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Part I

Introduction
In this part, we introduce monads and their algebras. As a gentle introduc-
tion, we use finite words and ω-words as examples of monads in Section 1.
In Section 2, we present the formal definition of monads and their algebras.
In the following sections, we show how some results about languages can be
stated and proved on the level of monads. This includes a monad version of the
Myhill-Nerode theorem (Section 3), a monad version of Eilenberg’s pseudova-
riety theorem (Section 4), and some parts of the connection between regular
languages and mso (Sections 5 and 6).
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1 Examples of monads for words

Before introducing monads, we describe how monoids can be viewed as a special
case of algebras in a monad. Define a ∗-algebra A to be a set A called its
universe1, together with a multiplication operation mulA : A∗ → A, which
maps the single letter word to its unique letter, and which is associative in the
sense that the following diagram commutes

(A∗)∗
mulA∗ //

(mulA)∗ ��

A∗

mulA��
A∗

mulA

// A
,

wher (mulA)∗ is the function that applies mulA to each label of a word, and
mulA∗ is the function which flattens a word of words into a word, e.g.

mulA∗((abc)(ε)(acaa)) = abcacaa.

A monoid can be interpreted as a ∗-algebra, by taking mulA to be the associative
product operation in the monoid, and every ∗-algebra is obtained this way.
Therefore ∗-algebras are the same thing as monoids.

A morphism between two ∗-algebras A and B, which is the same thing as a
monoid morphism, is a function h : A → B between their universes such that
the following diagram commutes

A∗
h∗ //

mulA ��

B∗

mulB��
A

h
// B

,

The set of all words A∗ forms a ∗-algebra, with mulA∗ as the operation, and
this ∗-algebra is the free one generated by A. A ∗-language is a subset of Σ∗,
for some finite alphabet Σ. A ∗-language L ⊆ Σ∗ is called recognisable if there
is a finite ∗-algebra A and a ∗-morphism h : Σ∗ → A such that membership
w ∈ L is uniquely determined by α(w). These are the standard notions of lan-
guages recognised by finite monoids, which coincide with languages recognised
by automata or defined by regular expressions.

The reader will observe that the above definitions of “algebra”, “morphism”,
“language”, “recognisable language” were defined only in terms of the following
four notions:

1. how a set A is transformed into a set A∗;

2. how a function f : A→ B is lifted to a function f∗ : A∗ → B∗;

3. the flattening operation from (A∗)∗ → A∗;

1From now on, we adopt the convention that algebras are written in boldface as in A,B,C,
while their universes are written without boldface as in A,B,C.
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4. how to represent an element of A as an element of A∗.

These four notions, subject to certain axioms, are what constitutes a monad.
As we shall see, based on these notions one can also define notions such as recog-
nisable language, syntactic algebra, pseudovariety, mso logic, profinite object,
and even prove some theorems about them.

Before presenting a formal definition of monads, we introduce more exam-
ples. One example is the monad of nonempty words A+, which corresponds to
semigroups in the way that A∗ corresponds to monoids. The following section
contains a more interesting example, namely a monad for infinite words.

1.1 Possibly infinite words

For a set A, define A∞ to be the set of finite or ω-words over A, i.e.

A∞
def
= A∗ ∪Aω.

There is a natural multiplication operation

mulA∞ : (A∞)∞ → A∞

which substitutes each position for the word that it contains. In particular, if
the argument of the composition contains an infinite word on some position,
then all subsequent positions are ignored.

Define an ∞-algebra A to be a set A, called its universe, together with a
multiplication operation mulA : A∞ → A such that a single letter word a is
mapped to the letter a, and the following diagram commutes

(A∞)∞
mulA∞ //

(mulA)∞ ��

A∞

mulA��
A∞

mulA

// A
,

where (mulA)∞ is the function that applies mulA to the label of every position
in a word from (A∞)∞. An ∞-algebra is essentially the same thing as an ω-
semigroup, see [11], with the difference that ω-semigroups have separate sorts
for finite and infinite words.

A finite∞-algebra is one with a finite universe. In a truly finite algebra, one
would also want the multiplication operation to be somehow finitely represented.
It turns out that such a finite representation necessarily exists, as stated in the
following lemma, which was implicit in the original Büchi paper [6] on infinite
words, and explicit in Wilke’s work [19] on ω-semigroups.

Theorem 1.1 Consider an ∞-algebra A. Then mulA is uniquely determined
by its values on elements of the form ab and aω.

Proof.
Using the Ramsey theorem, one shows that for every w ∈ A∞ one can find a
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decomposition v ∈ (A∗)∞ such that all letters in the decomposition v, which are
elements of A∗, have the same value under the multiplication operation, with
the possible exception of the first letter.�

2 Monads and their algebras

For people who are afraid of categories (like the author), we underline that this
paper uses only the most rudimentary notions of category theory: namely the
definition of a category (objects and composable morphisms between them),
and of a functor (something that maps objects to object and morphisms to
morphisms in a way that is consistent with composition).

Almost all examples in this paper use the category of sets, where objects
are sets and morphisms are functions; or maybe the category of multi-sorted
sets, where objects are multi-sorted sets for some fixed set of sort names, and
morphisms are sort-preserving functions.

2.1 Definition of monads

A monad over a category consists of a functor T from the category to itself, and
for every object X in the category, two morphisms

unitX : X → TX and mulTX : TTX → TX,

which are called the unit and multiplication operations. The monad must satisfy
the axioms given in Figure 1.

One example of a monad that we have already seen is the functor which
maps a set X to the set X∗ of finite words over X, and which maps a function
f : X → Y to the letter-to-letter lifting f∗ : X∗ → Y ∗. Other examples that
we have seen are the monad for finite nonempty words X+, and the monad for
possibly infinite words X∞. In the second part of this paper, we give a large
number of other monads, which model things like labelled total orders, trees, or
words with distinguished positions.

2.2 Eilenberg-Moore Algebras

For this paper, the most important thing about monads is that they have a
natural corresponding algebras. An Eilenberg-Moore algebra in a monad T, or
simply T-algebra, is a pair A consisting of a universe A, which is an object in
the category underlining the monad, together with a multiplication morphism

mulA : TA→ A,
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X
f //

unitX
��

Y

unitY
��

TX
Tf
// TY

TTX
TTf //

mulX
��

TTY

mulY
��

TX
Tf

// TY

.

TTTX
mulTTX //

TmulTX
��

TTX

mulX
��

TTX
mulTX

// TX

TX
idX

##

unitTX//

TunitX
��

TTX

mulX
��

TX
mulTX

// TX

Figure 1: The axioms of a monad are that the above four diagrams commute
for every object X in the category and every morphism f : X → Y . The
upper diagrams say that the unit and multiplication are natural. The lower left
diagram says that multiplication is associative, and the lower right says the unit
is consistent with multiplication.

such that the mulA ◦ unitA is the identity, and which is associative in the sense
that the following diagram commutes:

TTA
mulTA //

TmulA ��

TA
mulA��

TA
mulA

// A
.

The axioms of a monad say that TA, equipped with the operation mulTA, forms
a T-algebra. A T-morphism between two T-algebras A and B is a function
h between their universes which respect their multiplication operations in the
sense that the following diagram commutes:

TA
Th //

mulA ��

B
mulB��

A
h

// B
.

2.3 Languages and colourings

In this section we develop the basic definitions of recognisable languages over a
monad. These notions require the following parameters, apart from the monad
itself, which we call the setting : the underlying category, a notion of finite alpha-
bet, and a notion of finite T-algebra. So far, we do not place any restrictions on
the notions of finiteness, e.g. when considering sets with infinitely many sorts,
the universe of a finite algebra will not be finite in the same sense as a finite
algebra.
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Many examples are in the setting of sets, where the category is the category
of sets (objects are sets and morphisms are functions), finite alphabets are finite
sets, and finite algebras are algebras with finite universes. Fix a setting and a
monad T for the following definitions.

