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ABSTRACT
Motivated by reasoning tasks in the context of XML lan-
guages, the satisfiability problem of logics on data trees is
investigated. The nodes of a data tree have a label from a
finite set and a data value from a possibly infinite set. It is
shown that satisfiability for two-variable first-order logic is
decidable if the tree structure can be accessed only through
the child and the next sibling predicates and the access to
data values is restricted to equality tests. From this main re-
sult decidability of satisfiability and containment for a data-
aware fragment of XPath and of the implication problem for
unary key and inclusion constraints is concluded.

Categories and Subject Descriptors
F.4.1 [Mathematical logic and formal languages]: Math-
ematical logic; H.2.3 [Database management]: Languages—
Query languages

General Terms
Theory
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1. INTRODUCTION
Most theoretical work on XML and its query languages

models XML documents by labeled ordered unranked trees,
where the labels are from a finite set. Attribute values are
usually ignored. This has basically two reasons, which are
not independent. First, the modeling allows to apply au-
tomata based techniques, as automata operate on trees of
this kind. Second, extending the model by attribute values
(data values) quickly leads to languages with undecidable
static analysis (see, for instance [1, 3, 12, 20]).

Nevertheless, there are examples of decidable static rea-
soning tasks involving attribute values [2, 6]. The motiva-
tion for our work was to find a logical approach for such
tasks.

It is immediately clear that full first-order logic is far too
powerful for this purpose. Satisfiability for first-order logic
with a predicate for data values equality is undecidable al-
ready on strings [4]. There are several possible candidates
for more appropriate logics, including temporal logics or
fragments of first-order logic. In this work, we concentrate
on a (classical) fragment of first-order logic, two-variable
logic. There are several good reasons to consider this frag-
ment. It is known that on many kinds of structures this
fragment is decidable [14]. On ordered, unranked trees, it
corresponds in a natural way to the navigational behavior
of XPath, and it can express many interesting integrity con-
straints.

Before we describe the technical contributions of the pa-
per, we first discuss the connections with XML processing
in more detail.

Core-XPath, the fragment of XPath capturing its naviga-
tional behavior introduced by Gottlob et al. [13], is by now
well understood. In particular, it corresponds to FO2(<
, +1) on unranked ordered trees [18]. Here, FO2(<, +1) is
the two-variable fragment of first-order logic that uses the
order < and successor +1 relations, along with the labels of
the nodes. The labels are encoded by unary relations, one
for each of the (finitely many) possible labels. The symbol
“<” refers to two binary predicates: one for comparing the
descendant/ancestor relationship of two nodes and one for
the preceding/following relationship of two siblings. Sim-
ilarly, “+1” also refers to two binary predicates: one for
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comparing the parent/child relationship of two nodes and
one for comparing the next/previous sibling relationship of
two siblings. Core-XPath is decidable even in the presence
of DTDs and the complexity of many of its fragments has
been studied in the literature. We refer to [3, 12] and the
references therein for a comprehensive survey.

In the presence of data values a simple extension of Core-
XPath is to allow equalities of the form p/@A = q/@B
inside qualifiers, meaning that the value of the A attribute
of some node accessible by a path matching p equals the B
attribute value of some node accessible by a path matching
q. We denote this fragment by Core-Data-XPath. As shown
in [12], Core-Data-XPath is undecidable and both [3, 12]
studied fragments of Core-Data-XPath. To be able to reason
about Core-Data-XPath, it is natural to consider the logic
FO2(∼,<, +1), the extension of FO2(<, +1) with a binary
predicate ∼ that checks data value equality of two nodes.

It is easy to verify1 that FO2(∼, <, +1) is strictly con-
tained in Core-Data-XPath and therefore it is natural to
wonder whether FO2(∼, <, +1) is decidable.

We do not solve the question whether FO2(∼, <, +1) is
decidable, here. Nevertheless, we show that the decidability
of FO2(∼,<, +1) is a difficult problem as it would imply
deciding multicounter automata on trees and the linear logic
MELL, which are known as open issues in their respective
fields (see [9] and the references therein).

However, we show that the logic FO2(∼,+1) is decidable.
It turns out that this implies the decidability of several rea-
soning problems for XML which involve data values. We
give some examples of applications next.

• Common reasoning tasks for XML are the consistency
and the implication problems for integrity constraints.
Given a finite set S of constraints and a further con-
straint ϕ, one asks whether each document satisfying
all constraints in S also satisfies ϕ. This boils down
to testing if there is a document that satisfies all con-
straints in S but not ϕ, a satisfiability question. The
most common family of integrity constraints are key
and inclusion constraints. Many of them involve only
one attribute. It is easy to see that such constraints
can be expressed in FO2(∼,+1). Our main result im-
plies the decidability of the implication problem for
such constraints. This was already known from [6],
which shows that the complexity of implication, with-
out schemas, is polynomial.

• An advantage of the logical approach is that reason-
ing problems can be relativized to documents satisfy-
ing schemas. Schemas are usually captured by regular
tree languages (where only the labels and not the data
values are used). It is known that regular tree lan-
guages can be characterized by EMSO2(+1) formulas,
i.e., formulas where an FO2(+1) formula is preceded
by a block of existential quantifiers ranging over sets of
nodes. When satisfiability is concerned, it is straight-
forward that decidability of FO2(∼,+1) implies decid-
ability of EMSO2(∼,+1). Thus, by combining formu-
las in a suitable way, it follows easily that the implica-
tion problem for unary key and inclusion constraints

1The inclusion of FO2(∼, <,+1) into XPath is done as in the
translation of FO2(<, +1) into unary-TL over words [11].
It is strict because FO2(∼, <, +1) cannot express the test
Self/@A = Self//b//c/@A

(and thus also for foreign key constraints) is decidable
also relative to a schema given by a regular tree lan-
guage. This result was already known from [2], who
shows that the satisfiability problem is in NPTime.

