Piecewise testable tree languages

Mikotaj Bojaniczyk
Warsaw university

Abstract—This paper presents a decidable characterization of
tree languages that can be defined by a boolean combination
of 3, formulas. This is a tree extension of the Simon theorem,
which says that a string language can be defined by a boolean
combination of >; formulas if and only if its syntactic monoid
is J-trivial.

I. INTRODUCTION

Logics for expressing properties of labeled trees and forests
figure importantly in several different areas of Computer
Science. Research devoted to understanding and comparing
the expressive power of such logics has raised a number of
important questions that remain open: For instance, we do not
possess an effective characterization of the properties of trees
definable in first-order logic using a binary predicate < that
expresses the ancestor relation, nor of the properties definable
in various temporal logics, such as CTL, CTL* or PDL.

In the case of logics for defining properties of words, such
questions have been studied very successfully by applying
ideas from algebra: A property of words over a finite alphabet
A defines a set of words, that is a language L C A*. As long
as the logic in question is no more expressive than monadic
second-order logic, L is a regular language, and definability
in the logic often boils down to verifying a property of the
syntactic monoid of L (the transition monoid of the minimal
automaton of L). This approach dates back to the work of
McNaughton and Papert [4] on first-order logic over < (where
< denotes the usual linear ordering of positions within a
word). A comprehensive survey, treating many extensions and
restirictions of first-order logic, is given by Straubing [6].
Thérien and Wilke [9], [8], [7] similarly study temporal logics
over words.

An important early discovery in this vein, due to I. Si-
mon [5], treats word languages definable in first-order logic
over < with low quantifier complexity: A word language is
definable by a boolean combination of ¥;-sentences over <
if and only its syntactic monoid M is [J-trivial. This means
that for all m, m’ € M, if MmM = Mm'M, then m = m/.
(In other words, distinct elements generate distinct two-sided
semigroup ideals.) Thus one can effectively decide, given an
automaton for L, whether L is definable by such a sentence.
(It should be noted that Simon did not discuss logic per
se, but used piecewiese testable languages, which are clearly
equivalent to definability by a boolean combination of ;-
sentences.)

There has been some recent success in extending these
methods to trees and forests. (We work here with unranked

This work was partially funded by the AutoMathA programme of the ESF
and the PHC programme Polonium.

Luc Segoufin
INRIA

Howard Straubing
Boston college

trees and forests, and not binary or ranked ones, since we
believe that the definitions and proofs are cleaner in this
setting.) The algebra is more complicated, because there are
two multiplicative structures associated with trees and forests,
both horizontal and a vertical concatenation. Benedikt and
Segoufin [1] use these ideas to effectively characterize sets
of trees definable by first-order logic with the parent-child
relation. Bojadczyk [2] gives a characterization of properties
definable in a temporal logic with unary ancestor and de-
scendant operators. Bojaiiczyk and Walukiewicz [3] present
the general theory of the ‘forest algebras’ that underlie these
studies.

In the present paper we continue this line of inquiry, and
provide a further illustration of the utility of these algebraic
methods, by generalizing the theorem of Simon cited above.
That is, we give necessary and sufficient conditions for a set L
of unranked forests to be definable by a boolean combination
of X;-sentences (we consider various combinations of pred-
icates, each with different conditions). These conditions are
formulated as a collection of identities on the syntactic forest
algebra of L, and thus are effectively verifiable if we have a
deterministic tree automaton for L. We further generalize this
result to the logic that includes a ternary ‘closest common
ancestor’ relation. While we have to some extent drawn on
Simon’s original argument, the added complexity of the tree
setting makes both formulating the correct condition and
generalizing the proof quite nontrivial.

II. NOTATION

Trees, forests and contexts: In this paper we work with
finite unranked ordered trees and forests over a finite alphabet
A. Formally, these are expressions defined inductively as
follows: If s is a forest and a € A, then as is a tree. If
t1,...,t, is a finite sequence of trees, then ¢1 + --- 4+ ¢, is
a forest. This applies as well to the empty sequence of trees,
which thus gives rise to the empty forest, denoted 0 (and which
provides a place for the induction to start). Forests and trees
alike will be denoted by the letters s, t,u, ...

For example, the forest that we conventionally draw as

@ ® ©
@ © @ ®
©

is the expression
a(a0 + bc0) + b0 + (a0 + b0) .
Usually will not write the zeros and denote this forest by

t=ala+bc)+b+cla+bd).

A set L of forests over A is called a forest language.

The notions of node, descendant and ancestor relations
between nodes are defined in the usual way. We write x < y
to say that x is an ancestor or y or, equivalently, that y is a
descendant of x. The closest common ancestor of two nodes
x,y is a node z that is the unique node that is a descendant
of all nodes that are ancestors of both x,y. As our forests are
ordered, each forest induces a natural linear order between its
nodes that we call the forest-order and which corresponds to
the lexicographic order, or the depth-first left-first traversal of
the forest.

If we take a forest and replace one of the leaves by a special
symbol [, we obtain a context. Contexts will be denoted using
letters p, g, r. A forest s can be substituted in place of the hole
of a context p, the resulting forest is denoted by ps. There is
a natural composition operation on contexts: the context gp is
formed by replacing the hole of ¢ with p. This operation is
associative, and satisfies (pqg)s = p(gs) for all forests s and
contexts p and q.

For example, from the forest ¢ given above, we can obtain,
among others, the context

p=ala+bc)+b+c(Od+5b) .
If s = (b+ ca), then
ps=ala+bc)+b+c(b+ca+d).

Piecewise testable languages: We say a forest s is an
immediate piece of a forest s’ is s,¢ can be decomposed as
s = pt and s’ = pqt for some contexts p, ¢ and some forest ¢.
The reflexive transitive closure of the immediate piece relation
is called the piece relation. We write s < t to say that s is a
piece of . In other words, a piece of ¢ is obtained by removing
nodes from ¢.

We extend the notion of piece to contexts. In this case, the
hole must be preserved while removing the nodes:

s

?
@ © © @
9 @ [2] ®
©

@) Q
@)
O ONO)

The notions of piece for forests and contexts are related, of
course. For instance, if p, g are contexts with p < ¢, then
p0 < q0. Also, conversely, if s < ¢, then there are contexts
p = q with s = p0 and ¢t = ¢0.

A forest language L over A is called piecewise testable
if there exists n > 0 such that membership of ¢ in L is
determined by the set of pieces of ¢ of size n or less. The size

of a piece is the size of the forest, i.e. the number of nodes.
Equivalently, L is a finite boolean combination of languages
{t : s = t}, where s is a forest. Every piecewise testable
forest language is regular, since given n > 0, there is a finite
automaton that can calculate on input ¢ the set of pieces of ¢
of size no more than n.

Logic: Piecewise testability corresponds to definability
in a logic, which we now describe. A forest can be seen as
a logical relational structure. The domain of the structure is
the set of nodes. The signature contains a unary predicate
P, for each symbol a of the label alphabet A, plus possibly
some extra predicates, such as the descendant or lexicographic
orders on nodes. Let € be a set of predicates. A X (€2) formula
is a formula Jz; - - - x,, v, where the formula v is quantifier
free and uses predicates from 2. The predicates 2 that we
use always include (P,).cx and equality, hence we do not
explicitly mention them in the sequel. Initially we will be
consider two predicates on nodes: the ancestor order x < y
and the lexicographic order x <., y. Later on, we will see
what happens when the closest common ancestor is added,
and the lexicographic order removed.