Recognisable colourings and languages. A coloring of a T-algebra A is
a morphism from its universe to some object in the underlying category. A
coloring is said to be recognised by a T-morphism h : A → B if it factors
through h. A coloring is called T-recognisable if it is recognised by some T-
morphism with a finite target, according to the notion of finite T-algebra given
in the setting.

Consider an alphabet Σ, according to the notion of alphabet given in the
setting. In all of the examples where sets or sorted sets are used, an alphabet
will be a possibly sorted set with finitely many elements. A T-language over an
alphabet Σ is a subset L ⊆ TΣ, which assumes that the underlying category
has a notion of subset. Notions of recognisability are inherited from colourings,
by using the characteristic function of a language.

Beyond recognisable languages. The recognisable languages will play the
role of regular languages in the monad. One could go beyond regular languages.
For instance, there is a natural monad version of context-free languages, where
the production rules have right hand sides in the monad applied to the terminals
and nonterminals, and one can prove some theorems, like closure of context-free
languages under intersection with recognisable languages. Context-free lan-
guages are beyond the scope of this paper.

3 Syntactic morphisms

This section presents a monad generalisation of the Myhill-Nerode theorem,
which gives a sufficient condition for colourings, and therefore also languages,
to have a syntactic (i.e. minimal) morphism. The generalisation only works in
the setting of sorted sets, and therefore also in the setting of normal sets, and I
have trouble generalising it beyond that. Fix the setting of sorted sets, for some
choice of, possibly infinitely many, sort names. A finite sorted set is one which
has finitely many elements, in particular it can use only finitely many sorts.

Finitary algebras. If T is a monad, then a T-algebra A is called finitary if
for every w ∈ TA, there is some finite A0 ⊆ A such that w ∈ TA0. Sometimes,
a monad is such that every T-algebra is finitary, e.g. this is the case for the
monad of finite words A∗.

Theorem 3.1 [Syntactic Morphism Theorem] Consider a monad T in the set-
ting of sorted sets. Let f be a colouring of an algebra A, which is recognised
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by a T-morphism h into some finitary T-algebra. There exists a surjective T-
morphism into a finite T-algebra

syntf : A→ Af ,

called the syntactic morphism of f , which recognises f and which factors through
every surjective T-morphism recognising f . Furthermore, syntf is unique up to
isomorphisms on Af .

Note that if A itself is finitary, then f is recognised by the identity T-
morphism on A. Therefore, if a monad T is such that every T-algebra is finitary,
then every colouring of a T-algebra has a syntactic morphism. This implies that
every colouring has a syntactic morphism in monads such as the monad of finite
words that corresponds to monoids, the monad of nonempty finite words that
corresponds to semigroups, and several monads for describing finite trees that
will be described later in the paper. Before proving the theorem, we give an
example which shows how that a syntactic morphism might not exist in general.

Example 1. Consider the monad of infinite words and the language

L = {an1ban2b · · · : the sequence ni is unbounded, i.e. lim supni =∞.}

We will prove that L does not have a syntactic morphism. Consider an equiva-
lence relation ∼ on natural numbers such that every equivalence class is finite.
Define a function

h∼ : {a, b}∞ → N ∪ (N2 × N/∼) ∪ {⊥,>}︸ ︷︷ ︸
A

as follows. If the input is infinite, then h∼ returns ⊥ or > depending on whether
the input belongs to L. If the input has no b’s, then h∼ returns the length.
Finally, if the input contains at least one b, then h returns the triple consisting
of: the number of a’s before the first b; the number of a’s after the last b; the
equivalence class of the largest n such that the input has an infix banb (or the
equivalence class of 0 if there is no such n). One can show that the kernel of h∼
is a congruence in the natural sense, and therefore A can be equipped with the
structure of an ∞-algebra which makes h an ∞-morphism recognising L.

Consider two equivalence relations ∼1 and ∼2 on natural numbers, such
that their transitive closure has infinite equivalence classes, e.g. ∼1 identifies
even numbers with their successors, while ∼2 identifies even numbers with their
predecessors. If there were a syntactic morphism h, then it would need to factor
through both h∼1

and h∼2
, and therefore it would need to identify the same

value to all words in ba∗b. By associativity, h would identify all words with
infinitely many b’s, and therefore it would not recognise L. �

The rest of Section 3 is devoted to proving the Syntactic Morphism Theorem.
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3.1 Proof of the Syntactic Morphism Theorem

We are working in the setting of sorted sets; fix therefore a set of sort names,
and a monad T in this setting. We first show that the syntactic morphism
is unique up to ismorphisms on the target algebra. This is a consequence of
the following lemma, which is not specific to the setting of sorted sets. In
the lemma, the crucial distinction is between a morphism (in the underlying
category) between universes of two T-algebras, and such a morphism which is
a T-morphism, i.e. one that is consistent with the multiplication in the two
algebras.

Lemma 3.2 Let T be a monad, let A,B,C be T-algebras, and let

f : A→ B and g : A→ C

be T-morphisms such that, as morphisms on the universes,

A
f //

g
��

B

h
��
C

commutes for some h, and f is surejctive. Then h is a T-morphism.

Proof.
This should be a standard lemma on Eilenberg-Moore alebras, citation needed.
By the assumption of the lemma, the following diagram commutes

TA
mulTA // A

g
��

f // B

h
��
C

Because both f and g are T-morphisms, it follows that the diagram

TA
Tf //

Tg ""

TB
mulTB // B

h
��

TC
mulTC // C

commutes. By the commuting diagram in assumption of the lemma, with T
applied to it, we see that the following diagram commutes.

TA
Tf // TB

Th
��

mulTB // B

h
��

TC
mulTC // C

Because f is surjective, and therefore also Tf , it follows that the diagram above
commutes after removing TA and Tf , which is the definition of h being a T-
morphism. �
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Congruences. Define a congruence in an T-algebra A to be a morphism
g : A → B from the universe of A to some object in the underlying category,
such that g ◦ mulA factors through Tg. For a congruence, one can define a
multiplication operation on B, which makes it into a T-algebra such that g
is a T-morphism. Therefore, a congruence is simply a T-morphism with the
algebraic structure on the target being ommitted.

Polynomials. For an object X in the category, define the set of polynomials
over A with variables X to be

polXA
def
= T(A t {X}).

For a valuation v : X → A, we consider the evaluation morphism

[[ ]](v) : polXA→ A

which first replaces the variables in the argument polynomial by the valuation v,
and then applies the multiplication in A. It is not clear how to define the other
kind of evaluation [[p]]( ) in a meaningful way so that it is a morphism in the
category, i.e. it is a sort preserving function. The problem is that the valuation
might have a different sort than the polynomial (in other words, the input and
output might have different sorts). The same problem applies to defining [[ ]]( ).

Unary polynomials. In the proof of the Syntactic Morphism Theorem, spe-
cial attention is devoted to unary polynomials. In the setting of (unsorted) sets,
which covers the well-known versions of the Syntactic Morphism Theorem for
monoids or finite automata, the classical construction is to identify elements that
cannot be distinguished by unary polynomials. To define unary polynomials in
the setting of sorted sets, one needs a little care with the sorts. For a sort τ , a
unary polynomial with input sort τ over A is defined to be a polynomial over A
with variables {τ}. By abuse of notation, if τ is a sort then we write polτA and
[[p]](a), respectively, instead of the formally correct pol{τ}A and [[p]](τ 7→ a).

In the setting of (unsorted) sets, there is only one sort and unary polyno-
mials can be composed forming a monoid. In the setting of sorted sets, unary
polynomials form a category in the following sense. The objects of the category
are sorts. Morphisms from τ to σ are unary polynomials, where the sort of the
variable is τ and the sort of the polynomial itself is σ. Composition is defined
as follows: for polynomials

τ
p // σ

q // π ,

their composition is the polynomial q ◦ p obtained by substituting p for variable
σ in q, this polynomial satisfies

[[q ◦ p]](a) = [[q]]([[p]](a)) for every a ∈ A of sort τ
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Definition of the syntactic morphism. Consider a colouring

f : A→ C,

as in the assumptions of the Syntactic Morphism Theorem. Define an equiv-
alence relation ∼ on the universe A which identifies a, b ∈ A if they have the
same sort τ and

f([[p]](a)) = f([[p]](b)) for every p ∈ polτA.