• Furthermore, tree automata can be used to assign types
to nodes of a document. Integrity constraints can refer
to such types. Therefore, as these types can also be
expressed by EMSO2(∼, +1) formulas, the implication
problem for more involved integrity constraints is still
decidable.

• Another application of the logical result considers the
containment problem for XPath with attribute equal-
ities. We present a fragment of XPath which allows
equalities and inequalities on attribute values for which
the containment problem can be reduced to satisfia-
bility of FO2(∼, +1). By combining techniques, we
obtain decidability of the containment for this XPath
fragment even relative to a schema consisting of a reg-
ular tree language and unary constraints.

In the following we give an overview of the structure of
the paper together with the main contributions. After the
introduction and a section which fixes some notation, Sec-
tion 3 contains the main technical result of the paper, that
FO2(∼, +1) (and therefore EMSO2(∼, +1)) is decidable. In
Section 4, we show that satisfiability and implication for
unary key and inclusion constraints is decidable. Section 5
establishes decidability of the containment problem for an
XPath fragment with attribute equalities. In Section 6 we
give strong evidence that decidability of FO2(∼, <, +1) on
unranked trees is a difficult problem by reducing the non-
emptiness problem for vector addition tree automata to it.
Most of the proofs will be found in the full version of the
paper.

An additional contribution of this work is a unified frame-
work for several decidability questions that were studied sep-
arately in the past: consistency of integrity constraints and
satisfiability of queries involving data.

Related work Closely related to our work are the papers
[3, 12] and the references therein. Most of the fragments
they consider are inside Core-XPath (i.e., without data val-
ues). However several of the fragments are in Core-Data-
XPath. In [3] the decidable fragments of Core-Data-XPath
that have data equality tests either don’t have negation or
don’t have recursion. They also don’t have horizontal navi-
gation and therefore miss an important aspect of XML nav-
igation features. The paper [12] extends the results of [3]
by including the horizontal axis but the only decidable frag-
ment presented in this paper does not have negation. The
logic FO2(∼,+1) does have negation and it can investigate
nodes that are arbitrarily deep in the input tree. Finally
the focus of [3, 12] was to have the precise complexity for
the decision procedure of the fragment considered while the
precise complexity of FO2(∼, +1) is still an open issue: An
inspection of the current proof of Theorem 1 gives an up-
per bound of 3NExpTime, and the best lower bound we
currently have is NExpTime-hardness.

The logic considered in [1] in order to solve the type infer-
ence problem is also incomparable to FO2(∼, +1). It uses
patterns with variables for the data values together with
equality and inequality constraints on the variables in order
to extract the relevant pieces of data. It can use arbitrar-
ily many variables in the patterns, something FO2(∼, +1)
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cannot do, but there is no recursion in the patterns and
therefore it can only inspect the tree up to a given constant
depth.

As we have already mentioned, restricting FO to its two-
variable fragment is a classical idea when looking for de-
cidability [14]. Over graphs or over any relational struc-
tures, FO is undecidable, while its two-variable fragment is
decidable [19]. This does not imply anything on the de-
cidability of FO2(∼, +1), since the equivalence relation and
the two tree successor relations cannot be axiomatized in
FO2. A recent paper generalized the result of [19] in the
presence of one or two equivalence relations [16]. Again
this does not apply to our context as we also have two suc-
cessor relations. However [16] also showed that the two-
variable fragment of FO with three equivalence relations,
without any other structure, is undecidable. This implies
that FO2(∼1,∼2,∼3, +1) is undecidable and that manipu-
lating more than two different attributes at the same time
quickly leads to undecidability. Note that this does not
imply anything on XPath, as already in the presence of
two equivalence relations the logic FO2(∼1,∼2, +1) is no
longer included in XPath. For instance, XPath cannot check
that a node, represented by x has the following property:
∃y y �= x ∧ x ∼1 y ∧ x ∼2 y expressing that there exists
another node with the same two attribute values as x.

Results on consistency of integrity constraints in the pres-
ence of DTDs were surveyed in [2]. All of the results were
obtained for DTDs where the tag names and the types are
coupled (all tag name have the same type), and the exten-
sion to decoupled DTDs (also known as extended DTDs)
was left open. In particular [2] showed that it is decidable
whether a set of unary keys and foreign keys is consistent
with a DTD. The decidability of FO2(∼,+1) implies that
it is decidable whether any set of integrity constraints de-
finable in FO2(∼,+1) is consistent with an extended DTD.
In particular, as (absolute) unary keys and foreign keys are
definable in FO2(∼, +1) this extends one of the the results
of [2].

Another related line of research is to consider logics and
automata on words with data values. In [5, 15, 22] automata
and logics over words with data values were considered. The
automata of [5] had very limited expressive power, while
the logics and automata of [15, 22] were undecidable. In
[4] it is shown that FO2(∼, <, +1) is decidable on words
with data values. In [10] an extension of LTL was given
which can manipulate data values using a freeze operator.
Their decidable fragment is incomparable to FO2(∼, <, +1)
as it can only process the word from left-to-right, but can
express properties that FO2(∼, <, +1) cannot. In any case
those references considered only the case of words, which
turns out to be considerably easier.

