitions (two orbits) makes the head
return to the beginning of the tape:

(scan(a), blank)→ (return, blank ,−1)
(return, a)→ (return, a,−1)

for a ∈ A.

Note that when a = 5, then the transitions above are never
used. The following transition (one transition) makes the
machine repeat the procedure

(return, blank)→ (init , blank , 1),

and the following transition accepts once the tape has been
emptied (or if the input was empty to begin with)

(init , blank)→ (accept , blank , 0). �

A Turing machine is a set with atoms (recall that tuples
are encoded as sets), therefore it makes sense to talk about
the support of a machine. For instance, the machine in the
example above is supported by {5}. In general, if a machine
is supported by a set of atoms S, then its language is also
supported by S. The reason is that the function M 7→ L(M)
which maps a Turing machine to its language is equivariant
(its definition does not refer to any specific atoms) so L(M)
is supported by the least support of M .

Example II.2. We explain the nondeterministic machine
sketched in Example I.2 in some more detail. It is actually

a nondeterministic automaton, i.e., it does not write to the
tape and always moves the head right. Its state space is

{0} ∪ {4(a, b),5(a, b) : a, b ∈ A distinct}

so it has three orbits: one singleton orbit, and two orbits iso-
morphic to A(2). For better illustration we write

a

b

11 and
a
b

11


instead of 4(a, b) and 5(a, b), respectively. In the initial
state 0, the automaton inspects the leftmost input letter and
nondeterministically chooses a next state according to the set
of transitions:(

0, �
ba
c

)
→
(

a
b

11
 , �

ba
c
, 1
)

for a, b, c ∈ A distinct

(recall (2) to see that this defines three outgoing transitions
for any input letter). The machine continues deterministically
according to transitions:(

a
b

11
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ca

b

)
→
(
a


c

11 , �
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b
, 1
)

for a, b, c ∈ A distinct(
a


b

11 , �
ca

b

)
→
(

c
b

11
 , �

ca

b
, 1
)

for a, b, c ∈ A distinct

This defines a partial mapping, as it requires the state and the
next letter share at least two atoms in a consistent way. �

Complexity classes. A language over an orbit-finite alpha-
bet is called deterministically semi-decidable if there is a
deterministic Turing machine with atoms that recognises it
(i.e. accepts the words in the language and does not accept the
other words). Likewise, we can talk of a nondeterministically
semi-decidable language.

Even in the presence of atoms, the number of letters in a
word and the number of computation steps are natural numbers
(without atoms). Therefore it makes sense to talk of time and
space resources. This leads to definitions of the classes P and
NP with atoms, or other complexity classes, such as PSpace.

When the input alphabet does not contain atoms, say the
input alphabet is {0, 1}, using atoms is not beneficial to the
machine. More precisely, when L is a language over an al-
phabet without atoms, then L is recognised by a deterministic
Turing machine with atoms if and only if it is recognised by a
deterministic Turing machine without atoms. (A deterministic
Turing machine with empty support, given an input word
without atoms, cannot produce any atoms during its run, as
it transition function has empty support. Similarly, a Turing
machine with support S can only produce a bounded number
of atoms.) Therefore, over alphabets without atoms, there is
only one notion of deterministic semi-decidable language. The
same holds for nondeterministic semi-decidable, P and NP.
Prior work. Sets with atoms appear in the literature under
various other names: Fraenkel-Mostowski models [2], nominal
sets [11], sets with urelements [1], permutation models [12].

Sets with atoms were introduced in the context of set theory
by Fraenkel in 1922, and further developed by Mostowski,
which is why they are sometimes called Fraenkel-Mostowski
sets. They were rediscovered for the computer science com-
munity by Gabbay and Pitts [11]. It turns out that atoms are a



good way of describing variable names in programs or logical
formulas, and the automorphisms of atoms are a good way of
describing renaming of variables. Since then, sets with atoms,
under the name of nominal sets, have become a lively topic
in semantics, see e.g. [13], [14]. Recently, sets with atoms
have been investigated from the point of view of automata
theory [4], [6], [7] and computation theory [3], [8]. The present
paper is a continuation of the latter line of research.

III. DETERMINISM IS WEAKER THAN NONDETERMINISM

In this section we show that, with atoms, the deterministic
and nondeterministic models are not equivalent. What is more,
already nondeterministic polynomial time is not included in
deterministic semi-decidable languages. This illustrates the
weakness of the deterministic model.