Define Af to be the equivalence classes of ∼, and define the syntactic morphism

syntf : A→ Af

to be the function which maps a to its equivalence class under ∼. A tempting
alternative would be to use the function a 7→ fa, unfortunately it is not clear
how to make this function into a morphism of the underlying category.

We will show that syntf is a congruence, and therefore there is a multipli-
cation operation on Af image which makes syntf into a surjective T-morphism.

Lemma 3.3 If h : A→ B recognises f , then syntf factors through h.

Proof.
We need to show that every a1, a2 ∈ A satisfy

h(a1) = h(a2) implies a1 ∼ a2.

Because a1, a2 have the same images under h, they must have the same sort,
call it τ . To prove a1 ∼ a2 we need to show that

f([[p]](a1)) = f([[p]](a2)).

holds for every p ∈ polτA. Because h recognises f , it suffices to show

h([[p]](a1)) = h([[p]](a2)). (1)

Define h(p) ∈ polτB by applying h to all values from A that appear in p and
leaving the variable τ alone. Because h is a morphism of algebras, we have

h([[p]](ai)) = [[h(p)]](h(ai))) for i = 1, 2,

which implies (1) because the above right side only depends on h(ai). �

We write g1 ≈ g2 for morphisms g1, g2 : X → A if their values are pointwise
equivalent under ∼, i.e. when syntf ◦ g1 = syntf ◦ g2.

Lemma 3.4 Let X be finite, and let g1, g2 : X → A. Then

g1 ≈ g2 implies mulA ◦ Tg1 ≈ mulA ◦ Tg2

Proof.
We begin by proving the lemma for a special case.
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A special case. Consider the special case when F = At{τ} for some sort τ ,
and g1, g2 are the identity on A. (Strictly speaking, this is not really a special
case, because the universe of a finite algebra might not be finite, which is the
case for instance in categories with infinitely many sorts.) Let us write ai for
gi(τ). The assumption of the lemma says that a1 ∼ a2. To prove the lemma for
the special case, we need to show that

[[w]](a1) ∼ [[w]](a2))

holds for every w ∈ polτA. Let w be as above, and let σ be its sort. By
unraveling the definition of ∼, the above equality says that every v ∈ polσA
satisfies

f([[v]]([[w]](a1))) = f([[v]]([[w]](a2))). (2)

By composing the polynomials v and w, we get a unary polynomial v◦w ∈ polτA
such that

[[v]]([[w]](ai)) = [[v ◦ w]](ai) for i = 1, 2

By assumption that a1 ∼ a2, the right side above does not depend on i, which
proves (2). This completes the proof of the special case of the lemma.

General case. The proof is by induction on the number of arguments where
g1 and g2 give different results. When there are no such arguments, the result is
immediate. When there is one argument, the result follows from the special case.
The induction step is straightforward. Choose some x with g1(x) 6= g2(x), and
define g11

2
: X → A to be the same as g1, on all arguments, except for x which

is mapped to g2(x). The result follows by applying the induction assumption
to the pair g1 and g11

2
, and then to the pair g11

2
and g2. �

Recall the assumption that the coloring f is recognised by a morphism

h : A→ B

into a finitary T-algebra. By Lemma 3.3, there is some

syntBf : B→ Af with syntf = syntBf ◦ h.

We will prove that syntBf is a congruence in B.

Lemma 3.5 syntBf is a congruence in B.

Proof.
Recall that the definition of a congruence says that syntBf◦mulB factors through
T(syntBf). Because B is finitary, it suffices to show that

syntBf ◦mulB ◦ Tη factors through T(syntBf) ◦ Tη
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holds for η : F → B with finite domain. By surjectivity of h, it suffices to show

syntBf ◦mulB ◦ T(h ◦ η) factors through T(syntBf) ◦ T(h ◦ η) (3)

holds for every finite η : F → A with finite domain. Let us simplify the left side
of the above:

syntBf ◦mulB ◦ T(h ◦ η) = syntBf ◦ h ◦mulA ◦ Tη = syntf ◦mulA ◦ Tη (4)

with the first equality coming T being a functor and h being a T-morphism, and
the second equality coming from the definition of syntBf . Let us simplify the
right side of (3):

T(syntBf) ◦ T(h ◦ η) = T(syntBf ◦ h ◦ η) = T(syntf ◦ η) (5)

with the first equality coming from T being a functor, and the second equality
coming from the definition of syntBf . Therefore, we are left to prove that the
morphism in (4) factors through the one in (5). In other words, we need to show
that for every w1, w2 ∈ TF satisfy

Tη(w1) ∼ Tη(w2) implies mulA ◦ Tη(w1) ∼ mulA ◦ Tη(w2)

where ∼ on the left side is, formally speaking, the pointwise lifting of ∼ to TA.
Let then w1, w2 be as in the assumption of the above implication.

Assumption 1 If w1, w2 ∈ TF have the same value under some Tg, then there
is some w ∈ T(F × F ) which projects to w1 and w2, respectively.

This means that there is some w ∈ T(F × F ) such that

wi = Tπi(w) and η ◦ π1 ≈ η ◦ π2.

The result then follows by applying Lemma 3.4 to η ◦ π1 and η ◦ π2. �

By the above lemma, there is a multiplication operation on Af which makes
it into an algebra Af such that syntBf is a T-morphism. Therefore, syntf =
syntBf ◦ h is a T-morphism from A to Af , as the composition of T-morphisms.
This completes the proof of the Syntactic Morphism Theorem.

4 Pseudovarieties

Eilenberg’s pseudovariety theorem says that, in the case of monoids, language
pseudovarieties and algebra pseudovarieties, which will be defined below, are
in bijective correspondence. The theorem implies that if L is a language pseu-
dovariety, then the membership problem L ∈ L can be decided only by looking
at the syntactic monoid of L, and one need not look at the accepting set, nor
at the information about which letters are mapped to which elements of the
monoid. A typical application is that definability in first-order logic, or various
fragments thereof, can be determined based only on the syntactic monoid. The
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theorem does not give an algorithm to determine this, though, the algorithm is
usually found in a case-by-case way.

Here we prove that the theorem works in general for monads in the setting
of sets, with the same proof as in the case of monoids. Surely Eilenberg must
have known this, since he invented both the pseudovariety theorem and algebras
in abstract monads, but I have not found this result in his book.

Actually, we prove a slightly more general version, for the setting of sorted
sets, because many of our examples monad will be for sorted sets. This gen-
eralisation subsumes pseudovariety theorems for: finite words in both monoid
and semigroup variants [8], ∞-words [18], scattered linear orderings [1], finite
trees [14]. When there are infinitely many sorts, which will be the case for some
of our examples, additional assumptions are needed, namely languages are re-
quired to be finitely sorted, and algebras are required to be finitely observable
and finitely generated, as defined below.

Language pseudovarieties. Call a language finitely sorted if there are finitely
many sorts where the language is nontrivial (a language is trivial on some sort
if it contains everything or nothing on that sort). When there are finitely many
sorts, every language is finitely sorted. If L ⊆ TΣ is a T-language then a deriva-
tive of L is a language of the form [[p]]−1(L), where p is a unary polynomial.
Note that polynomials are typed in the sense that they have input and output
sorts; and the derivative will contain only elements of the input sort and will
only depend on elements of L in the output sort.

Definition 4.1 A T-language pseudovariety is a class finitely sorted T-recognisable
T-languages which is closed under Boolean combinations, derivatives, and pre-
images under T-morphisms.

In the above definition, a T-language is formally treated as its characteristic
function, which means that a language comes with a description of its domain.
The reason for this is that for instance when T is the monad of finite words,
then there are language pseudovarieties (e.g. languages that only depend on the
length of a word) that contain the language a∗ over the alphabet {a}, but do
not contain the same set a∗ when seen as a language over the alphabet {a, b}.