2. NOTATIONS AND PRELIMINARIES
In this paper we consider unranked, ordered, labeled trees

with data values. A data tree t over Σ has a set of nodes,
where every node v has a label v.l ∈ Σ and a data value2

v.data ∈ N.
A data tree can be seen as a model for a logical formula.

The universe of this structure is the set of nodes of the tree,
moreover, there are the following predicates available:

2We could choose any other infinite set instead of N, as
formulas can compare values only with respect to equality.

• For each possible label a ∈ Σ, there is a unary pred-
icate a(x), which is true for all nodes that have the
label a.

• The binary predicate x ∼ y holds for two nodes if they
have the same data value.

• The binary predicate E→(x, y) holds for two nodes if
x and y have the same parent node and y is the im-
mediate successor of x in the order of children of that
node.

• The binary predicate E↓(x, y) holds if y is a child of x.

• The binary predicates E⇒ and E⇓ are the transitive
closures of E→ and E↓, respectively.

We write FO2(∼, <, +1) for two-variable logic with all
these predicates and FO2(∼, +1) for the logic without E⇒
and E⇓. By FO2(<, +1) and FO2(+1) we denote the re-
spective logics without ∼.

Abusing the notation, we allow ourselves to use these
predicates outside of logical formulas, e.g., we write v ∼ w
for two nodes v, w that have the same data value. We also
write v ∼ d if the data value of the node v is d.

For a data tree t, the underlying graph G(t) of t is the
graph induced by E→ and E↓ . A set of nodes of a data tree
t is called connected if the induced subgraph is connected.

For a data value d, the d-class of t is the set of all nodes
with data value d. A class is a d-class, for some d. A zone is
a maximal connected set of nodes with the same data value.
Two zones are adjacent if they are connected by an edge
(in the underlying graph). Zones are illustrated in Figure 1.

We associate with every node v in a data tree a node
profile, which contains the information which of the right
neighbor, the left neighbor and the parent of v have the same
data value as v. Let Pro denote the set of the eight possible
node profiles. For a data tree t over Σ, the profiled tree of
t is the data tree over Σ × Pro obtained by adding to each
node its profile.

For a data tree t over Σ, the data erasure of t is the tree
over Σ obtained from t by ignoring the data value v.data of
each node.

3. DECIDABILITY OF FO2(∼, +1)
ON TREES

In this section, we present the main result of the paper.

Theorem 1. The logic FO2(∼, +1) is decidable on un-
ranked data trees.

The proof is a bit involved and can be found in the full
version of the paper.

It consists of three main parts:

• First, the satisfiability problem for FO2(∼,+1) on un-
ranked data trees is reduced to a puzzle problem which
asks for the existence of a data tree with certain prop-
erties.

• Next, it is shown that, every solvable puzzle problem P
even has a solution with certain size constraints which
only depend on the size of P .

• Finally, it is proved that whether a solution fulfilling
these size constraints exists can be tested by a certain
kind of (extended) tree automaton which has decidable
non-emptiness.
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We next define automata and puzzles. There are several
possible equivalent definitions of automata over unranked
trees. We use the one of [7, 17] (also known as hedge au-
tomata), which is easier to translate into EMSO2(+1).

A nondeterministic automaton over unranked trees
has a set Q of states, along with relations

δh, δv ⊆ Q × Σ × Q ,

which are called the horizontal and vertical transition re-
lations respectively. A run of such an automaton over a
Σ-tree t is a labeling ρ : V → Q of the tree’s nodes with
states such that for every node v with label a we have:

• If v has a horizontal successor w, then the triple
(ρ(v), a, ρ(w)) belongs to the horizontal transition re-
lation δh.

• If v has no horizontal successor and its parent is w,
then the triple (ρ(v), a, ρ(w)) ∈ δv belongs to the ver-
tical transition relation δv.

A run is accepting when: a) every leaf without horizontal
predecessors is labeled with one of the designated initial
states I ⊆ Q; and b) the state and label of the root belong
to the designated accepting set F ⊆ Q × Σ. A tree is
accepted if it admits an accepting run. A set of unlabeled
trees is called regular if it is recognized by an automaton.

A zone A run

Figure 1: Illustration of zones (each node is repre-
sented with its data value) and runs (each node is
represented with the state given by the run).

Fact 1. For every regular tree language there is an equiv-
alent formula of the form ∃R1, . . . , Rnϕ and vice versa, where
R1, . . . , Rn are set variables and ϕ ∈ FO2(+1).

Note that Fact 1 talks about trees without data values.
A puzzle over Σ is a pair (L, F ), where L is a regular

language over Σ×Pro and F is a set of accepting pairs of
the form (D, S) ∈ 2Σ × 2Σ where D and S are disjoint. A
data tree t over Σ is a solution to (L, F ) if

• the data erasure of the profiled tree of t belongs to L,
and

• for each class in t there is some accepting pair (D, S) ∈
F such that all nodes in that class have labels from
D ∪ S and every label in D occurs exactly once.

We call D the dog letters of the pair and S the sheep
letters.

3.1 Reduction to puzzles
In this subsection we sketch how satisfiability of FO2(∼

, +1) can be reduced to solving puzzles.

Proposition 1. For every formula ϕ of FO2(∼, +1) one
can calculate a puzzle that has a solution if and only if ϕ is
satisfiable.

Note that the opposite reduction does not hold as a puzzle
can express any regular property on trees. However it is easy
to see that being a solution of a puzzle can be expressed
in EMSO2(∼, +1). In this sense, puzzles can be seen as a
normal form for EMSO2(∼, +1).