Theorem III.1. In sets with equality atoms, there is a lan-
guage that is decidable in nondeterministic polynomial time,
but not deterministically semi-decidable.

A consequence of the theorem is that, with atoms, P is not
equal to NP. It is not our intention to play up the significance
of this result. In a sense, the theorem is too strong for its own
good: it shows that computation with atoms is so different
from computation without atoms, that results on the power of
nondeterminism in the presence of atoms are unlikely to shed
new light on the power of nondeterminism without atoms.

The rest of Section III is devoted to proving Theorem III.1.
In Section III-A, we define a language L that witnesses the
difference between NP and deterministic decidability, and
we show that L is in NP. Then we prove that L is not
deterministically semi-decidable. The proof is in two steps.
In Section III-B, we define orbit-finite algebras, which can
simulate deterministic Turing machines. In Section III-C we
show that no orbit-finite algebra can recognise L.

A. The language

The input alphabet. We begin by defining the input alphabet.
We use the name triangle for an unordered triple of ordered
pairs of atoms, where all six atoms are distinct. In other words,
a triangle is a set

{(a, a′), (b, b′), (c, c′)} where a, a′, b, b′, c, c′ are distinct.

We define the side sets of the triangle to be the unordered pairs
{a, a′}, {b, b′} and {c, c′}. The set of all triangles is a one-
orbit set. We visualise a triangle as an unordered hyperedge
that connects orientations of its side sets:

Suppose that we have several triangles. A conflict is a side
set which appears in two triangles in different orientations. For
instance, the following two triangles have one conflict:

Triangles τ1, . . . , τn are called nonconflicting if they have no
conflicts. Consider a triangle which has a side set {a, a′}.
The swap on {a, a′} changes the orientation of the side, i.e.
changes (a, a′) to (a′, a) and vice versa. Note that doing a
swap (on any side set) does not change the set of side sets.
Swaps are a way of resolving conflicts. For instance, in the
picture above, doing a swap on the side set {b, b′} in the left
(or right, but not both) triangle will remove the conflict.

We say that two triangles are ≈-equivalent if one can
go from one to the other by an even number of swaps
(i.e. swapping zero or two side sets). We use the name ≈-
triangle for a ≈-equivalence class of triangles; each such a
class contains exactly four triangles. Doing a single swap
changes the ≈-class of a triangle, doing another swap comes
back to the original class. Therefore, when the side sets are
fixed, there are exactly two ≈-triangles with these side sets.
These two ≈-triangles are said to be dual, and changing a ≈-
triangle to its dual is called flipping. Note, however, that the
set of all ≈-triangles is a one-orbit set.

The language. We now define a language that witnesses
Theorem III.1. The input alphabet is ≈-triangles. The language
is the projection, by taking ≈-equivalence classes, of the
nonconflicting sequences of triangles.

L = {[τ1]≈ · · · [τn]≈ : τ1, . . . , τn are nonconflicting triangles}

Observe that membership in L does not depend on the order
or repetition of letters, and therefore it makes sense to talk
about a set of ≈-triangles belonging to L.

We will show that the language L is a witness for Theo-
rem III.1: it is in NP but not deterministically semi-decidable.
Membership in NP is straightforward: the machine has a work
alphabet that contains triangles (and not just ≈-triangles), and
uses nondeterminism to guess τ1, . . . , τn. Once the actual
triangles are given, the machine deterministically compares
every two of them to see if they conflict.

There are just exponentially many possibilities for
τ1, . . . , τn. One could ask why there is no deterministic
algorithm recognising L, by exhaustively enumerating all the
possibilities? The reason is essentially the same as in (4) in
Example I.2: there is no function that would map a ≈-triangle
to some triangle that belongs to it. In particular, the set of all
pairs of the form ([τ ]≈, τ) is a relation, not a function.

Remark: The language L is a variant of the Cai-Fürer-
Immerman (CFI) construction [15] from Descriptive Com-
plexity Theory. There, it is used to show that a certain logic
Cω∞ω cannot express a property of (unordered) graphs which
is, however, decidable in polynomial time. That result can also
be deduced from Theorem III.3 below.



Our inspiration for the language L came from yet another
source: it is a generalisation of a construction from Model
Theory ( [9], example on p. 819).