Algebra pseudovarieties. Call a T-algebra A finitely observable if there is
a finite set of sorts S0 such that for every a, b ∈ A with sort τ , a = b holds if
and only if

[[p]](a1) = [[p]](a2)

holds for every unary polynomial with input sort τ and output sort in S0. It
is not difficult to show that a T-algebra is finitely observable if and only if it is
the syntactic algebra of some colouring that is constant on all but finitely many
sorts. A T-algebra A is called finitely generated if there is some finite subset
A0 of the universe such that multiplication is surjective when restricted to TA0.
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When there are finitely many sorts, every algebra where the universe is finite
on every sort is finitely observable and finitely generated.

Definition 4.2 A T-algebra pseudovariety is a class of T-algebras that are fi-
nite, finitely observable and finitely generated, and such that the class is closed
under finite products, images of surjective T-morphisms, and subalgebras.

The Pseudovariety Theorem. For a class L of recognisable T-languages,
define AlgL to be the class of finite T-algebras, which are finitely generated and
finitely observable, and which only recognise T-languages from L. For a class A
of finite T-algebras, define LanA to be the finitely sorted T-languages recognised
by T-algebras from A. The Pseudovariety Theorem says that these mappings
are mutual bijections when restricted to pseudovarieties.

Theorem 4.3 [Pseudovariety Theorem] Let T be a monad in the setting of
sorted sets. The mapping Lan is a bijection between T-algebra pseudovarieties
and T-language pseudovarieties, and its inverse is Alg .

We begin by showing that Alg and Lan produce pseudovarieties when given
pseudovarities (of appropriate types, respectively); actually not all closure prop-
erties are needed for this part. If L is a T-language pseudovariety, then AlgL is
easily seen to be a T-algebra pseudovariety. Actually, to prove this, we only need
to assumption that L is closed under Boolean combinations. This is because
every T-language recognised by A×B is a Boolean combination of T-languages
recognised by A and B. If A is any class of finite T-algebras, in particular a
pseudovariety, then LanA is easily to be a T-language variety.

To prove the Pseudovariety Theorem, it remains to show that if C and A
are pseudovarieties of T-colorings and T-algebras respectively, then

Alg LanA = A and LanAlgL = L.

By definition, the class AlgLanA consists of finite T-algebras A that are finitely
observable, finitely generated, and such that every finitely sorted T-language
recognised by A is recognised by some T-algebra from A. Thererefore

Alg LanA ⊇ A.

Again by definition, the class Lan Alg L consists of finitely sorted T-languages
that are recognised by some finite T-algebra that is finitely observable, finitely
generated, and which only recognises T-languages from L. Therefore

LanAlgL ⊆ L.

The remaining inclusions are shown in the following two lemmas.

Lemma 4.4 Let A be a finite T-algebra, which is finitely generated and finitely
observable, and such that every T-language recognised by A is recognised by
some T-algebra from A. Then A ∈ A.
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Proof.
Let A0 be a subset of the universe of A that contains all elements of observable
sorts, and all generators. For a ∈ A0 define

La = {w ∈ TA0 : mulAw = a}.

By the assumption of the lemma, the language La is recognised by some

ha : TA0 → Ba ∈ A,

Define h to be the product of the morphisms ha ranging over a ∈ A0, which is
surjective onto its image

h : TA0 → B ⊆
∏
a∈A0

Ba.

This is a T-morphism h that recognises every language La with a ∈ A0. The T-
algebra B belongs to A, by closure of A under finite products and subalgebras.
We claim that there is some function f from the universe of B to the universe
of A which makes the following diagram commute:

TA0
h //

mulA !!

B

f

��
A

If the claim is proved, then Lemma 3.2 will imply that f is a T-morphism. Since
f is surjective by the assumption that A0 contains a set of generators, it will
follow that A ∈ A by closure of A under images of surjective T-morphisms.

We are left with proving the claim, which says that

h(w) = h(w′) implies mulA(w) = mulA(w′) for every w,w′ ∈ TA0.

Let then w,w′ be as in the assumption of the above implication. They must have
the same sort, call it τ , because they have equal image under h. By assumption
on A being finitely observable, it suffices to prove

p(mulA(w)) = p(mulA(w′))

for every p ∈ polτA with observable output sort. Let then p be such a polyno-
mial. Because A0 are generators of A, there must be some q ∈ polτA0 which is
mapped to p by mulA. Because h is a T-morhpism,

h(q(w)) = (h(q))(h(w)) = (h(q))(h(w′)) = h(q(w′)).

Because h recognises both languages LmulA(q(w)) and LmulA(q(w′)),

mulA(q(w)) = mulA(q(w′)),

which proves the result of the claim by invoking the definition of q and the fact
that mulA is a T-morphism. �
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Lemma 4.5 Every L ∈ L is recognised by some finite T-algebra A which is
finitely generated, finitely observable, and which only recognised languages in L.

Proof.
Let L ⊆ TΣ be as in the statement of the lemma. Apply the Syntactic Morphism
Theorem, yielding a syntactic morphism

syntf : TΣ→ Af

that recognises L. The algebra Af is finitely generated, namely generated by
the images of letters in Σ.

To prove that Af is finitely observable, we need to recall the way Af is
constructed in the Syntactic Morphism Theorem. We say that p ∈ polτTΣ
distinguishes w,w′ ∈ TΣ of type τ if

[[p]](w) ∈ L iff [[p]](w′) 6∈ L

By construction of the syntactic morphism, elements w,w′ with different images
under syntf can be distinguished by some polynomial in polτTΣ; this polynomial
must have output sort such that L nontrivial on the sort. Therefore, the algebra
Af is finitely observable.

Claim 4.5.1 Let τ be a sort. There is a finite set

Pτ ⊆ polτTΣ

such that if w,w′ ∈ TΣ have type τ but different images under syntf , then they
are distinguished by some polynomial from Pτ .

Proof.
As we have already observed, elements w,w′ with different images under syntf
can be distinguished by some polynomial in polτTΣ. Furthermore, because
syntf recognises L, the choice of polynomial need only depend on the values of
syntf(w), syntf(w′), for which there are finitely many possibilities. �

For a ∈ Af , define La ⊆ TΣ to be the inverse image of a under the syntactic
morphism. A corollary of the above Claim is that for every element a in Af of
type τ , its inverse image La under syntf is a Boolean combination of languages

[[p]]−1L with p ∈ Pτ .

These languages are all derivatives of L, and by finiteness of Pτ , the Boolean
combination is finite. Therefore La belongs to L as a finite Boolean combination
of derivatives of L.

Consider a language K ⊆ TΓ that is recognised by a morphism

h : TΓ→ Af .

By surjectivity of the syntactic morphism, there is some function from for every
a ∈ Γ one can choose some wa ∈ TΣ such that h maps (the unit of) a to
syntf(wa).
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The T-algebra TΓ has the property that every mapping from Γ to the uni-
verse of some algebra B extends uniquely to a T-morphism TΓ→ B. Since the
syntactic morphism is surjective, for every a ∈ Γ there is some wa ∈ TΣ with

h(a) = syntf(wa).

Combining these observations, we see that there is a T-morphism g : TΓ→ TΣ
such that the following diagram commutes

Γ
unitTΓ// TΓ

g //

h !!

TΣ

syntf

��
Af

.

The units of Γ are generators in TΓ, and if T-morphisms agree on generators
then they agree over all elements; therefore h = syntf ◦ g. It follows that

h−1(a) = g−1(La) for every a ∈ Af ,

which is a language in L by closure under inverse T-morhpisms. �

This completes the proof of the Pseudovariety Theorem.

5 Representing an algebra

In all interesting cases, the monad T produces infinite sets, even on finite argu-
ments. Therefore, the finiteness of the universe of a T-algebra A does not, on
its own, imply that the algebra itself has a finite representation, because one
needs some way of representing the algebra’s multiplication operation

mulA : TA→ A.

In this section, we present one such way. The idea is to find a function T0, such
that which chooses for every finite set A a finite subset T0A ⊆ TA such that:

1. for every finite T-algebra A with universe A, the multiplication operation
is uniquely determined by its values on T0A;

2. the function A 7→ T0A can be computed, modulo some representation of
elements in T0A ⊆ TA.