The proof is by rewriting the formula ϕ into a normal
form, called “data normal form”. We begin by defining this
normal form and showing how it can be converted into a
puzzle.

The idea behind data normal form is that, by introduc-
ing existential quantification over predicates, all FO2(∼, +1)
formulas can be expressed using boolean combinations of
very simple building blocks. These building blocks are called
simple formulas. There are five kinds of simple formulas:

(a) A data-blind property, i.e. one that does not use ∼.

(b) “Each class contains at most one node with α.”

(c) “Each class with at least one α has no β.”

(d) “Each class with at least one α also has a β.”

(e) “Each position with α has profile p ∈ Pro”

The last kind is parameterized by a profile p, and the four
latter kinds are parameterized by types α, β, which are con-
junctions of unary predicates or their negations. A formula
is in data normal form if it is a disjunction of formulas:

∃R1 · · ·Rm

^
i∈I

θi,

where each formula θi is simple.

Lemma 1. For every formula ϕ in data normal form we
one calculate a puzzle that has a solution if and only if ϕ is
satisfiable.

Proof Idea. Basically, formulas of the forms (b), (c) and
(d) can be turned into dog and sheep pairs. Conditions of
the forms (a) and (e) are covered by the regular language of
the puzzle.

The following lemma completes our reduction of two-variable
logic to puzzles from Proposition 1. A similar result for data
strings is shown in [4].

Lemma 2. Every formula of FO2(∼,+1) can be effectively
transformed into an equivalent formula in data normal form
with at most doubly exponentially many disjuncts, each of at
most exponential size.

To give the flavor of the proof of this lemma, let us con-
sider the following property, which is not in data normal
form: “every class contains either zero or at least two oc-
currences of the label a”. This can be transformed into data
normal form as follows:

There exists a unary predicate R such that each
class with at least one a also has an a ∧ R and
an a ∧ ¬R.
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3.2 A Small Model Property
We fix a puzzle P = (L, F ) for the rest of this subsection.

We assume that P has a solution. Our goal is Proposition
2, which says that this solution can be transformed into a
solution where “few” zones are “large”.

We also fix a nondeterministic automaton A over un-
ranked, profiled trees without data that recognizes the reg-
ular language L and an accepting run ρ of this automaton
which associates a state of Q to each node of t. For simplic-
ity, we assume that the state of a node implies its profile –
that is two nodes with the same state have the same profile.
Any automaton A can be easily transformed into one that
satisfies this assumption.

We need some more terminology which we define next.

• The set of all children of some node is called a sibling-
hood. Any contiguous sequence of siblings is called an
interval.

• A twin-pair p = (v, v′) is a pair of two consecutive
siblings, i.e., v′ is the horizontal successor of v.

The left interface of an interval I is the twin-pair
(v, v′) consisting of the left-most node v′ of I and its
left neighbor v. If there is no such left neighbor then
we set v = ⊥. Correspondingly, we define the right
interface.

An interface, in which the two data values are different
is called a border interface.

• A node with data value d is also called a d-node. An
interval consisting solely of d-nodes is called d-pure.
If the exact value of d does not matter, we simply call
it pure. An interval is called complete if both its
interfaces are border interfaces.

• If the parent of an interval (node, siblinghood) has
value d we call it a d-parent interval (node, sibling-
hood).

• For a data value d, a d-path is a set of d-valued nodes
connected by the vertical successor relation. A data
path is a d-path for some d.

Figure 2 illustrates some of these terms.

d1|d1

complete intervalz }| {
complete pure intervalz }| {
|d2 |d2|d2|d2|| {z }

pure interval

d2| d3|d4 |d4|d5|d5|| {z }
interval

d5| d6|d7|d7|

| {z }
siblinghood

Figure 2: Different types of intervals

Given M, N ∈ N, a data tree is said to be (M, N )-
reduced if it has at most M data zones of size more than
N and at most M siblinghoods with more than N complete
pure intervals.

Proposition 2. From each puzzle P , numbers M, N can
be computed such that P has a solution if and only if it has
an (M, N)-reduced solution.

The proof of Proposition 2 consists of a long sequence of
steps combining cut-and-paste and counting arguments; in
each step we modify an existing solution into one which is
closer to being (M, N)-reduced. These steps form the most
technical part of the paper. The precise statement of the
propositions together with their proofs will appear in the
full version of this paper. We only give some intuition here.

More precisely, we show that if there is a solution for P
there is one with the following properties:

(1) At most M1 complete pure intervals have more than N1

nodes.

(2) At most M2 siblinghoods contain more than N2 com-
plete pure intervals.

(3) There is a set P of at most M3 zones such that all data
paths disjoint with

SP have at most N3 nodes.

All the constants used above depend only on the size of the
puzzle P , see Table 1 for their asymptotic values.

Const. Value Const. Value

M1 |F ||Q|O(|Q|) N1 O(|Q|2|Σ|)
M2 |F ||Q|O(|Q|) N2 O(|Σ||Q|3)
M3 |F ||Q|O(|Q|) N3 O(|Σ||Q|2)

Table 1: The constants used for pruning.

Once we have such a solution, one can easily see that at
most

M = M1 + M2 + M3

zones contain more than

N = (N1 · N2)
N3+1

nodes, thereby proving Proposition 2.
The proof of the items mentioned above is done sequen-

tially. We first prove (1) by reducing the size of most inter-
vals. Then we take care of (2) and reduce the size of most
siblinghoods. This second step is achieved without increas-
ing the size of any interval, thus (1) remains true. Finally
we prove (3) reducing the depth of most zones. Again this
is done without violating steps (1) and (2).