B. Algebras as a model of local computation

The reason why a deterministic Turing machine cannot
recognise the language L is that it has only a local view of the
computation: the decision for the next step is taken based on
the state of the machine, and one cell of the tape. In particular,
the decision depends only on the small set of atoms that is
found in the state and one cell; the size of this set is fixed
by the machine, and does not depend on the input. Our proof
will show that any computation model of this kind will not
recognise the language L. To model locally based decisions,
we use the notion of algebras and terms (similar to circuits).
Terms in an algebra are evaluated in a local fashion: the result
of a bigger term depends only on a single operation applied to
its subterms. By using terms and algebra, our proof will not
need to depend on the technical details of Turing machines
such as end-of-tape markers, the position of the head, etc.

An orbit-finite algebra consists of:
• an orbit-finite universe A,
• a finite set of finitely supported operations of finite arity:

f1 : An1 → A , . . . , fk : Ank → A.

We require the set of operations to be finite, although an orbit-
finite set of operations would also be natural. In this paper we
use algebras only as a technical tool, and we choose a truly
finite set of operations for technical convenience.

A term in an algebra is defined as usual: it is a finite tree
where internal nodes are operations, and the leaves are vari-
ables or constant operations. Given a term t, and a valuation
val which maps its variables to the universe of the algebra, we
write t[val] ∈ A for the value of the term under the valuation.

If there is some implicit order x1, . . . , xn on the variables of
a term, then we can also evaluate the term in a word w ∈ An,
by using the valuation that maps the i-th variable to the i-th
position. We denote this value by t[w].
Recognising a language. We now define what it means for
an algebra to recognise a language L ⊆ A∗. To input a word
from A∗, we require the universe of the algebra to contain the
input alphabet, but it can also contain some other elements,
which can be seen as a work alphabet. Finally, we require
the universe to contain the Boolean values true and false, so
that it can say when a word belongs to the language. We say
that such an algebra (non-uniformly) recognises L if for every
input length n there is a term tn with n variables such that

tn[w] =

{
true if w ∈ L
false if w 6∈ L

for every w ∈ An.

Theorem III.2. For every deterministic Turing machine, there
is an algebra that recognises its language.

Note that the statement does not require the machine to
be total: it is allowed to have non-terminating computations
on non-accepted words. In other words, the theorem says that

(deterministically) semi-decidable languages are recognised by
algebras. The proof is basically an unraveling of the definition
of a Turing machine.

C. Algebras do not recognise L

By Theorem III.2, in order to show that L is not determin-
istically semi-decidable, it suffices to show the following:

Theorem III.3. No orbit-finite algebra recognises L.

The rest of this section is devoted to proving this theorem.
Triangulations and parity. A set of triangles is called a
triangulation if
• side sets in the triangulation are either disjoint or equal,
• every side set appears in exactly two triangles.

This definition also makes sense for sets of ≈-triangles.
For a set of triangles T , we define

[T ]≈
def= {[τ ]≈ : τ ∈ T }.

We say that two triangles are neighbouring if they share a
side set. A set of triangles is called connected if every triangle
can be reached from every other via a sequence of neigh-
bouring triangles. The following shows that, for connected
triangulations, membership in L is a parity-type property.

Lemma III.4. Let T be a finite set of triangles that is a
connected triangulation. Then [T ]≈ ∈ L iff T has an even
number of conflicts.

The idea is that if two conflicts are connected via a path
of triangles, then appropriately performing two swaps in each
triangle along the path gives a set of triangles T ′, two conflicts
fewer than T , such that [T ′]≈ = [T ]≈.
Torus. To construct an input that will confuse an algebra, we
will place triangles in a torus-like arrangement. Let n ∈ N.
An n-torus is a set of 2n2 ≈-triangles defined as follows. Let
us begin with 6n2 distinct atoms

aij , a
′
ij bij , b

′
ij cij , c

′
ij for i, j ∈ {0, . . . , n− 1}.

Define a proper n-torus to be the following set of ≈-triangles:

Tn = {[τij ]≈, [σij ]≈ : i, j ∈ {0, . . . , n− 1}},

where the triangles τij and σij are as follows:

We adopt the convention that all indices are counted modulo
n, so that e.g. ain = ai0. This means that the neighbourhood
graph of a proper n-torus, illustrated in Figure 1, indeed
resembles a torus: the triangles on the left are neighbours of
the triangles on the right, and likewise for the top and bottom.



An n-torus is obtained from a proper n-torus by flipping
any of its ≈-triangles in any way.
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Fig. 1. An n-torus.