A forest language L can be defined by a %1(<, <jex)
formula if and only if it is closed under adding nodes, i.e.

pte L = pqt € L

holds for all contexts p, ¢ and forests ¢{. Furthermore, the
above condition can be effectively decdied by inspecting any
representation of the language L, e.g. a tree automaton. Far
more interesting are the boolean combinations of properties
definable in 31 (<, <jez). It is easy to show that:

Proposition 1 A forest language is piecewise testable iff it is
definable by a Boolean combination of 3 (<, <j,) formulas.

But the above result does not give us effective characterization
of either of the two equivalent descriptions. Such a
characterization is the goal of this paper:

The problem: We want an algorithm deciding if a given
regular forest language is piecewise testable.

As noted earlier, the corresponding problem for words was
solved by Simon, who showed that a word language L is
piecewise testable if and only if its syntactic monoid M (L) is
J-trivial. Note that one can test if a monoid M is J-trivial
in polynomial time: for each m # m’ € M, one calculates
the ideals MmM and Mm’M and then verifies that they are
different. Therefore, it is decidable if a given regular word
language is piecewise testable. We assume that the language
L is given by its syntactic monoid and syntactic morphism,
or by some other representation, such as a finite automaton,
from which these can be effectively computed.

We will show that a similar characterization can be found
for forests; although the identities will be more involved. For
decidability, it is not important how the input language is
represented. In this paper, we will represent a forest language
by a forest algebra that recognizes it. Forest algebras are
described in the next section.

III. FOREST ALGEBRAS

Forest algebras were introduced by Bojanczyk and
Walukiewicz as an algebraic formalism for studying regular
tree languages [3]. Here we give a brief summary of the
definition of these algebras and their important properties. A
forest algebra consists of a pair (H,V) of finite monoids,
subject to some additional requirements, which we describe
below. We write the operation in V' multiplicatively and the
operation in H additively, although H is not assumed to be
commutative. We accordingly denote the identity of V by U
and that of H by 0.

We require that V' act on the left of H. That is, there is a
map

(h,v) —vhe H

such that
w(vh) = (wv)h

for all h € H and v, w € V. We further require that this action
be monoidal, that is,
h-O=h

for all h € H, and that it be faithful, that is, if vh = wh for
all h € H, then v = w.

We further require that for every ¢ € H, V contains
elements (O + g) and (g + O) defined by

O+gh=h+g,(g+0O)h=g+h

forall h € H.

A morphism « : (Hy, V1) — (Ha, Va) of forest algebras is
actually a pair (y, d) of monoid morphisms such that y(vh) =
d(v)y(h) for all h € H, v € V. However, we will abuse
notation slightly and denote both component maps by «.

Let A be a finite alphabet, and let us denote by H 4 the
set of forests over A, and by V4 the set of contexts over A.
Clearly H4 forms a monoid under +, V4 forms a monoid
under composition of contexts (the identity element is the
empty context [1), and substitution of a forest into a context
defines a right action of V4 on H4. It is straightforward to
verify that this action makes (H4,Vy4) into a forest algebra,
which we denote A2. If (H, V') is a forest algebra, then every
map f from H4 to H has a unique extension to a forest algebra
morphism « : A% — (H, V) such that a(ad) = f(a) for all
a € A. In view of this universal property, we call A® the free
forest algebra on A.

We say that a forest algebra (H,V') recognizes a forest
language L C H 4 if there is a morphism o : A® — (H,V)
and a subset X of H such that L = a~!(X). Itis easy to show
that a forest language is regular if and only if it is recognized
by a finite forest algebra.

Given any finite monoid M, there is a number w(M)
(denoted by w when M is understood from the context) such
that for all element x of M, x* is an idempotent: z% = z*“x“.
Therefore for any forest algebra (H, V') and any element u of
V and g of H we will write u“ and w(g) for the corresponding
idempotents.

Given L C H 4 we define an equivalence relation ~, on H 4
by setting s ~, s’ if and only if for every context x € Vg,
hz and h'z are either both in L or both outside of L. We

] €
= a.
g= 3
3 a
O
O @
O O© O
Fig. 1. The identity u* = u“v, with v < u. The grey nodes are from v.

further define an equivalence relation on V4, also denoted ~,,
by x ~p 2’ if for all h € Ha, xh ~p z'h. This pair of
equivalence relations defines a congruence of forest algebras
on A®, and the quotient (Hp,, V7)) is called the syntactic forest
algebra of L. (Hp, V) recognizes L, and if (H,V) is any
other forest algebra recognizing L, then (Hp,, V) is a quotient
of a subalgebra (that is, a divisor) of (H,V).

IV. PIECEWISE TESTABLE LANGUAGES WITH ONLY THE
DESCENDANT RELATION

The main result in this paper is the following characteriza-
tion of piecewise testable languages:

Theorem 2 A forest language is piecewise testable if and only
if its syntactic algebra satisfies the identity

u“v = u* = vu? forv<u. (1)
The identity (1) is illustrated in Figure 1.

Before we define the relation v < w used in identity (1),
and also before we prove the theorem, we would like to show
how it relates to the characterization of piecewise testable word
languages given by Simon.

Let M be a monoid. For m,n € M, we write m C n if m
is a—not necessarily connected—subword of n, i.e. there are
elements nq,...,no, € M such that

n =mnong - - N2k m=mnins---Ngk—1 -

We claim that, using this relation, the word characterization
can be written in a manner identical to Theorem 2:

Theorem 3 A word language is piecewise testable if and only
if its syntactic monoid satisfies the identity

n“m =n“ = mn® formCn .)
Proof

Recall that Simon’s theorem says a word language is piecewise
testable if and only if its syntactic monoid is J-trivial.
Therefore, we need to show [J-triviality is equivalent to (2).
We use an identity known to be equivalent to J-triviality:

(nm)¥“n = (nm)* = m(nm)“ . 3)

Since the above identity is an immediate consequence of (2),
it suffices to derive (2) from the above. We only show n“m =
n®. By assumption on m = n, there are decompositions

n=mnoeny - N2k—1MN2k m=mning---N2k-3MN2k—1 -

By induction on 7, we show
w w
noNINg - - N2i-3MN2i—1 =N .

The base ¢ = 0, is immediate. In the induction step, we use
the induction assumption to get:

n¥ny - Noi_3Ngi—1 = n¥Ng_1 .
By applying (3), we have
nY =n“nong - Noi—1N2;
and therefore
n¥Noi_1 = NNy - - N2iN2i—1

By applying (3) once again, the right side of the above
becomes n“. []

Note that since the vertical monoid in a forest algebra is
a monoid, it would make syntactic sense to have the relation
C instead of < in Theorem 2. Unfortunately, the “if” part of
such a statement would be false. That is why we need to have
a different relation < on the vertical monoid, whose definition
involves all parts of a forest algebra, and not just composition
in the vertical monoid.