Each step is rather technical but follows the same pattern.
We distinguish two cases. In the first case we assume that
the number of problematic data values yielding a long inter-
val, or a big siblinghood, or a deep zone is “huge”, where
“huge” is a constant that we can compute from P . In this
case, we show that we can transfer part of the big inter-
val/siblinghood/zone while changing its data value in a way
that it decreases the number of problematic data values.
The “huge” number guarantees that it is always possible to
find a new data value which satisfies all the conditions re-
quired for being able to do such a transfer without violating
the conditions of P .

In the second case, when the number of problematic data
values is small, we prove (1), (2) and (3) independently for
each data value. In other words we prove a local variant
of (1), (2) and (3) where each statement is relativized to
a data value d: d-pure intervals, d-parent siblinghoods, d-
paths. This can be done by moving parts of the tree from
one place to another without changing any data value.

The details will be found in the full version of the paper.
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3.3 Satisfiability for Small Models
The final step of the proof of 1 consists of the following

proposition:

Proposition 3. Given a puzzle P and numbers M, N , it
is decidable whether P has an (M, N)-reduced solution.

The proof is by reduction to the emptiness of linear con-
straint tree automata. We first define these automata and
show that their non-emptiness problem is decidable. After-
wards we present the reduction.

A linear constraint automaton over unranked trees is ob-
tained from a (nondeterministic) tree automaton by adding
linear constraints on the number of times states appear in a
run.

A linear inequality over variable set X is an expression
of the form X

x∈X

kx · x ≥ 0 kx ∈ Z .

A linear constraint over X is a boolean combination of
linear inequalities. A solution of a linear constraint is a
valuation ν : X → N satisfying it in the usual way.

A linear constraint tree automaton (LCTA) is a
nondeterministic unranked tree automaton A with state space
Q, together with a linear constraint over Q. The LCTA ac-
cepts a tree if the tree admits a run ρ : V → Q of A on t,
which accepts in the usual sense, and which moreover satis-
fies the linear constraint wrt. its Parikh image (|ρ−1(q)|)q∈Q.

It is not hard to see that emptiness of LCTA is decid-
able, since context-free languages have semilinear Parikh
images, and semilinear sets are closed under intersection.
The following result shows that the complexity of deciding
emptiness is NPTime, by a similar proof as [21]. The latter
paper shows how to compute in linear time an existential
Presburger formula for the Parikh image of a context-free
language described by a grammar. The proof in [21] can
be directly adapted to extended context-free grammars, i.e.,
grammars with rules A → LA, where LA ⊆ Σ∗ is a regu-
lar language giving the possible right-hand sides of the rule
with left-hand side A.

Theorem 2. Emptiness of LCTA is in NPTime.

Note that it is important here that the linear constraints
speak of states and not of letters of the input. Even over
words, an automaton with linear constraints over letters in
the input cannot recognize the language {bmanbn | m, n ∈
N}.

The following proposition shows that when restricted to
(M, N)-reduced solutions, LCTA can recognize the data era-
sure of puzzle solutions:

Proposition 4. Given a puzzle P over Σ and numbers
M, N , one can compute an LCTA that recognizes the data
erasure of (M, N)-reduced solutions of P .

Let the puzzle P = (L, F ) be given, with L a regular
language of unranked trees over Σ × Pro and F the set of
accepting pairs (D, S) ∈ 2Σ × 2Σ. Recall that for each ac-
cepting pair (D, S) each dog-letter of D must appear exactly
once in each class of a solution of P which fulfills (D, S). Re-
call also that each class is partitioned into zones. Each zone
of a class may contain some of the dog-letters. The set of
zones containing a dog letter induces a partition of D. For

each accepting pair (D, S) and each partition π of D, we
call the triple (D, S, π) a class type. A class is of class
type (D, S, π) if it fulfills (D, S) and the zones of the class
partition D according to π.

We fix a tree automaton A with state space Q that accepts
L. We also fix the following constant.

K = 2M + (N + 1)2|Σ| + 2 .

Let ν be a function that assigns to every class type a
number from {0, . . . , K}. We define Lν to be the set of trees
t′ such that t′ is the data erasure of some (M, N)-reduced
profiled data tree t such that A has an accepting run ρ over
t and, for every class type τ :

• If ν(τ ) < K, then t has exactly ν(τ ) classes of type τ .

• If ν(τ ) = K, then there are at least K classes in t of
type τ .

Lemma 3. For every function ν, there is an LCTA Aν

that recognizes Lν . The size of Aν is exponential in the size
of P .

Proposition 4 follows immediately from this lemma, by
taking a disjunction of automata over all possible functions
ν.

4. INTEGRITY CONSTRAINTS
XML documents usually come with a specification, often

stated in XML Schema, which tells what to expect in the
document. It contains a structural part which includes a
mechanism for assigning types to nodes of the tree and a
set of integrity constraints such as keys and inclusion con-
straints.

It is natural to ask whether a specification is consistent
and whether a set of integrity constraints is minimal or not
(implication problem). One of the advantages of a logic-
based approach to decidability is the compositionality of
logic. This holds especially for FO2(∼,+1), which is closed
under all boolean operations and, as far as satisfiability is
concerned even under existential set quantification.

In this section, we will see that it follows quite directly
from Theorem 1 that the consistency and the implication
problem for unary keys and inclusion constraints are de-
cidable, even relative to structural constraints given by a
regular tree language.