Toruses are difficult for algebras. We now complete the
proof of Theorem III.3. The key step is the following lemma.

Fix an algebra A. Let t be a term of A and T be an n-
torus. For a valuation val : variables(t)→ T and a ≈-triangle
τ ∈ T , we say that t and val ignore τ , if

t[val] = t[valτ ],

where valτ is defined like val, but with the value of τ flipped.

Lemma III.5. There is some k ∈ N (depending only on A)
such that for every n-torus T with a sufficiently large n, for
every term t in A and for every valuation val with values in T ,
t and val ignore all but at most k elements of T .

The lemma implies Theorem III.3. Indeed, suppose that an
algebra recognises L, and consider terms tn recognising L
over words of length n. Since (by Lemma III.4) flipping a
single input letter affects membership in L, for every valuation
val and every τ ∈ T we have that tn and val do not ignore τ .
This holds true for every n, and if 2n2 > k, this contradicts
Lemma III.5, since an n-torus is built of 2n2 ≈-triangles.

Proof: Let r be the maximal arity of all operations in A.
The proof of Lemma III.5 proceeds by induction on the size
of the term t. The base case is when the term is a variable, and
a variable ignores all τ ∈ T except for one. For the induction
step, fix some val. The topmost operation in t has arity at
most r, so by the inductive assumption, there are at most k · r
elements τ ∈ T which are not ignored by t and val. We need
to show, however, that there are actually only at most k such
elements τ . The argument has a geometric flavor, and builds
on the following easy observation that it is hard to decompose
a torus into small pieces:

Fact III.6. After removing m triangles in an n-torus, there
remains a connected component of at least 2n2−m2 triangles.

Define m = 2(k1 + k2), where k1 is the size of the least
support of all (finitely many) operations in the algebra A and
k2 is the maximal size of a least support of an element of the
universe of A. We now reveal the value of k; we put k = m2.

Let S be a set which supports all operations in the algebra
A and the value t[val]. By induction on the size of the term
t, one can show that

t[π(val)] = t[val] for any S-automorphism π. (5)

Without losing generality, S can be chosen so that it has at
most k1 +k2 elements. As every atom appears in at most two
≈-triangles, there are at most m elements in T whose least
support intersects S.

Assume now that n is sufficiently large; specifically, we
need that 2n2 > k · r + k. By Fact III.6, there is a connected
subset C ⊆ T such all elements of C have least supports
disjoint with S, and the size of C is at least 2n2 − k, so it is
bigger than k · r. By the inductive assumption, some τ ∈ C
is ignored by t and val. For the proof of Lemma III.5 it is
enough to prove that every τ ∈ C is ignored by t and val;
indeed, there are at most k elements outside of C in the torus.
To this end, since C is connected, it is now enough to show:

Lemma III.7. If some τ ∈ C is ignored by t and val, then
every neighbor τ ′ ∈ C of τ also is.

To prove this, note that applying the atom automorphism π
that swaps the atoms in the side set shared by τ and τ ′, has
exactly the same effect on the torus T as flipping both τ and
τ ′. (For this we use the assumption that these atoms do not
appear elsewhere in T .) In consequence, flipping τ ′ has the
same effect as applying π and then flipping τ . As the side set
is disjoint from S, π is an S-automorphism so, by (5), it does
not change the value of t[val]. As a result, flipping τ ′ has the
same effect on t[val] as flipping τ .

IV. THE CHURCH-TURING THESIS

Theorem III.1 shows that deterministic and nondeterministic
Turing machines lead to different notions of decidability. Does
this mean that there is no Church-Turing thesis for atoms,
i.e. no robust notion of decidability? In this section we argue
that there is one, with many equivalent formulations; it is just
that deterministic Turing machines are not one of them.

A. Representations

A robust notion of computation with atoms not only should
have several equivalent definitions, but it should also have
a connection to the standard notion of computation without
atoms. To make this connection, we represent objects with
atoms by using data structures without atoms, which can
be written down as bit strings. Atoms themselves can be
represented as natural numbers. Using the representation for
the atoms, finite permutations of atoms (i.e., those that are the
identity on almost all atoms) can be also represented, say as
lists of pairs of the form a1 → b1, . . . , an → bn.

Suppose that X is a set with atoms. A representation
function for X is an injective function

encode : X → 2∗,

which maps an element of X to its (unique) representation so
that there is an algorithm solving the following problem:



• Input. A finite permutation of atoms π, and an element
x ∈ X , both given by representations.