In Section IV-A, we define the < relation that is used in (1).
We will also show that in a given finite forest algebra, < can
be computed in polynomial time; an important corollary is
that one can decide if a forest language is piecewise testable.
Then, in Sections IV-B and IV-C, we prove both implications
of Theorem 2. Finally, in Section IV-E, we give an equivalent
statement of Theorem 2, where the relation < is not used.

A. The piece relation in a forest algebra

Recall that in Section II, we defined the piece relation
for contexts in the free forest algebra. We now extend this
definition to an arbitrary forest algebra (H,V'). The general
idea is that a context v € V is a piece of a context w € V if
one can construct a term (using elements of A and V') which
evaluates to w, and then take out some pieces of this term and
get v. A more formal definition follows below.

Definition 4 Let (H,V) be a forest algebra. We say v € V
is a piece of w € V, denoted by v < w, if a(p) = v and
a(q) = w hold for some morphism

a:A® = (H,V)

and some contexts p < g over A. The relation < is extended to
H by setting g = h if ¢ = v0 and h = w0 for some contexts
v X w.

As we will see in the proof of Lemma 5, in the above
definition, we can replace the term ‘“some morphism” by
“any surjective morphism”. The following example shows that
although the piece relation is transitive in the free algebra A%,
it may no longer be so in a finite forest algebra.

Example: Consider the syntactic algebra of the language
{abcd}, which contains only one forest, and this forest has just
one path, labeled by abcd. The context part of the syntactic
algebra has twelve elements: an error element oo, and one
element for each infix of abcd. We have

a =< aa = oo = bd < bed
but we do not have a < bed.

We will now show that in a finite forest algebra, one
can compute the relation =< in polynomial time. The idea
is to use a different but equivalent definition. Let R be the
smallest relation on V' that satisfies the following rules, for all
v, v, w,w € V:

0 R w
v R v
vw R vw ifv Rv' and w R w'
O+00 R O+920 if v R
v0+0 R 2'0+0 ifv R/

Lemma 5 The relations R and < are the same.

In any finite algebra, the relation R can be computed by
applying the rules until no new relations can be added. This
gives the following corollary:

Corollary 6 In any given forest algebra, the relation < on
contexts (also on forests) can be calculated in polynomial time.

Proof (of Lemma 5)

Let o : A® — (H,V) be any surjective morphism. By
induction on the number of steps used to derive v R w, one
produces contexts p < ¢ with a(p) = v and a(q) = w. In
particular, this proves the remark above that the term “some
morphism” can be replaced by “any surjective morphism”.

For the inclusion of < in R, we show that a(p) R «(q)

holds for all contexts p < g. The proof is by induction on the
size of p:

o If p is the empty context, then the result follows thanks
to the first rule in the definition of R. If p consists of a
single letter a and the hole below, then we use the first
three rules.

o If there is a decomposition p = p;ps then there must be a
decomposition ¢ = q1g2 with p; =< g1 and p2 < ¢2. The

existence of such a decomposition is proved by induction
on the size of p;. Then a(p) =< «a(q) follows from the
induction assumption by using the third rule.

o p = s+[]. We can assume that s is a tree, since otherwise
the context p can be decomposed as (s; + O)(s2 + O).
Since s is a tree, it can be decomposed as ap’0, with a
being a context with a single letter and the hole below and
p’ a context smaller than p. By inspecting the definition
of =<, there must be some decomposition ¢ = go(aq’0 +
q1) or ¢ = qo(q1 + aq’0), with p’ < ¢’. By induction
assumption, a(p’) R «a(q’). From this the result follows
by applying rules three, four and five.

O

Corollary 7 It is decidable if a forest language is piecewise
testable.

Proof

We assume the language is given by its syntactic forest
algebra, which can be computed in polynomial time from
any recognizing forest algebra. The new equations can easily
be verified in polynomial time by enumerating all possible
elements of H,V.

The above procedure gives an exponential upper bound
for the complexity in case the language is represented by a
deterministic or even nondeterministic automaton, since there
is an exponential translation from automata into forest algebra.
We do not know if this upper bound is optimal.

B. Correctness of the identities

In this section we show the easy implication in Theorem 2.

Proposition 8 If a language is piecewise testable, then its
syntactic algebra satisfies identity (1).

We will use the following simple fact:

Fact 9 If p < q are contexts and ¢ is a forest, then pt < gt.

Proof (of Proposition 8)
Fix then a language L that is piecewise testable and let n be
such that membership ¢ € L only depends on the pieces of ¢
with at most n nodes.

We only show the first part of the identity, i.e.

u“v =u for v <u

Fix now v =< u as above. By definition of w, we can write
the equation as an implication: for k € N, if u* = «* - " then
u®.v = u*. Let then k be as above. Let p < g be contexts that
are mapped to v, u by the syntactic morphism. By unraveling

the definition of syntactic algebra, we need to show that
r¢*pt € L iff rg*t € L

holds for any context r and forest ¢. Consider now the forests

fori e N.

Tqikt rqikpt

Thanks to Fact 9, we get
rg*t < rg*pt < rq"tVkpt

Therefore, for sufficiently large 4, the two forests have rqi*t
and rq¢**pt have the same pieces of size n, and either both
belong to L, or both are outside L. However, by assumption
on ¢* being equivalent to ¢*¢* under the syntactic morphism,
we get the desired result by:

rq’*t e L iff
rq*pt € L iff

qut el
r¢*pt e L .

C. Completeness of the equations

This section, as well as the next Section IV-D, is devoted
to showing completeness of the equations: an algebra that sat-
isfies identity (1) in Theorem 2 can only recognize piecewise
testable languages. We fix an alphabet A, and a forest language
L over this alphabet, whose syntactic forest algebra (H,V)
satisfies identity. We will denote the syntactic morphism by
«, and sometimes use the term “type of s” for the image a(s)
(likewise for contexts).

We write s ~, t if the two forests s, have the same
pieces of size n. Likewise for contexts. The completeness
proof follows from the following two results.

Lemma 10 Let n € N. For k sufficiently large, if two forests
satisfy s ~;, s’, then they have a common piece ¢ in the same
~, class, i.e.

Proposition 11 For n sufficiently large, pat ~, pt entails
a(pat) = a(pt).

The completeness part of Theorem 2 clearly follows from
the above to results. Indeed, take n as in Proposition 11, and
then apply Lemma 10 to this n, yielding k. We show that
s ~p s implies s € L <= s € L, which immediately
shows that L is piecewise testable, by inspecting pieces of size
k. Indeed, assume s ~j s’, and let ¢ be their common piece
as in Lemma 10. Since ¢ is a piece of s with the same pieces
of size n, it can be obtained from s by a sequence of steps
where a single letter is removed without affecting the ~,,-class.
Each such step preserves the type thanks to Proposition 11.
Applying the same argument to s’, we get

afs) = a(t) = a(s') ,

which gives the desired conclusion.

We begin by showing Lemma 10, and then the rest of this
section is devoted to proving Proposition 11, the more involved
of the two results.