We first deal with regular tree languages and types.
Let EMSO2(∼,+1) be the extension of FO2(∼, +1) con-

sisting of all formulas starting with a sequence of existential
quantifiers over unary predicates (i.e., set variables) followed
by an FO2(∼,+1) formula. For satisfiability, it does not
matter whether unary predicates are part of the signature or
existentially quantified in the prefix of a formula. Therefore,
from Theorem 1 we immediately get the following corollary.

Corollary 1. The logic EMSO2(∼,+1) over unranked
data trees is decidable.

Basically, the two standard XML schema languages, DTD
and XML Schema, are able to define only sets of documents
that are regular tree languages (but not all regular tree lan-
guages!). In the following, we thus assume that the allowed
set of documents is described by a tree automaton A. The
type of a node v is the state of A on v in an accepting
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<schedule>
<course ID="5">

<lecturer faculty="12"> </lecturer>
<building nr="1"> </building>

</course>
</schedule>

schedule

course

ID
(5)

lecturer

faculty
(12)

building

nr
(1)

Figure 3: An XML document and its data tree en-
coding. In the encoding, data values are in paren-
theses. Data values for non-attribute nodes are not
used.

run.3 Recall from Fact 1 that every regular tree language is
expressible in EMSO2(+1).

A key constraint is an expression of the form τ [X] → τ
where τ is a type of a node and X a set of attributes of
that node. It says that the X-attributes of a node of type
τ uniquely determine the node. Stated in other terms, for
each combination of attribute values there is at most one
node of type τ having these values.

An inclusion constraint is an expression of the form
τ [X] ⊆ τ ′[Y ] where τ and τ ′ are two node types and X
and Y are sequences of attributes of the same cardinality.
It says that for each node u of type τ there is a node v
of type τ ′ such that the X-attributes of u have the same
(corresponding) values as the Y -attributes of v. Key and
inclusion constraints are said to be unary if |X| = |Y | = 1.

The consistency problem for unary keys and unary in-
clusion constraints relative to a regular tree language is as
follows. Given an (unambiguous) tree automaton A and
a set K of unary key and inclusion constraints4, it asks
whether there is a tree t which is accepted by A and ful-
fills the constraints. The implication problem asks, given
A and sets K1, K2 of constraints, whether each tree accepted
by A which fulfills K1 also fulfills K2.

Proposition 5. The consistency and implication prob-
lems for unary keys and unary inclusion constraints relative
to a regular tree language are decidable.

Proof. We only consider the more general, implication
problem. We encode XML documents as trees in a way
which closely corresponds to the XPath data model [23],
i.e., the attributes of a node v are represented by attribute
nodes (labelled by the attribute name) which are children
of v. I.e., the B-attribute value of a node v is given by the
value of its (unique) child labelled with B. An example of
this encoding is presented in Figure 3.

Let A and K1, K2 be given, where the states of A induce
the types in the constraints. By Fact 1, from A we can de-

3In XML Schema it is basically required that A has a unique
accepting run, thus the type of each node is uniquely deter-
mined.
4Recall that the types used in these constraints are states
of A.

rive an EMSO2(∼,+1) formula of the form ∃R1, . . . , RnϕA

which (1) holds in a tree t if and only if t ∈ L(A) and (2) such
that, for each state τ of A, a position satisfies the predicate
Rτ if and only if the position has type τ (uses the state τ
in the unique accepting run). Thus, a unary key constraint
U : τ [B] → τ can be expressed by the FO2(∼, +1) formula
ϕU =

∀x∀y

0
@ (B(x) ∧ ∃yRτ (y) ∧ E↓(y, x))∧

(B(y) ∧ ∃xRτ (x) ∧ E↓(x, y))∧
x ∼ y

1
A → x = y .

An inclusion constraint U : τ1[B1] ⊆ τ2[B2] can be expressed
by the FO2(∼, +1) formula ϕU =

∀x (B1(x) ∧ ∃y(Rτ1(y) ∧ E↓(y, x))) →
∃y (x ∼ y ∧ B2(y) ∧ ∃x(Rτ2(x) ∧ E↓(x, y))).

Thus, the implication problem reduces to satisfiability of the
following formula of EMSO2(∼, +1):

∃R1, . . . , Rn(ϕA ∧
^

U∈K1

ϕU ∧ ¬
^

U∈K2

ϕU ).

Note, that by combining key and inclusion constraints also
foreign key constraints can be covered. In [2] a special case of
Proposition 5 was proved: the consistency problem for unary
keys and foreign keys is NP-complete relative to DTD types.
The extension to XML Schema’s typing system (and to any
regular tree language) was left as an open question. Note
also that we do not know yet the precise complexity of the
implication problem, we only have the upper-bound given
by the analysis of the proof of Theorem 1: 3NExpTime.

5. XPATH CONTAINMENT
In this section we define a fragment of XPath, which we

call LocalDataXPath, which is captured by FO2(∼, +1), for
the purpose of static analysis. More precisely, satisfiability
and containment test for unary queries expressed in these
fragments, possibly in the presence of integrity constraints
and schemas, can be reduced to satisfiability of FO2(∼,+1).

Most fragments of XPath for which the containment prob-
lem has been studied and established to be decidable, do
not allow reference to attribute values. The language Lo-
calDataXPath allows the comparison of attribute values,
but compared with Core-Data-XPath it has two restrictions:
(1) navigation is not allowed along the “transitive” axes as
Descendant and FollowingSibling and (2) in an equality
on attribute values either one of the location paths has to
be absolute (i.e., starting from the root), or both (relative)
location paths are strongly limited.