• Output. The representation of π(x), or an error if π(x) 6∈
X .

In [4] it is shown that every orbit-finite set has a representation
function. Note that a representation function cannot be finitely
supported. If it were supported by S, then it would assign the
same bit strings to all arguments in the same S-orbit of X .

B. The Church-Turing thesis

Suppose that A is an orbit-finite alphabet with atoms, and
encode is a representation function. A string a1 · · · an ∈ A∗
is represented as a list of representations of the individual
letters. For L ⊆ A∗, we write encode(L) to denote the set of
all encodings of words in L. Since encode(L) is a set of bit
strings, it makes sense to recognise it using a standard Turing
machine without atoms.

Theorem IV.1. Let A be an orbit-finite alphabet, and let
encode be a representation function. For a finitely supported
language L ⊆ A∗, the following conditions are equivalent:

(1) encode(L) is recognised by a nondeterministic Turing
machine without atoms;

(2) L is recognised by a nondeterministic Turing machine
with atoms.

Since (2) does not depend on the representation function, a
corollary of this is that the choice of representation function
encode does not affect the notion of computability. Note that
in (1) we could have used any other Turing-complete mecha-
nism without atoms, such as deterministic Turing machines.
Programming languages. As more evidence for the atom
version of the Church-Turing thesis, nondeterministic Turing
machines with atoms have the same power as two program-
ming languages designed for sets with atoms: a functional
language from [3] called Nλ, and an imperative language
from [8] called while programs with atoms. Both languages
can process objects that are richer than simply strings over an
orbit-finite alphabet, e.g. they can transform orbit-finite sets
into other orbit-finite sets. Even if it is not their principal
design goal, both Nλ and while programs with atoms can
be used as language recognisers: when A is an orbit-finite
alphabet, one can use both programming languages to define
subsets of A∗. It turns out that, as language recognisers, both
languages are equivalent to nondeterministic Turing machines.

Theorem IV.2. The conditions in Theorem IV.1 are also
equivalent to the following conditions:

3) L is recognised by a program of Nλ;
4) L is recognised by a while program with atoms.

V. ELIMINATING RESTRICTED NONDETERMINISM

In this section, we show how a deterministic Turing machine
can, to some extent, simulate nondeterministic guessing of
atoms. As we know from Theorem III.1, in general, such
guessing cannot be eliminated. We show that one can eliminate
guessing of atoms which are fresh, i.e. which do not belong

to the least support of the input word or configuration. This
simulation preserves computation time and space. We also
show that guessing a bounded number of non-fresh atoms can
be eliminated. In particular, deterministic Turing machines can
simulate guessing a bounded number of (fresh or not) atoms.

A Turing machine with the fresh oracle is a Turing machine
which, at any moment of the run, may consult the oracle to
obtain an atom which is fresh with respect to the current con-
figuration. The acceptance condition is defined existentially:
the machine accepts an input word if the oracle can respond
in such a way that the resulting run is accepting.

It is not difficult to see that acceptance does not depend
on the responses of the oracle, as long as they are fresh
atoms. This observation underlies the proof of the following
result, stating that machines with the fresh oracle can be
simulated by usual Turing machines, preserving computation
time and space. We say that a machine with the fresh oracle
is deterministic if, apart from the choices made by the oracle,
its transitions are deterministic.

Proposition V.1. Let M be a deterministic Turing machine
with the fresh oracle. Then there exists a deterministic Turing
machine M ′ (without the fresh oracle) over the same input
alphabet, such that:

1) M and M ′ accept the same input words;
2) M and M ′ have the same supports;
3) The computation time and space used by M ′ is the same

as used by M , up to a constant multiplicative factor.

The proof relies on the notion of abstraction sets, intro-
duced by Gabbay and Pitts [11] in their nominal framework
for variable binding in semantics. To save space, we only
sketch the rough idea in the case when M invokes the fresh
oracle only once, in the first step of the computation. The
general statement can be deduced from this special case by an
appropriate nesting of Turing machines. The idea is that M ′

stores in its state an abstraction, which is roughly a set I of
implications of the following form:

If the atom returned by the oracle is a, then the state
of the machine M is q.

Similar sets are used to represent each tape symbol. It is
important that not all the implications in I need to be true,
but the ones that involve fresh atoms do. Abstractions form
an orbit-finite set. Moreover, they behave well with respect to
applying functions, in particular, the transition function of M .