We begin with the following simple observation.

Fact 12 Let K be a regular language. There is some constant
k, such that every ¢ € K contains a piece s € K of size at
most k.

Proof
When applying a pumping argument to ¢, we get a piece. [

We are now ready to prove Lemma 10. Fix n € N. Notice
that each ~,, class is a regular language and ~,, has finitely
many classes. We claim the lemma holds for k& the maximum
of n and the numbers obtained by Fact 12 for each class of
~n. Indeed, take any two forests s ~ s'. Let ¢ be the piece
of s of size at most k£ with s ~,, ¢, as given by Fact 12. Since
s ~p &, the forest ¢ is also a piece of s’. Furthermore since
~y implies ~, (by k > n), we get s’ ~, s ~, t, which
implies s’ ~,, t by transitivity of ~,,.

D. Fractals

We now show Proposition 11. Let us fix a context p, a
label a and a forest ¢ as in the statement of the proposition.
The context p may be empty, and so may be the forest t. We
search for the appropriate n; the size of n will be independent
of p,a,t. We also fix the types v = a(p), h = a(t) for the
rest of this section. In terms of these types, our goal is to
show that vh = va(a)h. To avoid clutter, we will sometimes
identify @ with its image a(a), and write vh = vah instead
of vh = va(a)h.

Let s be a forest and X be a set of nodes in s. The restriction
of s to X, denoted s[X], is the piece of s obtained by only
keeping the nodes in X.

Let s be a forest, X a set of nodes in s, and x € X. We say
that z € X is a vah-decomposition of s if: a) if we restrict s
to X, remove descendants of x, and place the hole in x, the
resulting context has type v; b) the node = has label a; c) if
we restrict s to X and only keep nodes in X that are proper
descendants of x, the resulting forest has type h.

Definition 13 A fractal of length k inside a forest s is a
sequence 1 € X3 - xr € X of vah-decompositions,
where X; C Xi+1 \ {xi+1} holds for 7 < k.

A subfractal is extracted by only using a subsequence

z;, € Xil Ti; € Xij

of the vah-decompositions.

Lemma 14 Let £ € N. For n sufficiently large, pat ~,, pt
entails the existence of a fractal of length k inside pat.

Proof
The proof is by induction on k. The case k = 1 is obvious.
Assume the lemma is proved for k£ and n and consider the
case k + 1. Using a pumping argument as in Fact 12, we can
show that for some m, if there is a fractal of length k, then
this fractal has a piece of size at most m, which is also a
fractal of length k. Without loss of generality we assume that
m > n.
Assume now that pat ~,, pt. By induction assumption, as
m > n, we obtain a piece of pt which is a fractal of length

Fig. 2. Two types of tame fractal.

k. From the previous observation, this piece can be assumed
of size smaller than m. Clearly, this fractal can be extended
to a fractal of length k£ + 1 by taking for X all the nodes
of pat and for xx1 the node a. [J

Thanks to the above lemma, Proposition 11 is a consequence
of the following result:

Proposition 15 For £ sufficiently large, the existence of a
fractal of length k entails vh = vah.

The rest of this section is devoted to a proof of this
proposition. The general idea is as follows. Using some simple
combinatorial arguments, and also the Ramsey Theorem, we
will show that there is also a large subfractal whose structure
is very regular, or tame, as we call it. We will then apply
identity (1) to this regular fractal, and show that a node with
label @ can be eliminated without affecting the type.

A fractal 1 € X7 --- xp € X inside a forest s is called
tame if s can be decomposed as s = qq1---qps’ (or s =
qqr - - - q18’) such that for each ¢ = 1,...,k%, the node x; is
part of the context g;, see Fig. 2. This does not necessarily
mean that the nodes z1,...,x; form a chain, since some of
the contexts g; may be of the form [J 4 ¢.

Lemma 16 Let k£ € N. For n sufficiently large, if there is a
fractal of length k&, then there is a tame fractal of length k.

Proof
The main step is the following claim.

Claim 17 Let m € N. For sufficiently large n, for every forest
s, and every set X of at least n nodes, there is a decomposition
S =qqi1---qms where every context ¢; contains at least one
node from X.

Proof

Let Y be the set of nodes in s which are closest common
ancestors of some two distinct nodes in X. The degree of a
node in y € Y is defined to be the number of nodes z € YUX
such that all nodes in the path between y and z are outside
Y. Take n to be m™. Two cases may hold: either there is a
node in Y with degree m, or Y contains a chain of length m.
In both cases we get the conclusion of the lemma, but in the
first case we need to use a decomposition where the contexts
q; have the hole in the root. [J

We now come back to the proof of the lemma. For k£ € N
let n be the number defined by Lemma 17 for m = k2.
Let s, z1 € X4 - x € Xy be a fractal of length k.
We apply Lemma 17, with X = {x1,..., 23} and obtain a
decomposition s = qqy -+ - ¢ns’. For each i = 1,...,m the
context ¢; contains at least one node of X. We chose arbitrarily
one of them and denote it by z,,,. Unfortunately, the function
i — n; need not be monotone, as required in a tame fractal.
However, we can always extract a monotone subsequence,
since any number sequence of length k2 is known to have
a monotone subsequence of length k. [J

We now assume there is a tame fractal 1 € X7 --- x3 €
X, inside a forest s, which is decomposed as s = qq; - - - qx.s,
with the node z; belonging to the context ¢;. The dual case
when the decomposition is s = qqy - - - q15’, corresponding to
a decreasing sequence in the proof of Lemma 16, is treated
analogously.

The general idea is as follows. We will define a notion
of monochromatic tame fractal, and show that vah = vh
follows from the existence of large enough monochromatic
tame fractal. Furthermore, a large monochromatic tame fractal
can be extracted from any sufficiently large tame fractal thanks
to the Ramsey Theorem.

Let ¢,7,0 be such that 0 <4 < j <1 < k. We define u;;; to
be the image under o of the context obtained from g;11 - - g;
by only keeping the nodes from X; (with the hole staying
where it is). We define w;;; to be the image under o of the
context obtained from g; 1 ---g; by only keeping the nodes
from X; \ {z;}. Straight from this definition, we have

wiji 2 Uiae1) and wij = i) “4)

A tame fractal is called monochromatic if for all 1 < j <
and all ¢ < j° <’ taken from {1,...,k}, we have

Wiji = Wqrgry -

Note that in the above definition, we require j < [, even though
u;5; i defined even when j < 1.

To show that monochromatic tame fractals exist, we use
the Ramsey Theorem, in a hypergraph version. A C-colored
(undirected) d-dimensional (complete) hypergraph over nodes
A is a mapping f which associates a color from C to
every d-element subset of A. A sub-hypergraph is defined by
restricting the nodes to some subset B C A. A hypergraph is
monochromatic if f uses only one color from c.

Theorem 18 (Ramsey Theorem) Let m,d € N, and let C
be a finite set of colors. If k is sufficiently large, then

any C-colored d-dimensional hypergraph of k nodes has a
monochromatic sub-hypergraph of m nodes.

Lemma 19 If there is a tame fractal of sufficiently large size,
then there is a monochromatic tame fractal of size k = w + 2.