In LocalDataXPath only the following axes are allowed:

Axis := Child | Parent | NextSibling |
PreviousSibling | Self | ElseWhere

Every axis corresponds to a binary relation on tree nodes.
For instance, the Child axis is true for node pairs (v, w)
where w is a vertical successor of w. The other axes are
defined analogously. The new ElseWhere axis corresponds to
the relation of pairs (v, w) of nodes, where v �= w. It is added
in order to allow at least some kind of global navigation.

We define the syntax of LocalDataXPath next. For the
purpose of this paper it is given in a simplified form as to
compared with XPath.
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LocPath := RelLocPath | AbsLocPath
AbsLocPath := ′/′

RelLocPath

RelLocPath := Step | RelLocPath ′/′
Step

Step := Axis :: NameTest Predicate
∗

NameTest := Name | ′ ∗′
Predicate := ′[′PredExpr′]′

PredExpr := LocPath |
LocPath

′/′
Attr EqOp AbsLocPath

′/′
Attr |

Self :: NameTest ′/′
Attr EqOp Step

′/′
Attr |

PredExpr and PredExpr |
PredExpr or PredExpr | not PredExpr

Attr := ′@′
Name

EqOp := ′ =′ | ′! =′

An expression derived from LocPath defines a binary re-
lation on tree nodes (a set of paths), while an expression
derived from PredExpr defines a unary relation (a set of
tree nodes). These are defined using mutual recursion.

To obtain decidability, we restrict (in-)equalities of the
form Self :: NameTest ′/′ Attr EqOp Step ′/′ Attr, which we
call relative equalities, a bit further. We say that an at-
tribute name B is associated to a label a in an XPath ex-
pression e if the pair (a, @B) or (∗, B) occurs as (NameTest,
Attr) pair in a relative (in-)equality of e.

A set of expressions is safe if the set of induced associa-
tions is a function from labels to attribute names. In partic-
ular if the wildcard ∗ is present, there is a unique attribute
name occurring in all relative sub-expressions.

Example 1. The following (safe) expressions selects a node
v if all of its children with label b have the same data value
as v:

¬(Child :: b/@B ! = Self :: ∗/@B).

The following expression is also safe:

Child :: b/@B1 = Self :: a/@B2.

Theorem 3. Satisfiability and Containment for (unary
or binary) LocalDataXPath safe expressions is decidable. This
holds even relative to a schema consisting of a regular tree
language and unary key and inclusion constraints.

Proof. (sketch) The proof is, of course, by translating
the expressions into FO2(∼, +1) formulas. We encode XML
documents as in the proof of Proposition 5 (using the XPath
data model) with a small extension that we will introduce
later. As long as expressions do not compare attribute val-
ues, there is no need to restrict the location paths: We can
just use the standard inclusion of Core-XPath into FO2(<
, +1) of [18].

This easily extends to equality expressions with at most
one relative location path by, intuitively, first simulating the
relative path, then jumping to a node with the same data
value and checking that this node satisfies its absolute path
constraint by simulating the path backwards to the root.
Note that it seems crucial here that the second path is ab-
solute and thus does not start at the current node, as the
two variables are needed for the navigation and thus the

current node can not be remembered. As an example the
expression

Child :: a/Child ::b/@B1 =

/Child :: c/NextSibling :: d/@B2.

is translated into the following equivalent formula ϕ(x):

∃yE↓(x, y) ∧ a(y)∧
∃xE↓(y, x) ∧ b(x)∧

∃yE↓(x, y) ∧ B1(y)∧
∃x x ∼ y ∧ B2(x)∧

∃yE↓(y, x) ∧ d(y)∧
∃xE→(x, y) ∧ c(x)∧

∃yE↓(y, x) ∧ ¬∃xE↓(x, y).

It only remains to explain how we can deal with relative
(in-)equalities. To this end, we exploit the fact that the
encoding of XML documents used so far only needs data
values in attribute nodes. Thus, we can use the data val-
ues of element nodes for our purpose. Note, that the safety
restriction on relative (in-)equalities ensures that for each
element only one attribute is used in relative (in-)equalities.
Therefore, we use data trees in which this attribute value
(if any) is stored. Note, that an additional FO2(∼, +1) for-
mula can check that the data values in element nodes are
consistent with those in the attribute nodes.

As an example, if (Child :: b/@B1 = Self :: a/@B2) is
a subexpression of our XPath expression at hand, then we
consider data trees in which the data value of a-nodes is
interpreted as the B2-attribute and the data value of b-nodes
as the B1-attribute. Thus, the expression is equivalent to
the formula a(x) ∧ ∃yE↓(x, y) ∧ b(y) ∧ x ∼ y.

It is now straightforward to combine the techniques de-
scribed so far with those of Section 4 to obtain the second
statement of the theorem.

Containment for binary queries can be handled by having
two distinguished nodes in each tree which correspond to a
pair in the query result.

It should be noted that satisfiability of a similar fragment
of XPath with all axes besides Following and Preceding

can be reduced to satisfiability of FO2(∼,<, +1). Unfortu-
nately, we do not know if satisfiability of FO2(∼, <, +1) is
decidable.

6. A LOWER BOUND FOR FO2(∼, <, +1)
In this section we show that satisfiability of FO2(∼, <, +1)

on (even binary) trees is at least as hard as checking non-
emptiness for vector addition tree automata. The decid-
ability of the latter has been an open problem for many
years and is, in turn, equivalent to a notorious open prob-
lem in linear logic, the decidability of MELL (Multiplica-
tive Exponential Linear Logic) (see [9] and the references
therein). Therefore proving decidability of FO2(∼, <, +1)
on trees seems to be quite challenging.