For instance, in the monad of finite words, the function T0 maps a set A to A2,
because multiplication in a monoid is uniquely determined by its binary part.
In the example of ∞-algebras, the function T0 maps A to A2 ∪ {aω : a ∈ A}, as
per Theorem 1.1. We now describe these notions in more detail.
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Subfunctors. In this section, we assume that the monad is in the category
of sets, or sorted sets, and therefore the notion of subset can be used. Define
a subfunctor of a monad T to be a functor T0 which maps a set X to a subset
T0X ⊆ TX, and which maps a function f : X → Y to the function obtained
from Tf by restricting the domain and codomain using T0.

A subfunctor on its own is not a monad, however it can be used to generate
a monad as follows. For an ordinal number α, define Tα0X ⊆ TX as follows by
transfinite induction: T0

0X is the units of X, while for α > 0 we have

Tα0X
def
=

⋃
β<α

mulTXT0T
β
0X.

By monotonicity, this sequence must stabilise at some value, which is denoted
by T∗0X. If the monad is finitary, i.e. every element w ∈ TX belongs to w ∈ TY
for some finite Y ⊆ X, then the sequence stabilises at ω, i.e. induction only on
natural numbers is needed. It is not difficult to show that T∗0 is a submonad of
T, i.e. a subfunctor with the monad structure inherited from T. A subfunctor
T0 is said to span an algebra A

mulAT∗0X = mulATX

holds for every subset X of the universe. A subfunctor is called complete if it
spans every T-algebra, and finitely complete if it spans every finite T-algebra;
note how this depends on the notion of finite T-algebra.

Example 2. Consider the monad ∞ for infinite words. Define

T0X
def
= {xy, xω : x, y ∈ X}.

The submonad T∗0 maps X to the finite and ultimately periodic words over
alphabet X. In particular, T0 is finitely complete, see Theorem 1.1. �

Reducts. Consider a subfunctor T0 that is finitely complete for a monad T.
For a finite T-algebra A, define its T0-reduct to be the pair consisting of the
universe A of A, and the restriction of the multiplication operation from A to
the subfunctor:

mulA|T0A : T0A→ A

The T0-reduct is a special case of what category theorists call an algebra over
signature T0. Straight from the definition it follows that if T0 spans A, then A
is uniquely determined by its T0-reduct. In particular, if T0 is complete, then
every algebra over signature T0 extends to at most one T-algebra. The same
holds for finite completeness and finite algebras. The point of using T0-reducts
is that sometimes T0 can be chosen so that it preserves finiteness, and therefore
T0-reducts can be manipulated by algorithms, at least as long as finite objects
and functions between them can be manipulated by algorithms.
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Example 3. Let us continue the discussion in Example 2. The T0-representation
of a finite∞-algebra consists of a finite universe A together with two operations

· : A×A→ A ω : A→ A.

This is essentially the same thing as a Wilke semigroup. Note that not every
choice of finite universe and two operations above will yield an T0-representation
of some finite ∞-algebra; this requires the operations to satisfy certain axioms,
e.g. Wilke gives such axioms for the case of ∞-algebras in [19]. �

6 Monadic second-order logic

An important part of the theory of regular languages is the connection between
recognisability and definability in monadic second-order logic mso. Languages
recognised by finite recognisers are the same thing as mso definable languages
for finite words, infinite words, finite trees, infinite trees, etc. In Section 6.1 we
establish this connection on the abstract level of monads.

6.1 Definition of mso

To establish the connection between mso and recognisability, consider the fol-
lowing lemma, see [16], which characterises mso in a way that does not talk
about “positions” or “sets of positions” of a structure, but is defined in purely
language theoretic terms.

Lemma 6.1 A language L ⊆ Σ∗ is definable in mso if and only if it belongs to
the least class of languages that is closed under Boolean combinations, images
and inverse images of morphisms h : Σ∗ → Γ∗, and which contains the languages

0∗ ⊆ {0, 1}∗ and 0∗1∗ ⊆ {0, 1}∗.

A similar lemma holds for infinite words (instead of 0∗1∗ one uses 0∗1∞),
and also for finite and infinite trees, etc. Motivated by the above, we define
an abstract notion of mso in a monad T. In the abstract version, predicates
are modelled by languages. For a set L of T-languages, define msoT(L) to be
the smallest class of T-languages which contains L, is closed under Booolean
operations, images and inverse images of T-morphisms.

The following lemma is in the category of sets, or more generally, in cate-
gories which have a powerset functor that preserves finiteness. A non-example is
the category of nominal sets with orbit-finite sets, where powerset does not pre-
serve orbit-finiteness, and also mso contains non-recognisable languages, see [2].

Lemma 6.2 If L contains only T-recognisable T-languages, then so does msoT(L).

Proof.
To prove the lemma, one needs to show that T-recognisable languages are
closed under Boolean operations, images of T-morphisms, inverse images of
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T-morphisms. For Boolean operations we use products, for inverse images the
property is immediate. The only nontrivial part is the images, where we use the
powerset construction, defined as follows. We write PX for the powerset of X.
If X is a set, then we say that w ∈ TX belongs pointwise to v ∈ TPX if there
is some element of

T{(a ∈ X, b ∈ PX) : a ∈ b}

which projects to w and v respectively on the first and second coordinates. For
a T-algebra A, define its powerset to be the T-algebra

PA : TPA→ PA

where whose multiplication operation maps w ∈ TPA to the set

{mulA(v) : v ∈ TA belongs pointwise to w}.

It is not difficult to check that this is indeed a T-algebra, for the distrustful see
Johnstone []. �

6.2 Deciding satisfiability of mso

For a monad T, we define mso satisfiability over T to be the following decision
problem. An instance is an expression that uses the constructors of mso for-
mulas, with the predicates being represented by T-morphisms recognising them
(see Definition 6.3). The question is whether the language corresponding to the
instance is nonempty.

In this section we give a sufficient criterion for the decidability of mso sat-
isfiability. We assume that the monad is in the setting of finitely sorted sets.
This means that there is a finite set of sort names; and the category underlining
the monad has sets with these sorts as objects, and sort-preserving functions
as morphisms. Finite (sorted) sets are those with finitely many elements, and
finite T-algebras are those with finite universes.

Recall the notion of a finitely complete subfunctor T0 ⊆ T, which implied
that every finite T-algebra is uniquely determined by its T0-reduct. If T0 pre-
serves finiteness, then finite T-algebras can be represented in a finite way, and
then used in algorithms, by providing the universe and the multiplication opera-
tion restricted to T0. For the representation to be used in deciding mso, we will
use a slightly stronger condition on subfunctor, which is given in the following
definition.

Definition 6.3 A subfunctor T0 is called effective if for every finite set Σ,

1. T0X is finite and can be computed up to isomorphism; and

2. For every w ∈ T0Σ, one can compute a representation of a T-morphism

h : TΣ→ A
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into a finite T-algebra that recognises {w}. The representation consists of:
the universe A of A, the values of h on elements of Σ, the image h(w),
and the multiplication operation of A when restricted to T0A.

Example 4. Consider the monad ∞ of infinite words, and the subfunctor

T0X
def
= {xy, xω : x, y ∈ X}.

which was considered in Examples 2 and 3, and proved to be finitely complete.
We claim that T0 is also effective. Clearly T0 preserves finiteness and can
be computed, as T0X is isomoprhic to X2 t X. For a finite alphabet Σ and
a, b ∈ Σ it is not difficult to compute T0-reducts of ∞-algebras that recognise
the languages {ab} and {aω}. Let us do the case of {aω}. The ∞-algebra has
four elements in its universe, representing the empty word, finite words in a+,
the unique infinite word aω, and finally words that use some letter other than
a. �

The following theorem shows that a sufficient crieterion for decidable mso
satisfiability is having a subfunctor that is finitely complete and effective.

Theorem 6.4 Let T be a monad in the setting of finitely sorted sets. If there
is a subfunctor T0 that is effective and finitely complete, then mso satisfiability
is decidable.