Proof
Application of the Ramsey Theorem. [

We conclude by showing the following result:

Lemma 20 If there is a monochromatic tame fractal of size
k = w + 2, then vah = vh.

Proof
Let k¥ = w + 2, and fix a monochromatic tame fractal
z1 € X1 -+ x1 € X} inside a forest s = qqy - - - qis’. Since

) € Xj is a vah decomposition, the statement of the lemma
follows if o assigns the same type to the two restrictions s[X}]
and S[Xk \ {xk}]

Recall the definition of w;j; and w;;; above. The type of the
forest s[X}] can be decomposed as

o(s[X)) = a(q[Xk]) - uiok - vask - - - uge—1)rk - (s [Xk])

The type of s[Xj \ {zx}] is decomposed the same way, only
U(k—1)kk 1 replaced by wp_1)kk- Therefore, the lemma will
follow if

U12k - U23k * " U(k—1)kk = W12k ~ U23k * " W(k—1)kk -

Since the fractal is monochromatic, and since k is greater than
w, the above becomes

w w
Uk * U(k—1)kk = Y12k * W(k—1)kk -

By (4) and monochromaticity we have

Wk—1)kk = Uk—1)k(k+1) = W12k

Uk—1)kk = Uk—1Dk(k+1) = Y12k -

Therefore equation (1) can be applied to show that both
sides are equal to u$,;,. Note that we use only one side of
equation (1), u“v = u* . We would have used the other side
when considering the case when s = qqi -+ - ¢18". O

E. An equivalent set of identities

In this section, we rephrase the identities used in Theorem 2.
There are two reasons to rephrase these.

The first reason is that identity (1) refers to the relation
v = w. One consequence is that we need to prove Corollary 6
before concluding that identity (1) can be checked effectively.

The second reason is that we want to pinpoint how iden-
tity (1) diverges from J-triviality of the context monoid V. As
witnessed by the forest language “all trees in the forest are aa”,
J -triviality of the syntactic context monoid is not sufficient for
the language to be piecewise testable. The proposition below
identifies the additional condition that must be added to -
triviality.

w times

w times

T B9

Fig. 3.

Proposition 21 Identity (1) is equivalent to J-triviality of V,
and the identity

vh 4+ w(vuh) = w(vuh) = w(vuh) + vh 5)

Proof

One implication is obvious: both J-triviality and (5) follow
from (1). For the other implication, we need to show that if
v < u, then

u’v =u’ = ovu”
We will only show the first equality, the other is done the
same way. By unraveling the definition of v < w, there is a
morphism

a:A® — (H,V)

and two contexts p = ¢ over A such that a(p) = v and
a(q) = wu. If p can be decomposed as pipe, then we can
reason separately for p; and ps:

a(pz) = a(q)* - alp2) = a(g)” .

If p consists of single node with a hole below, then we have
q = qopq: for some two contexts qg, q1, and therefore also
u = ugvu; for some ug,u;. The result then follows by:

a(q)” - a(p1) -

w

u?v = (upvug)“v = (ugvur)“uev = (ugvur)” = u

In the above, we used twice the assumption on J-triviality
of V. Once when adding u(to the w-power, and then when
removing ugv from after the w-power.

The interesting case is when p = [J 4 s for some tree s.
In this case, the forest ¢ can be decomposed as ¢1 (0 + t)qga,
with s < t. We have

u’v =a(g(O0+t)g)a(d+s) .

Thanks to J-triviality, the above can be rewritten as
(@ (@ +)g)* (@0 + 1)*a(@ + 5) =
a(@ (0 +1)g2)* ([0 + afs) +w - alt)) .
It is therefore sufficient to show that s < ¢ implies

wa(t) = as) + wa(t)

The proof of the above equality is by induction on the number
of nodes that need to be removed from ¢ to get s. The base
case s = t follows by aperiodicity of H, which follows by
aperiodicity of V/, itself a consequence of J-triviality. Consider
now the case when ¢ is bigger than s. In particular, we can

The identity w(vuh) = w(vuh) 4+ vh, with the white nodes belonging to w.

remove a node from ¢ and still have s as a piece. In other
words, there is a decomposition ¢ = ggq1t’ such that s < got’.
Applying the induction assumption, we get

a(s) + wal(qot’) .

Furthermore, applying equation (5), we get

wa(qot') =

wa(t) = alqot’) + wa(t) = wa(qet’) + wal(t)

Combining the two equalities, we get the desired result. [J

V. COMMUTATIVE LANGUAGES

In this section we talk about forest languages that are
commutative, i.e. closed under rearrainging siblings.

A forest t' is called a reordering of a forest ¢ if it is
obtained from ¢ by rearranging the order of siblings. In other
words, reordering is the least equivalence relation on trees
that identifies each two forests p(s+t) and p(t + s). A forest
language is called commutative if it is closed under reordering.
A forest language is commutative if and only if its syntactic
algebra satisfies the identitiy

g+h=h+g.

We say a forest s is a commutative piece of t, if s is
a piece of some reordering of ¢. A forest language L is
called commutative piecewise testable if for some n € N,
membership ¢ € L depends only on the set of commutative
pieces of t that have n nodes. This definition also has a
counterpart in logic, by removing the lexicographic order from
the signature:

Proposition 22 A forest language is commutative piecewise
testable iff it is definable by a Boolean combination of ¥4 (<)
formulas.

If a language is commutative piecewise testable, then it
is clearly commutative and piecewise testable (in the more
powerful, noncommutative, sense). Below we show that the
converse implication is also true:

Theorem 23 A forest language is commutative piecewise
testable if and only if it is commutative and piecewise testable.

Corollary 24 It is decidable if a forest language is definable
by a Boolean combination of ¥1(<) formulas.

The theorem above follows immediately from:

Lemma 25 Let n € N. For k sufficiently large, if two forests
have the same commutative pieces of size at most &, then they
can be both reordered so that they have the same pieces of size
at most n.

Proof

Let P(t) be the set of pieces of ¢ that have size at most n.
By a pumping argument as in Lemma 10, there is some k
such that any forest ¢ has a piece s = t of size at most k
with P(s) = P(t). Let now s1,s2 be two forests with the
same commutative pieces of size k. For ¢ = 1,2, consider the
families

P; ={P(s;) : s, is a reordering of s1} .

To prove the lemma, we need to show that the families P; and
‘P2 share a common element, itself a set of pieces. To this end,
we show that for any X € Py, there is some Y € Py with
X CY, and vice versa; in particular, the families share the
same maximal elements. Let then X = P(s}) € P;. By choice
of k, the forest sj—and therefore also s;—has a commutative
piece t of size at most k with P(t) = X. By assumption, the
forest ¢ is also a commutative piece of some reordering s5 of
sg, and therefore X C P(s}) € Ps. O

VI. TREE LANGUAGES

Theorem 2 characterizes piecewise testable forest languages,
and in fact the algebraic theory used here works best when
forests, rather than trees, are treated as the fundamental object.
Traditionally, though, interest has focused on trees rather than
forests. Thus we want to give a decidable characterization of
the piecewise testable tree languages: that is, the sets of trees
that result when we interpret a boolean combination of ¥
sentences in trees over a finite alphabet.