A vector addition tree automaton over binary trees is a
kind of bottom-up automaton which assigns to every node,
besides a state, a vector over N. A transition has three vec-

tors �a,�b,�c, three states q0, q1, q and a label l as parameters.
It can be applied to a node v with children v0, v1 if

• v has label l
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• v0 has state q0 and v1 has state q1

• �x − �a ≥ �0 and �y − �b ≥ �0, where �x and �y denote the
vector at v0 and v1, respectively.

If the transition is applied then v gets state q and the vector

(�x − �a) + (�y −�b) + �c.
More formally a vector addition automaton A is a

tuple
(Σ, k, Q, F, δ0, δ) where Σ is a finite alphabet, k is the arity
of the vectors of the automaton, Q is a finite set of states,
F ⊆ Q a set of accepting states, δ ⊂ Σ× (Q×N

k)2×Q×N
k

is a finite (!) set of transitions and δ0 ⊂ Σ×Q×N is a finite
set of initial transitions.

A run of the automaton assigns to each node a state and
a k-ary vector. For a leaf of label a, the state q and the
vector �n have to fulfill δ0(a, q, �n) holds. For inner nodes,
some transition has to be applicable, as described above.

A tree is accepted if the root carries an accepting state
and the vector �0.

Note that the automata cannot test whether a compo-
nent of a vector is equal to zero (otherwise the model would
be immediately undecidable) and that vectors never assume
negative values.

A different view of vector addition automata considers
the components of the vectors as counters. In the following
proof we will adapt this view to improve intuition.

Theorem 4. For any vector addition tree automaton A,
a formula ϕA ∈ FO2(∼,<, +1) can be computed such that
L(A) �= ∅ iff ϕA has a model.

Proof. (sketch) Let k be the number of counters of A
and Q be its set of states.

The formula ϕA uses one unary predicate Pq for each q ∈
Q and two unary predicates Ii, Di for each i ∈ [1, k]. The
intended meaning of Ii is that counter i is increased by one
while Di means that counter i is decreased by 1. The models
of ϕA are going to be trees coding possible runs of A. In
such a tree a transition

δ(a, q1, (a1, · · · , ak), q2, (b1, · · · , bk), q, (c1, · · · , ck))

of A is represented by a subtree which has, for each i, in
its top branch ci symbols Ii, in the left branch ai symbols
Di and, in the right branch bi symbols Di, as depicted in
Figure 4. The leave conditions are handled in the same
fashion. That a tree consists of such patterns can be easily
described in FO2(+1).

To check that all counters always have non-negative values
and the value zero at the root, data values are employed. To
this end, checking for all i ∈ [1, k] that (1) all nodes labeled
Ii have different data values, (2) all nodes labeled Di have
different data values, (3) for each node labeled Ii there is an
ancestor labeled Di with the same data value, (4) for each
node labeled Di there is a descendant labeled Ii with the
same data value.

It is easy to express (1) - (4) in FO2(∼, <, +1). Further,
it is easy to see that (1) - (4) imply that the overall num-
ber of decrements of each counter is equal to the number
of increments, therefore all counters have value zero at the
root. Moreover each decrement is preceded by an increment
(below), therefore the value of each counter is always non-
negative. (The reader should convince her- or himself that
FO2(∼,<, +1) does not seem to be able to check whether
at an inner node a counter has value zero.)

q

I1

I1

I2

a

D1

D1

D3

q1

D2

D3

q2

Figure 4: Coding a transition: An example with
δ(a, q1, (2, 0, 1), q2, (0, 1, 1), q, (2, 1, 0))

7. CONCLUSION
An interesting aspect of this work is to present in a unified

framework decidability results that were studied separately
in the past: consistency of integrity constraints and satis-
fiability of queries. In the future we hope to be able to
also include related problems into the picture like the type
inference problem [1].

Our main technical result is the decidability of FO2(∼
, +1), which can be seen as a non trivial decidable fragment
of XPath. A close inspection of the proof of Theorem 1 gives
a upper bound of 3NExpTime for the decision procedure.
A NExpTime-hardness lower bound is easy to obtain. It
would be interesting to know the precise complexity of the
problem.

Another obvious open question is to know whether this
can be extended by allowing more features in the language.
We have already mentioned the open and challenging prob-
lem of the decidability of FO2(∼,<, +1).

Maybe more doable would be to know whether FO2(∼
, +ω) is decidable. This logic can use predicates of the form
Ek

↓ and Ek
→ testing whether two nodes are at distance ex-

actly k (downwards or rightwards). This is a proper ex-
tension, since FO2(∼,+1) cannot express the fact that a
position x has the same data value as its grandfather. How-
ever this feature would be useful in practice in order to be
able to express tree pattern queries which do not only de-
pend on the labels of the nodes but also how their data
values compare. It would also be useful in order to express
more integrity constraints, in particular some of the rela-
tive keys and relative inclusion constraints which are stated
relative to a given context. Such integrity constraints were
investigated in [2] in the presence of DTDs. We leave the
decidability of FO2(∼,+ω) as an open problem.

Another interesting issue would be to find an algebraic
form of the considered logics. In particular, we would like
to find a decidable model of tree automata that can ma-
nipulate data values and express at least all of FO2(∼,+1).
Unfortunately two-way automata using registers or pebbles
for comparing data values are undecidable even when using
only one such register or pebble [8].
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