On the other hand, we define a Turing machine with
the choice oracle, which, at any moment of the run, may
nondeterministically obtain an atom from the least support of
the tape symbol under the current head position. Similarly as
for the fresh oracle, the machine accepts an input word if the
choice oracle can respond in such a way that the resulting
run is accepting. Contrary to the case of the fresh oracle,
acceptance of the run may depend on the answers of the oracle.

Example V.1. Consider an input alphabet
(A
n

)
, i.e. sets of n

atoms. We show how a Turing machine M with the choice



oracle can compute a linear ordering of atoms from a single
letter. The work alphabet of the machine is sets of at most
n atoms. Given a letter X , the machine invokes the choice
oracle to choose some atom a ∈ X . It writes this atom in one
cell of the tape, and in another cell it writes the set X −{a}.
The procedure is then repeated with X − {a} in place of X ,
until X becomes empty.

The choice oracle can be used to order the atoms in the least
support of a letter b from an arbitrary orbit-finite alphabet:
simply apply the above construction to X = supp(b), where
supp(b) is the least support of b; the mapping b 7→ supp(b) is
legal, so it can be carried out by a deterministic machine.

Theorem III.1 implies that the choice oracle cannot be
eliminated in general, but according to the following result,
a bounded number of calls can be eliminated.

Proposition V.2. Let n be a number and let M be a deter-
ministic Turing machine with the choice oracle, such that in
every run of M , M invokes the choice oracle at most n times.
Then there exists a deterministic Turing machine M ′ over the
same input alphabet, such that:

1) M and M ′ accept the same input words;
2) M and M ′ have the same supports;
3) The computation time and space used by M ′ is the same

as used by M , up to a constant multiplicative factor.

The proof is similar to that of Proposition V.1.
A family of objects {xi}i∈I is modelled as a legal function

i 7→ xi. As a corollary from Proposition V.2, deterministic
Turing machines are closed under orbit-finite unions:

Corollary V.3. Let I be an orbit-finite set, and let {Mi}i∈I
be a family of deterministic Turing machines over a common
input alphabet. Then the language

⋃
i∈I L(Mi) is recognisable

by a deterministic Turing machine.

Proof: For every single-orbit set I there is some n ∈ N
and a surjective legal partial function f : An → I . Therefore,
it is enough to consider the case when I ⊆ An for some n.
Guessing an n-tuple of atoms can be simulated by invoking
the fresh oracle or the choice oracle at most n times.

VI. A DICHOTOMY FOR INPUT ALPHABETS

To separate deterministic and nondeterministic computation
in Theorem III.1, a rather complex input alphabet was needed.
For simpler alphabets, such as that of atoms, nondeterministic
Turing machines do determinise. As it turns out, there is a
dichotomy on input alphabets:

Theorem VI.1. Every input alphabet A is either:

1) Nonstandard. There is a language over A that is in NP
but not deterministically semi-decidable, or

2) Standard. For languages over A,
a) deterministic semi-decidable equals nondetermin-

istic semi-decidable.
b) the answer to P=NP is the same as classically.

The proof also shows that over a standard alphabet
many complexity questions have the same answer as classi-
cally, including any equality concerning the classes P, NP,
PSPACE and EXPTIME. Conversely, over nonstandard alpha-
bets, any complexity class that allows an unbounded number
of nondeterministic guesses (e.g. nondeterministic logarithmic
space) is not included in deterministically semi-decidable
languages.
A canonical language. Whether an alphabet is standard or
not can be traced to one kind of language. For a finite set of
atoms S, define

LA,S = {wv ∈ A∗ : w = π(v) for an S-automorphism π}.

Note that w = π(v) implies that w and v have the same length.

Lemma VI.2. The language LA,S is in NP.

Proof sketch: Given input wv, a nondeterministic Turing
machine can guess the S-automorphism π, by nondetermin-
istically writing on the tape pairs of the form (a, π(a)) such
that a is in the least support of the word w and π(a) is in
the least support of the word v. Once π is written on the
tape, the condition w = π(v) can be verified in deterministic
polynomial time.

The following theorem shows that the language LA,S con-
tains all the difficulties for deterministic computation: if it
can be recognised by a deterministic Turing machine, then
all nondeterministic Turing machines can be determinised2.