For certain logics, like first-order logic over the descendant
relation, or first-order logic over successor, one can write a
sentence that says “this forest is a tree”, and thus there is
no need to treat tree and forest languages separately. For
piecewise testability, we need to do something more, since
the set of all trees over a finite alphabet A is not piecewise
testable as a forest language.

We define a tree piecewise testable language over a finite
alphabet A to be the intersection of a piecewise testable forest
language with the set of all trees over A. (This is preferable
to defining a tree piecewise testable language to be a tree
language that is piecewise testable as a forest language, the
latter definition would give exactly the finite tree languages.)
We will obtain our decidability result by an entirely general
method for translating algebraic characterizations of classes
of forest languages to characterizations of the corresponding
classes of tree languages. First, suppose

a:A® — (H,V)

is a forest algebra morphism that maps onto (H,V'). We define
an equivalence relation on H,: We write s ~ t if for all
contexts p such that ps and pt are both trees, we have a(ps) =

a(pt). Tt is clear that if s ~ ¢ then for any context ¢, gs ~ gt.
Thus ~ defines a forest algebra congruence on A*. Let

o AR = (H', V")

be the projection morphism onto the quotient by this congru-
ence. Obviously o’ factors through «; that is, o' = S« for
some morphism (3 from (H, V') onto (H',V"'). We call o/ the
tree reduction of «.

Let F be a family of forest languages over A and let F be
a family of surjective forest algebra morphisms with domain
A2 that characterizes F in the following sense: A forest
language L belongs to F if and only if L is recognized by
some morphism in F. Observe that if a : A% — (H,V)
belongs to such a family F, and if 5 : (H,V) — (H'V') is
any surjective morphism, then every language recognized by
[Ba also belongs to F. Thus we will suppose that F is closed
in this way: if « belongs to F, then S« belongs to F.

Theorem 26 Let ¥ and F be as above, and let L C H 4 be
a set of trees. Then there is a forest language K € F such
that L consists of all the trees in K if and only if the tree
reduction of the syntactic morphism oy, of L belongs to F.

Proof: We merely sketch the proof: If such a forest
language K exists, then it is straightforward to verify that the
tree reduction o’ of ay, factors through o, and thus belongs
to F. Conversely, suppose that o belongs to F. Let T' be the
set of all trees over A. The syntactic morphism «r of this
language can assign three possible values to a forest: 0 for
empty the empty forest, x for a tree, and x + x for a forest
with at least two trees. The key property is that ay factors
through ar x @', and thus L is recognized by ar x ’. Since L
consists entirely of trees, this implies that there exists X C H'
such that

L=(arxad) {2} xX)=Tn ()" (X)=TnNK,

where K € F. |
As a result we have:

Corollary 27 It is decidable if a regular tree language is tree
piecewise testable.

Proof: Let F be the family of piecewise testable forest
languages over A, and let F be the family of morphisms
from A% onto finite forest algebras that satisfy the identities
of Theorem 2. Since this family of algebras is closed under
quotient, F' and F satisfy the hypotheses of Theorem 26.

Consequently, a regular tree language L is tree piecewise
testable if and only if the tree reduction of «y belongs to
JF. It remains to show that we can effectively compute the
image of the tree reduction given ay,. Since the tree reduction
factors through «,, this amounts to deciding which pairs of
elements of the syntactic forest algebra are identified under
the reduction, which we can do as long as we know which
elements are images under oy, of trees. It is easy to see that if
an element of Hj, is the image of a tree, then it is the image
of a tree of depth at most |Vz| in which each node has at most
|Hr,| children, so we can effectively decide this as well. M

VII. CLOSEST COMMON ANCESTOR

According to our definition of piece, ¢t = d(a+b) is a piece
of the forest s = dc(a + b). In this section we consider a
notion of piece which does not allow removing the closest
common ancestor of two nodes, in particular removing the
node c in the example above. The logical correspondent of
this notion is a signature where the closest common ancestor
(a three argument predicate) is added.

Given a forest s and three nodes x, ¥y, z of s we say that z
is the closest common ancestor of x and y if z is an ancestor
of both = and y and all other nodes of s with this property
are ancestors of z. We now say that a forest s is a cca-piece
of a forest t if there is an injective mapping from nodes of s
to nodes of ¢ that preserves the ancestor order and the closest
common ancestor relationship. An equivalent definition is that
the cca-piece relation is the reflexive transitive closure of the
relation

{(pt,pat) : tis a tree or empty}

A forest language L is called cca-piecewise testable if mem-
bership in L depends only on the set of cca-pieces of ¢ up to
some fixed size n.

As before, every cca-piecewise testable language is regu-
lar. The analogue of Proposition 1 holds as well. The cca-
piecewise testable languages are exactly those definable by
boolean combinations of X;-sentences over a signature that
includes predicates for lexicographic order, the ancestor order
and the closest common ancestor relation.

A first remark is that there are more cca-piecewise testable
languages than there are piecewise testable ones. Hence the
equations that characterize piecewise testable languages are
no longer valid. In particular, in the syntactic algebra of a
cca-piecewise testable language, the context monoid V' may
no longer be J-trivial. To see this consider the language L of
forests over {a, b, ¢} that contain the cca-piece a(b+c), this is
the language “some a is the closest common ancestor of some
b and ¢”. Then the context p = (ab)¥ is not the same as the
context ¢ = (ba)“O as p(b+c¢) ¢ L while q(b+c¢) € L. Note
however that p and ¢ satisfy the equivalence pt € L iff qt € L
for all trees t. The characterization below is a generalization
of this idea.

With the closest common ancestor, also the algebraic situa-
tion is more complicated: the cca-piecewise testable languages
no longer form a variety of languages and cca-piecewise
testability of a forest language L is not determined by the
syntactic forest algebra alone. Indeed it is not difficult to
see that they are not closed under inverse images of ho-
momorphisms that are either i) erasing (the image of some
al] is the empty context [J) or, ii) alJ is sent to u + f for
some context v and some non-empty forest f. However cca-
piecewise testable languages satisfy all the other properties
of varieties of languages and in particular they are closed
under the inverse image of homomorphisms that are “tree-
preserving”, i.e., the image of all is a tree-context u for all
a. Therefore, to obtain a characterization of cca-piecewise
testable languages, it is necessary to look at the syntactic
morphism oy : A® — (Hp,Vy) that maps each (h,v) to

10

its ~-class, and not just the algebra found in the image of
this morphism.

We call a context a tree context if it is nonempty and has
one node that is the ancestor of all other nodes, including the
hole.

We extend the cca-piece relation to elements of a forest
algebra (H,V) as follows: we write v < w if there are
contexts p = ¢ that are mapped to v and w respectively by the
morphism «. There is a subtle difference here: the < relation
on V depends on the particular syntactic morphism ay! By
abuse of notation, the elements of V;, that are image by the
syntactic morphism «y, of a tree context are also called tree
contexts. Similarly, the elements of I that are images of a
tree are also called trees (it is possible for an element to be
an image of both a tree and a non-tree, but it is still called a
tree here). Note that the notions of tree and of tree context for
the elements of H; and V}, are relative to «y,.