Theorem 6.4 is abstract nonsense in the sense that it does not resolve the
actual combinatorics necessary to prove satisfiability of mso. This can be seen
in the series of Examples 2, 3 and 4, which show that the monad of infinite
words has a subfunctor that is finitely complete and effective, and therefore
Theorem 6.4 can be invoked to show that satisfiability of mso is decidable over
infinite words. The decidability proof that comes from these examples has the
same structure as the original proof of Büchi [6], or its algebraic version in [19].
What the examples show is that a large part of the proof is sufficiently generic
to be stated on the abstract level of monads; and the only challenge is finding a
subfunctor that is finitely complete and effective, with finite completeness being
essential part.

Theorem 6.4 follows immediately from the following lemma.

Lemma 6.5 Given T0-reducts of a finite T-algebras A,B, one can compute the
T0-reducts of PA and A×B.

Proof.
The Cartesian product is immediate, the interesting case is the powerset PA.
For w ∈ T0PA, we need to compute mulPA(w).. By effectivity of T0, we can
compute a T-morphism

h : T(PA)→ B
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that recognises the singleton {w}. Define Σ to be the finite set of pairs (a,A0)
such that a ∈ A0 ⊆ A and consider the T-morphism

g : TΣ→ A×B

which works like mulA on the first coordinate, and like h on the second coordi-
nate. By definition of the powerset algebra,

mulPA(w) = {a : some v ∈ TΣ satisfies g(v) = (a, h(w))}.

Therefore, to compute the above, it suffices to be able to compute the image

g(TΣ) ⊆ A×B.

Because T0 spans every finite T-algebra, the above image is the same thing as
the smallest subset of A×B that contains images of single letters from Σ, and
which is closed under g restricted to T0. This subset can be computed. �
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Part II

Example Monads
In this part, we give examples of how monads can be used to describe algebraic
approaches to the languages for:

• labelled chains (Section 7);

• unary queries over finite words (Section 8);

• various kinds of trees (Section 9).
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7 Monads for chains

In this section, we show monads for representing chains, which are a generalisa-
tion of infinite words, where the set of positions can be any total order, e.g. the
rational or even real numbers. A chain over an alphabet Σ is defined to be a
totally ordered set of positions, together with a labelling of these positions by
Σ. Chains form a monad. The unit of this monad interprets an element a ∈ Σ
as a chain with a single position labelled by a. The multiplication of a chain of
chains w is defined by taking positions to be pairs (i, j) such that i is a position
in w, and j is a position in the label of position i, ordered lexicographically.

A famous theorem of Shelah [13] says that mso is undecidable on the Cantor
space, which implies that satisfiability of mso is undecidable on arbitary chains,
or even on chains of cardinality continuum. For the undecidability result it
suffices to have the order predicate, which corresponds to the set of chains
over alphabet {0, 1} where all zeros are before all ones. It follows that the
assumptions of Theorem 6.4 cannot be met. These problems go away if one
considers countable chains.

Countable chains. A countable chain is one where the indexing set is count-
able. A countable chain is called scattered if its indexing set is scattered, i.e. its
positions do not embed an isomorphic copy of the rational numbers. A special
case of a scattered chain is a countable well-chain, i.e. one where the positions
are well-ordered. These three kinds of chains are submonads of the monad of
chains, i.e. they form monads when equipped with the unit and multiplication
inherited from the monad of all chains.

The following theorem shows that in all three cases, the algebras admit
finitely complete subfunctors, as defined in Section 5. The cases of countable
well-founded and countable scattered chains are simple enough to warrant a
self-contained proof, modulo the Hausdorff theorem on scattered chains. The
case of arbitrary countable chains is more involved and follows from [13], see
also [7].

Theorem 7.1

1. Every finite algebra in the monad of countable well-chains is spanned by

X 7→ {x · y, xω : x, y ∈ X}

2. Every finite algebra in the monad of countable scattered chains is spanned
by

X 7→ {x · y, xω, x−ω : x, y ∈ X}

3. Every finite algebra in the monad of countable chains is spanned by

X 7→ {x · y, xω, x−ω, shuffleY : x, y ∈ X,Y ⊆ X}
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where shuffleY is the chain where the positions are rational numbers and
where every y ∈ Y labels a dense subset.

Proof. (of first two cases)
The Hausdorff theorem on scattered chains says that scattered chains are the
smallest class of chains that contains the finite chains, chains indexed by ω and
−ω, and is closed under substitution. For well-founded countable chains, the
same holds, but −ω is not allowed. The result then follows, using the Ramsey
theorem in the same way as in Theorem 1.1. �

Corollary 7.2 Satisfiability for mso is decidable on: all countable chains, scat-
tered chains, and well-ordered countable chains.

Proof.
It is easy to see that the subfunctors given in Theorem 7.1 are effective. There-
fore, the result follows from Theorem 6.4. �

In particular, for the well-chains and the scattered chains, we get a simple
self-contained proof of decidability for mso. This proof is no different from the
known ones, but the advantage of using monads is that they clearly identify
which part of the argument is specific to the monad being used.

8 Unary queries

This section presents a monad which generates a new kind of algebra, which,
although simple, has not appeared in the literature up to the author’s best
knowledge. The monad, call it U, is used to model unary queries, i.e. sets of
words with one distinguished position. The monad is defined by

UA
def
= A∗AA∗,

where A is a disjoint copy of the set A. The idea is that a word w ∈ UA repre-
sents a nonempty word over A where the underlined position is distinguished.
The unit operation is a 7→ a, while the monad multiplication operation is the
same as in the monad of finite words, except that the underlined position is the
underlined position in the underlined word.

Consider a U-algebra A. For a ∈ A, define its left transformation to be the
function A→ A defined by

b 7→ mulA(ab).

Left transformations form a monoid, equipped with function composition, call
it the left monoid. If A is finite then so is the left monoid. Likewise one can
define right transformations and the right monoid. It is not difficult to see that
a U-algebra is uniquely specified by its universe A and the the left and right
transformations for each a ∈ A.
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Let L ⊆ UΣ be a U-language. Define queryL to be the set of pairs (w, x)
where w ∈ Σ+ and x is a position in w such that L contains the word obatained
from w by underlining position x. Define langL to be L when viewed as a
language of nonempty words over the extended alphabet Σ ∪ Σ. For some
applications, the two views are essentially the same. For instance queryL is
defined by an mso formula with one free variable if and only if langL is defined
by an mso formula without free variables; the same holds for first-order logic and
various fragments. For these logics, the monad U does not contribute anything
new.

The following example shows that U-algebras are useful for talking about
two-variable first-order logic. For concreteness, we assume that the logic has
access to predicates for the labels and the order, but not for the successor,
although similar results are true for other choices of predicates. This variant of
first-order logic is a well-studied fragment for words, see e.g. [15], and it also
makes sense for unary queries, as it corresponds to unary queries definable in
XPath with only the transitive axis // and its inverse.

Example 5. Let the alphabet be {a, b}, and consider the unary query “the
successor of the selected position has label a”, i.e. the U-language

L = {wσav : w, v ∈ {a, b}∗, σ ∈ {a, b}}.

One can show that langL is definable by a formula of two-variable first-order
logic (without free variables), while queryL is not definable by any formula of
two-variable first-order logic (with one free variable).

Also, one can observe that just looking at the left and right monoids as
defined above is not sufficient to understand the query. In this case, the left
monoid is trivial, i.e. has one element only, while the right monoid is the syntac-
tic monoid of the language “words beginning with a”. Both monoids have the
property that they recognise only languages definable in two-variable first-order
logic. �

Actually, by redoing the proof in [15], we can get an effective characterisation
of unary queries definable in two-variable logic.