Theorem VI.3. For every finite set S of atoms and every orbit-
finite alphabet A, the following conditions are equivalent:

1) the language LA,S is in P;
2) the language LA,S is deterministically semi-decidable;
3) the language LA,S is recognised by some orbit-finite

algebra;
Furthermore, for a fixed A, if one (or all) conditions above
hold for some S, then they hold for every S. Finally, the
alphabet A is standard if the conditions above hold, and
nonstandard otherwise.

We conclude with some examples of standard and nonstan-
dard alphabets.

Example VI.1. To see that the alphabet A is standard, by
Theorem VI.3, it is enough to show that the language LA,∅ is
in P. A word a1 · · · anb1 · · · bn belongs to this language if and
only if

ai = aj iff bi = bj for every i, j ∈ {1, . . . , n}.

This is easily checked in deterministic polynomial time. The
same argument works for alphabets of the form An.

Another example of a standard alphabet is
(A
2

)
, i.e. two-

element sets of atoms. To test if two given words of equal
length are in the same ∅-orbit, it is enough to check that the
intersection of every three letters has the same cardinality in
both words. (This implies that the intersection of any subset of

2Note, however, that we do not claim NP-completeness of LA,S .



letters has the same cardinality in both words.) This decision
procedure generalises easily to any alphabet

(A
k

)
for k > 2.

On the other hand, the alphabet used in Section III-A is
nonstandard, by Theorem III.1.

VII. ATOMS WITH STRUCTURE

So far, we have assumed that the only structure on the atoms
is equality. To study atoms with some additional structure,
following [4], we can model the atoms as a relational structure
(as in model theory). We can then define (legal) sets with
atoms and orbit-finite sets in the same way as before, with
the notion of atom automorphism now inherited from the
relational structure. The atoms with equality that have been
discussed so far correspond to the relational structure (N,=),
or any other countable set with equality. Sets without atoms
correspond to the empty relational structure.

In this section we show two other examples of relational
structures for the atoms, and see what happens to determini-
sation of Turing machines with those atoms.

A. Total order atoms

Consider the atom structure where the universe is the ratio-
nal numbers with order: (Q,≤). We use the name sets with
total order atoms for sets with atoms built on this relational
structure. In sets with total order atoms, Turing machines
behave the same way as without atoms.

Theorem VII.1. Consider the total order atoms. For every
input alphabet:
• deterministic semi-decidable is equal to nondeterministic

semi-decidable; and
• the answer to P=NP is the same as classically.

The intuition is that having a linear order on the atoms, the
choice oracle can be easily eliminated, simply by choosing the
minimal element of the least support of a symbol – in presence
of a linear order, this is an equivariant function.

B. Bit vector atoms

We now present another example of atoms, where de-
terministic polynomial time is weaker than nondeterministic
polynomial time (as in the equality atoms), but deterministic
semi-decidable is equal to nondeterministic semi-decidable
(unlike in the equality atoms). The example also shows how
atoms can be used to model limited access to the input data
(in this case, the data is a vector space).

We use the name bit vector for an infinite sequence of zeros
and ones which has finitely many ones. By ignoring the trailing
zeros, a bit vector can be represented as a finite sequence
such as 00101001. Bit vectors can be added modulo two, and
multiplied by 0 or 1. Equipped with this structure, we get a
vector space over the two element field. The dimension of this
vector space is countably infinite, an example basis consists
of bit vectors which have a 1 on exactly one coordinate:

1, 01, 001, 0001, . . .

The bit vectors can be seen as a relational structure, with a
ternary predicate x + y = z for addition modulo 2 and a
unary predicate 0(x) for distinguishing the zero vector. Using
the automorphisms of this structure (such an automorphism
is required to preserve addition; it is uniquely defined by a
mapping from one basis to another), we can define sets with
bit-vector atoms.

Theorem VII.2. Over sets with bit-vector atoms, for the input
alphabet of (bit-vector) atoms,
• deterministic semi-decidable is equal to nondeterministic

semi-decidable; and
• P 6= NP.

The problem that separates P from NP is testing linear
dependence of vectors, i.e. the following language:

D
def= {a1 · · · an ∈ A : a1, . . . , an are linearly dependent}.

It is easy to see that the language D is recognised by a
nondeterministic polynomial time Turing machine that guesses
a linear combination of vectors witnessing dependence.

On the other hand, checking all linear combination is
inevitable: every deterministic Turing machine will need an
exponential number of computation steps to recognise the
language D.
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