Theorem 28 A forest language L is cca-piecewise testable
if and only if its syntactic algebra satisfies the following
identities:

u?’h = u*vh = vu“h

(6)

whenever h is a tree or empty, and v < u are tree-contexts,
and

w(h) =w(h)+g=g+w(h) ifg=h (1

Because of the finiteness of Hy, and V7, one can effectively
decide whether an element of one of these monoids is the
image of a tree context or a tree. Whether or not v < u or
g = h holds can be decided in polynomial time using an
algorithm as in Corollary 6. Thus the theorem yields a decid-
able characterization of the cca-piecewise testable languages.
The proof follows the same outline as that of the proof of
Theorem 2, but the details are somewhat complicated. We
omit it for reasons of space, the proof can be found in the
appendix. In the appendix, we also include an equivalent set
of identities, where the conditions v < u and g < h are not
used.

REFERENCES

[1] M. Benedikt and L. Segoufin. Regular languages definable in FO. In
Symposium on Theoretical Aspects of Computer Science, volume 3404 of
Lecture Notes in Computer Science, pages 327 — 339, 2005.

M. Bojanczyk. Two-way unary temporal logic over trees. In Logic in
Computer Science, pages 121-130, 2007.

M. Bojariczyk and I. Walukiewicz. Characterizing EF and EX tree logics.
Theoretical Computer Science, 358(2-3):255-273, 2006.

R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.
I. Simon. Piecewise testable events. In Automata Theory and Formal
Languages, pages 214-222, 1975.

H. Straubing. Finite Automata, Formal Languages, and Circuit Complex-
ity. Birkhduser, Boston, 1994.

D. Thérien and T. Wilke. Temporal logic and semidirect products:
An effective characterization of the Until hierarchy. In Foundations of
Computer Science, pages 256-263, 1996.

D. Thérien and T. Wilke. Over words, two variables are as powerful as one
quantifier alternation. In ACM Symposium on the Theory of Computing,
pages 256-263, 1998.

T. Wilke. Classifying discrete temporal properties. In Symposium on
Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes
in Computer Science, pages 32—46, 1999.

(2]
(3]

(4]
(51

(6]
(71

(8]

[91

APPENDIX

This appendix is devoted to the proof of Theorem 28. We
first recall the statement of the theorem:

Theorem 28 A forest language L is cca-piecewise testable
if and only if its syntactic algebra satisfies the following
identities:

u?h = u“vh = vu*h

(6)

whenever h is a tree or empty, and v = u are tree-contexts,
and

w(h) =w(h) +g=g+wh) ifg=h (7)

The proof strategy is essentially the same as for Theorem 2;
but there is some tedium due to the closest common ancestor.

The proof that (6) and (7) are correct is the same as
Section IV-B. The only difference is that instead of Fact 9,
we use the following.

Fact 29 If r is any context, p < g are tree contexts, and ¢t is
a tree or empty, then rpt < rqt.

We now turn to the completeness proof in Theorem 28. The
proof is very similar to the one of the previous section, with
some subtle differences.

As before, we fix a language L whose syntactic forest tree
algebra (V, H) satisfies all the equations of Proposition 35.
We write « for the syntactic morphism.

We now write s ~,, t if the two forests s, ¢ have the same
cca-pieces of size n. Likewise for contexts.

The main step is to show the following proposition.

Proposition 30 For n sufficiently large, if ¢ is a tree or empty,
then pat ~,, pt entails a(pat) = a(pt).

Theorem 28 follows from the above proposition in the same
way as Theorem 2 follows from Proposition 11 in the previous
section. The reason why we assume that ¢ is either a tree
or empty is as follows: if s is an cca-piece of s, then s
can be obtained from s’ by iterating one of the following
two operations: removing a leaf, or removing a node which
has only one successor. We thus concentrate on showing
Proposition 30.

We will now redefine the concept of fractal for our new,
closest common ancestor setting. The key change is in the
concept of a vah-decomposition. We change the notion of
x € X being a vah-decomposition as follows: all conditions
of the old definition hold, but a new condition is added: either
2 has no descendants in X; or there is a minimal element of
X that has = as a proper ancestor. In other words, the part
of s[X] that corresponds to h is either empty, or is a tree. In
particular, s[X \ {z}] is a closest common ancestor piece of
s[X]; which is the key property required below. From now
on, when referring to a vah-decomposition, we use the new
definition.

The concept of a fractal 1 € X5,...,2, € X}, inside s is
also redefined to reflect the new definition: for each i, x; € X;
is a vah-decomposition of s in the new sense.

11

Using the same technique as without closest common an-
cestors, we show

Lemma 31 Let k£ € N. For n sufficiently large, if ¢ is a tree
or empty, then pat ~,, pt entails the existence of a fractal of
length k.

A fractal 1 € X4 - xp € X} inside s is called cca-
tame if s can be decomposed as s = qq1 ---qps’ (or s =
qqr - -+ q15') such that z1 € ¢, -+, 7, € g and such that
either:

o Each ¢; is a tree context whose root node belongs to

Xi\ {wi}.

o Each ¢; is a context of the form [+ ¢;, with ¢; a forest.

Lemma 32 Let £ € N. For n sufficiently large, if there is a
fractal of length k, then there is a cca-tame fractal of length
k.

Proof
The proof is essentially the same as for Lemma 11; only this
time we need to be more careful to satisfy the more stringent
requirements in a cca-tame fractal.

Let m = 2k + 2. Using the same technique as in the case
without closest common ancestor, if n is large enough then
we may extract a subfractal of length m where either:

o All the nodes z1, ..., x,, have the same closest common
ancestor. In this case, we can extract a cca-tame subfrac-
tal, where each context is of the form [+ ¢;.

The set Y {y

y is a closest common ancestor of some z;, z; } is
a chain. Using the same sort of reasoning as in
Lemma 16, we may assume that Y enumerated as
y1 < --- < Ym—1, and that between y; and y;4; we can
find the node z;. (There is a second case, where the
nodes ¥, ..., Y, are ordered the other way: with y;4
an ancestor of y;. This case is treated analogously.) In
particular, y; is the closest common ancestor of z; and
any of the nodes z;i1,...,2,,. Since X,;;; contains
both z; and z,;4;, each node y; belongs to the set
X;+1. This allows us to get the cca-tame fractal. We use
o € Xo,x4 € Xy,...,xor € Xoi as the fractal (recall
that m = 2k); while the decomposition qq; . ..qgs’ is
chosen so that ¢; has its root in g9;_1, and its hole in

Y2i+1-
O

We will now take a cca-tame fractal, and show that
a(pat) = a(pt).

Recall the definition of w;; and w;;; as the image under
of the context obtained from ¢;;1 - - - ¢; by restricting s to X;
and X, \ {x,}, respectively. Note that the latter is a cca-piece
of the former, by the new definition of fractals. This way, we
get:

8)

Wijl = Uj(141) Uijl = Ugj(141)

if the g; are tree-contexts then wu;;;, w;; are a tree-contexts

9

The definition of monochromaticity is the same as in the
previous section and Ramsey’s Theorem gives.