Theorem 8.1 Let L ⊆ UΣ be a U-language. Then queryL is definable in two
variable first-order logic if and only if its syntactic U-algebra A satisfies the
following condition. There is some n ∈ N, such that for every w ∈ A∗ which
contains all letters from a set B ⊆ A, and every w1, w2 ∈ B∗ and a ∈ B, the
following equality holds.

mulA(wnw1aw2w
n) = mulA(wnawn)

(TODO: prove)

9 Monads for trees

In this section, we present a series of monads for modelling trees.
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9.1 A monad for ranked trees over a fixed alphabet

Consider a ranked alphabet Σ, i.e. a finite set where each element has an asso-
ciated rank, which is a natural number. A ranked tree over such an alphabet is
a finite tree labelled by Σ, where a node has as many children as the rank of its
alphabet, and these children are ordered. In other words, this is a ground term
over Σ seen as a signature. We define a monad TΣ, which is parametrised by Σ,
and which will model ranked trees over Σ. Although the alphabet Σ is ranked,
the monad TΣ itself is in the category of sets, i.e. sets without any special arity
structure imposed.

Define TΣ to be the monad which maps a set Γ to the set of terms over
the signature Σ extended by variables from Γ (i.e. trees where labels from Γ
can occur in the leaves). The multiplication operation TΣTΣ → TΣ is term
substitution, while the unit maps a variable a ∈ Γ to the term that consists
only of this variable. This is the clasical term monad [].

If Γ is a finite alphabet, then a TΣ-language over Γ is a set of trees over the
ranked alphabet Σ, extended by rank zero symbols for letters from Γ. In the
special case of Γ = ∅, a TΣ-language over the empty alphabet is a set of ranked
trees over the alphabet Σ.

Connections with Σ-algebras. Recall that in universal algebra, a Σ-algebra
consists of a universe A together, together with an operation f : An → A for
each f ∈ Σ of rank n. To go from a TΣ algebra A in the sense of Eilenberg-
Moore to a Σ-algebra in the sense of universal algebra, one defines the universe
to be A, and the operation corresponding to a n-ary letter f ∈ Σ to be

(a1, . . . , an) ∈ An 7→ mulA(f(a1, . . . , an)).

In the terminology of Section 5, this is the Σ-reduct of A, where we view Σ as
the (finitely complete and effective) subfunctor

ΣA = {f(a1, . . . , an) : f is an n-ary symbol in Σ} ⊆ TΣA

Every Σ-algebra is obtained this way, and therefore the two notions are essen-
tially the same. This sameness extends to morphisms.

Connection with automata. For a TΣ algebra A, there is a unique TΣ-
morphism

h : TΣ∅ → A.

When interpreting an element of TΣ∅ as a tree over the ranked alphabet, the
algebra A maps every tree to an element of its universe. When the algebra
is finite, this is the same thing as a deterministic bottom-up tree automaton,
with the only difference being that an automaton also has an accepting subset
of states, which indicates when a tree belongs to the language. Therefore, TΣ-
recognisable languages are the same thing as the classical notion of regular
languages of finite trees over the ranked alphabet Σ.
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Dependence on Σ. In the monad TΣ, there is a different monad for every Σ.
In the following two sections, we present two approaches where the monad is
independent of the alphabet. The price we will pay is using categories of ranked
sets.

9.2 A monad for clones

We now define a monad which is used to describe clones. We begin by recalling
the definition of a clone from universal algebra: a clone over a universe A is a
set of functions of the form An → A, of possibly different arities n ∈ N, which
includes all projection functions of the form (a1, . . . , an) 7→ ai and is closed
under composition in the sense that if the clone contains an n-ary operation f
and k-ary operations f1, . . . , fn, then it also contains the k-ary operation

ā ∈ Ak 7→ f(f1(ā), . . . , fn(ā)) ∈ A.

The category of ranked sets. To model clones by a monad, we will use a
different category than sets. The category is going to be ranked sets, i.e. sorted
sets where the sort names are natural numbers. Recall that the notions of
language theory are parametrised by notions of finite object and finite algebra.
We make the following design decisions for the clone monad: a finite ranked set
is one with finitely many elements, in particular only finitely many ranks can
be achieved in a finite ranked set. We come back to the notion of finite algebra
later on.

The clone monad. The clone monad maps a ranked set Σ to the ranked set
cloΣ, where elements of rank n are terms over Σ that use n variables x1, . . . , xn
(the sequence of variables x1, x2, . . . is chosen so that they are fresh with respect
to Σ). The terms need not use all variables, and variables may appear with
repetitions. The monad composition operation clocloΣ → cloΣ is substitution,
as illustrated in Figure 2.

Comparison with clones. We use the name clo-algebra for an Eilenberg-
Moore algebra in the monad of clones. A clo-algebra is almost the same thing
as a clone, with the following differences.

• Clones are more general than clo-algebras in the sense that clones admit
a distinction between the universe and the operations of rank zero (con-
stants). In other words, it is not necessarily the case that every element of
a clone’s universe is a constant. (If this is the case, then a clone is called
a polynomial clone.)

• Clones are less general than clo-algebras in the sense that in a clone, un-
like in a clo-algebra, there is an extensionality property with respect to
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t ∈ clo clo Σ mul(t) ∈ clo Σ
t has 4 nodes and rank 0 mul(t) has 11 nodes and rank 0.

Figure 2: Example of multiplication in a clo-algebra. The ranked alphabet Σ
has elements a, g, f of arities 1, 2, 3 respectively. Variable x2 is used twice in
the label of the root in the left tree t, which is drawn using parallel edges. This
double use results in duplication after multiplication is applied. The light grey
dotted circles on the right are not part of mul(t), they just highlight how mul(t)
is obtained from t.

the universe: elements of the clone are uniquely determined by the trans-
formations that they induce on the universe. This is similar to the finite
observability condition used in the Pseudovariety Theorem from Section 4.

Therefore, a polynomial clone is the same thing as a clo-algebra that is zero-
extensional in the sense every element is determined by its transformation on
rank zero elements.

Finitary clones. There is no sense in considering clo-algebras that have a
finite universe, because the requirement on projections means that the universe
is nonempty on every rank. In clo-algebras, we call a clo-algebra finite if it
has finitely many elements for every rank, and is finitely generated. The finite
generation axiom is natural in the context of recognising languages (every recog-
nisable clo-language over a finite alphabet is recognised by a finitely generated
clo-algebra), but it is not superfluous – there exist clones with three elements
of rank zero that are not fintiely generated, as shown by Yanov and Muchnik
in [20], and this is even the case for polynomial clones [].
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Example 6. This is a non-example of a pseudovariety. Consider the following
variant of first-order logic on trees over a ranked alphabet. The quantifiers range
over nodes of the tree. For every letter a ∈ Σ there is a unary predicate that is
true in nodes with label a, and there are binary predicates for the descendant
relation, and the i-th child relation for every i. A well-known open problem in
is: can one decide if a recognisable language of trees is definable in first-order
logic?

A language of ranked trees can be seen as a special case of a clo-language,
which happens to contain only elements of rank zero. Such languages are not
closed under inverse images of clo-morphisms, which is witnessed by an example
found by Potthoff [12]. Consider letters a0, a1, a2 with ranks 0, 1, 2 respectively,
and consider the clo-morphism

h : clo{a0, a1} → clo{a0, a2}

which maps a0 to a0, and which maps a1 to the term a2(x1, x1). This morphism
sends trees that look like words to complete binary trees, as shown below:

a1

a1

a1

a0 a0 a0

a2

a0 a0

a2

a2

a0 a0

a2

a0 a0

a2

a2

a2

t ∈ clo{a0, a1} h(t) ∈ clo{a0, a2}

There is a first-order formula ϕ that is true in complete binary trees of even
depth, and false in complete binary trees of odd depth. The formula is a first-
order says that if one follows the unique path that begins in the root, and then
turns left, right, left, right, etc., then one ends up in a leaf that is a left child.
The inverse image, under the clo-morphism h, of the language defined by ϕ
is the set of trees over alphabet {a0, a1} which have even depth. This inverse
image is not definable in first-order logic, and therefore first-order definable tree
languages are not closed under inverse images of clo-morphisms.