Lemma 33 If there is a cca-tame fractal of sufficiently large
size, then there is a monochromatic cca-tame fractal of size
m=w + 2.

We conclude by showing the following result:

Lemma 34 If there is a monochromatic cca-tame fractal of
size w + 2, then vah = vh.

Proof
Fix a monochromatic cca-tame fractal of size m > w + 1.
Since ., € X, is a vah decomposition, the statement of the
lemma follows once we show that « assigns the same type to
the forest s[X,,] and s[X,, \ {zm }]-

Recall the definition of w;;; and w;j; in the previous section.
Recall that the type of the forest s[X,,] can be decomposed
as

The rest of Section A is devoted to showing the above
proposition.

It is immediate to see that equation (6) implies equation (11)
and that equation (6) implies equation (12). We now show
that equations (6) and (7) implies equation (10). Let u and
v be two contexts and h be a tree. We want to show that
(uv)?h = (uv)“uh.

We consider several cases.

e In the first case we assume that © = ujus for some tree-
context us. In that case we have, using aperiodicity:

(uv)“h = (uru2v)*h = (u1ugv)(uugvuiugv)“h

Therefore,

(uv)“h = uq (ugvugugvug)“usvh

Notice now that usv =< usvujusvu; and that ugvujus =<
U VU U2VU. AS Uus 18 a tree-context, all the contexts involved
are tree-contexts and we can use equation (6) twice and replace

O‘(S[Xm}) = O‘(Q[Xm]) *U12m - U23m * U(m—1)mm * O‘(SI[XmD ugv by usvuius. This yields:

The type of s[X} \ {zx}] is decomposed the same way, only
U(k—1)kk 1 replaced by w(g_1)xs. Therefore, the lemma will
follow if

Ur2m * U23m * " U(m—1)mm = W12m " U23m """ W(im—1)mm -

Since the fractal is monochromatic, and since m is greater
than w, the above becomes

w w
Ur2m ~ U(m—1)mm = U12m * W(im—1)mm -

By (8) and monochromaticity, we have

Wim—1)ymm » U(m—1)mm = U(m—1)m(m+1) = W12m

We now have two cases. If all the ¢; are tree-contexts, we
conclude using equation (6) which can be applied because of
the above and (9). If all the g; are contexts of the form I+ f;,
we conclude using equation (7) which can be applied because
of (8). O

A. An equivalent set of equations.

In this section, we give a set of identities that is equivalent
to the one used in Theorem 28. The rationale is the same as
in Proposition 21: we want to avoid the use of v < w in the
identities.

Proposition 35 The conditions on the syntactic morphism
stated in Theorem 28 are equivalent to the following equalities:

(uv)?h = (uv)“uh (10)
whenever h is a tree or empty, and
(uv)? = v(uw)® (11)
whenever u and v are tree context elements, and
(u(d 4 vwh))¥g = (w(d+ vwh))“uw(d+ vh)g (12)

whenever u is a tree context and g, h are trees or empty.

(uv)“h = ug (ugvuiugvuy) usvurush

And we have

(uv)“h = (urusvurusv)*uusvusush

By aperiodicity we get the desired result:

(u0)?h = (vwvuv)“wvuh = (uwv)“uh
e The second case assume that v = wvjvy for some tree-
context vy and is treated similarly.
(uv)“h = (uv1v2)“h = (uv1v2)(uv1v2u)*h

Therefore,

(uv)“h = uwq (vouvy)“voh

Notice now that v9 < vouwv; and that vou < vouvy. As v is
a tree-context, all the contexts involved are tree-contexts and
we can use equation (6) twice and replace vy by wveu. This
yields:

(uv)“h = uvq (vouvy)*vouh

And we have

(uv)“h = (uwv)“uvuh = (uv)“uh

e When none of the above cases works, we must have u =
O+ f and v = O+ g. In that case we have (uv)*h = w(f +
g) + h, and we conclude using equation (7) as f < (f + g).

We now consider the converse implication in Proposition 35.
Assume that equations (10)-(12) hold. We only need to show
that equations (6) and (7) are satisfied, since commutativity of
H is in both sets of equations.

We first show the following lemma:

Lemma 36 If u is a tree context, v, w,w’ are (not necessarily
tree) contexts with w’ < w, and g, h are either a tree or empty,
then the following identity holds

(w(O+ vwh))¥g = (u(O + vwh))* (u(d +vw'h)g (13)

Note that the identity (7) is a direct consequence of the
above, by taking u, v to be the empty context, and g, h to be
the empty tree. We will also use the above lemma to show (6),
but this will require some more work.

Proof
The proof is by induction on the number of steps used to
derive w’ < w.
o Consider first the case when w,w’ can be decomposed
as

w=wwy w =wwy, w] = w,wy =< wy

Two applications of the induction assumption give us:

(w(d + vwiwah))*(u(d +

(w(d + vwiwah))¥g
vwiwhh)g

(u(@ + vwiwyh))“g
vwiwyh)g

(u(@O + vwywhih))?(w(@d +

As wu is a tree context, these can then be combined to
give the desired result.

o Consider now the case when w,w’ can be decomposed
as

W = Wi Waws w' = wiwg wy < wy, wh < wh

with w} a tree context or empty. We first use the induction

assumption to get

(u(O 4+ vwywawsh))¥g = (w0 + vwywews))* (w(O +
vwrwawhh)g

By applying the equation (12), we get

(v(O+ vwiwawih))?g = (w(O + vwywewsh))* (w(d+
vwiwih)g

Note that it is important here that w4h is going to be

either a tree context or empty. Finally, we apply once
again the induction assumption to get

show that u“h = u“vh. If v = vyvy where both v; and v,
are tree-contexts then we consider vo first and v, next:

u?h = u“voh = u“vivoh .

It is important here that voh is a tree.

Therefore it is enough to consider the case where v is of
the form (0 + f) for some letter a and some forest f. From
v X u we get u = uja(0 + g)us where uy and uy are tree-
contexts and f =< g. Then we have

uh = v?a(d + g)h = vw?a(d + g)a(d + g)h = ---
u’(a(@d0+ g))“h .

It will therefore be enough to show
(a(0+9))“h = (a(0+g))“a(0 + f)h

for f < g. This, however, is a consequence of (13).

The second part of equation (6) is shown the same way. This
time however, we need a symmetric variant of (13), which is
shown the same way:

(u(O 4+ vwh))* = (u(d+ vw'h) (u(0 + vwh))* .

(w(O 4+ vwiwih))¥g = (w0 + vwyw}h))* (w0 4+ vwjwih)g

Again, as u is a tree context those three identities can be
combined sequentially and give us the desired result.
Finally, consider the case when w, w’ can be decomposed
as

w =0+ w0 w' =0+ w0 w) = wy

In this case, the identity becomes:
(w(@d+v(h+w10))¥g = (v(O+ v(h+w10)))* (w(O+
v(h + wi0))g

The result easily follows by induction assumption, by
collapsing v(h +) into v.
d

We now derive the first part of equation (6). Let u, v be
tree contexts such that v < wu, and let A be a tree. We will

13