In particular, first-order logic does not form a pseudovariety of clo-languages.
Therefore clones, or at least syntactic clones, are not the right tool to study
first-order logic on trees. This problem can be solved by considering a variant
of nonduplicating clones, where every variable is used only once. Unfortunately,
the theory of nonduplicating clones is less developed than the theory of clones.
�

9.3 A monad for forests of unranked trees

We now present another monad for modelling trees. This time the trees are finite
(finitely many nodes), labelled (each node comes with a label), unranked (the
number of children can be arbitrarily large), and sibling-ordered (the children of
a node come with a total order). We assume that the set of labels is partitioned
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into forest labels which are used to label leaves, and context labels which are
used to label the other nodes. A forest is an ordered sequence of trees in the
sense described above.

The forest monad, denoted by F, works in the category of sorted sets, with
two sorts “forest” and “context”. When applied to a sorted set Σ, it yields:

• on the forest sort, nonempty forests labelled by Σ;

• on the context sort, forests labelled by Σ extended with a fresh leaf letter x,
such that x appears in exactly one leaf, which is called the port.

The point of the port is to be replaced by forests or contexts. One could consider
a variant of this monad without the requirement that the port appears in exactly
one leaf, we keep this requirement so that the monad ends up describing forest
algebra introduced in [5]. The unit operation in the monad F maps a forest
element a to unit forest that looks like this

a

and maps a context element a to a unit context that looks like this

x

a

.

The multiplication operation in the monad is illustrated in Figure 3. This is
very similar to the multiplication in the clone monad illustrated in Figure 2,
with the following differences:

• The forest monad only allows ranks zero (forests) and one (contexts), while
the clone monad allows arbitrarily large ranks;

• Rank one elements, i.e. contexts, have exactly one occurrence of the vari-
able, while the clone monad allows multiple use of the same variable;

• Both forests and contexts can have multiple roots.

We call a two-sorted set finite if it is finite on both sorts, and an F-algebra
is considered finite if its universe is finite.

Lemma 9.1 Every F-algebra is spanned by the subfunctor F0 which maps Σ to

dc

a

c

a

x

b

where a, b are context elements of Σ, and c, d are forest element of Σ.
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t ∈ FFΣ mulFΣ(t) ∈ FΣ

Figure 3: Example of multiplication in the forest monad. Before multiplication,
t has two context nodes v1 and v3 and two forest nodes v2 and v4. After
multiplication, t has fourteen nodes, which correspond to the non-variable nodes
in the labels of v1, . . . , v4. Note how the x in the label of node v1 is replaced by
three nodes, namely the two roots of v2 and the one root of v3, resulting in a
change of the number of children for node v.
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Proof.
The lemma says that every forest or context can be built out of units forests
and unit contexts by the following operations: replacing the port of a context
by another context or a forest, and concatenating two forests. �

In other words, F-algebras are the same thing as associative F0-algebras.
Associative F0-algebras are exactly the same thing as forest algebras from [5],
in the variant of forest algebra where there is no empty forest or context.

9.4 A monad for infinite unranked forests.

The ω-forest monad, denoted by X 7→ ωFX, is defined like the monad F, with
the difference that infinite forests and infinite contexts are also allowed (assume
finite branching, though). The problem with this monad is that it is unclear
what finite algebra should be in this case. Clearly, the algebra needs to be finite
on both sorts, but this is not sufficient, as the following example shows.

Example 7. Consider an alphabet Σ, and let L be an arbitrary set of trees
over the alphabet L, not necessarily mso definable. Define denseL to be those
forests where every node has a some descendant with a subtree in L. We claim
that denseL is recognised by an ωF-algebra AL with a four element universe.
There forest sort has elements “forests in L” and“forests not in L”. The context
sort has elements: “every node outside the port path has some descendant with
a subtree in L” and “some onde outside the port path has no descendants with
a subtree in L”; where the port path is defined to be the ancestors of the port.
The dependence on L in the algebra AL is seen in the multiplication operation.
In particular, there are uncountably many ωF-algebras with finite universes, and
there is no hope of representing them in a finite way. �

As witnessed by the above example, the notion of finite algebra should have
some additional requirements. Languages recognised by finite algebras should
definitely include those that can be defined in mso. Recognisable languages
should be exactly those definable in mso; or else there should be a good rea-
son to go beyond mso. The question of finding an adequate notion of finite
ωF-algebra is a monad formulation of an open problem in the community of
algebraic language theory, namely the problem of a finding an algebraic model
for infinite tees. The fact that we use monads, or that the trees are unranked,
does not seem to be important.

One, slightly ad hoc, solution is to define an ωF-algebra A to finite if its
universe is finite on both sorts, and the multiplication operation is mso definable,
in the sense that every language

mul−1
A (a) ⊆ ωFA with a ∈ A

is mso definable. For this notion of finiteness, [4] shows that syntactic algebras
can be computed, one can check if an algebra satisfies given equalities, and the
algebras can be used to decide questions such as “is a given language of infinite
trees definable in the temporal logic EF?”.
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10 Future work

This section sketches some potential monads to study in the future, with reasons
for studying them.

• Unranked trees with possibly infintie branching (or graphs, which should
not make a difference) modulo bisimulation. The hope would be that
recognisable languages, under a suitably chosen notion of finite algebra,
would be the same thing as definable in µ-calculus.

• Edge labelled hypergraphs. This looks like a monad, because a hypergraph
with n distinguished port vertices can be substituted for a hyperedge of
rank n, in the same spirit as Figure 2. The hope would be to describe tree
width or clique width as submonads generated by finite subfunctors (as
defined in Section 5).

• Typed terms of λ-calculus with fixpoints, modulo equivalence. The hope
would be to describe the work of Salvati and Walukiewicz.

• Relations on words with origin information, as a generalisation of trans-
ducers with origin information from [3]. The hope would be to give an
algebraic framework for asynchronous relations on words with origin. The
origin information would cure problems like no syntactic object, or un-
decidability of universality, which plague asynchronous relations without
origin.
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Part III

Profinite Monads
In this part, we show that for every monad T, at least in the category of sets
or sorted sets, there is a profinite version T. This gives immediately defini-
tions, and basic theorems about, things like profinite words, profinite countable
chains, profinite trees, etc. Section 14 studies the special case of profinite words,
and shows how the generic notion of recognisable language instantiates to an
interesting class of languages of profinite words.
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11 Profinite monads

Profinite constructions are common in mathematics. In the scope of recognis-
able languages, the best known profinite construction is the monoid of profinite
words. In this section, we show that profinite objects can be defined on the
abstract level of monads, in a way that preserves their algebraic structure.

11.1 Definition of the profinite monad

Fix for the rest of this section a monad T, in the category of sets (the generali-
sation to sorted sets being straightforward). We explain how to convert T into
a monad, which we denote by T, that describes profinite objects coming from
T. The definition is designed so that it generalises the well-known constructions
of profinite words, or profinite trees etc.

Types. For a T-algebra A, not necessarily finite, define a T-morphism type
over A to be a function τ which maps every surjective T-morphism

h : A→ B with B finite (6)

to an element hτ ∈ B, subject to the condition that

(g ◦ h)τ = g(hτ ) for every h : A→ B and g : B→ C (7)

where g is a surjective T-morphism between finite T-algebras. The set of of T-
morphism types over a T-algebra A is called its compactification, and is denoted
by Ā. Define the profinite extension of a surjective T-morphism h as in (6) to
be the function

h̄ : Ā→ B h̄(τ) = hτ .

In terms of profinite extensions (7) is stated as follows:

Ā
h̄ //

g◦h ��

B

ḡ

��
C

(8)

Example 8. Consider the monad ∗ of finite words, where ∗-algebras are
monoids, and ∗-morphisms are monoid morphisms. Consider the monoid Σ∗

where Σ is a a finite alphabet. A ∗-morphism type (or monoid type) over Σ∗ is
a function which maps every monoid morphism

h : Σ∗ → A with A a finite monoid

to an element of A, in a way that is consistent with composition. Monoid types
over Σ∗ are the same thing as profinite words over Σ, see [] for a more thorough
introduction to the subject of profinite words.
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A simple example of monoid type (i.e. of a profinite word) is one that is
induced by a word w ∈ Σ∗; and which maps a morphism h to h(w). Stated
differently, finite words can be seen as a special case of profinite words.

We now describe a more exciting monoid type (i.e. profinite word), which
is constructed using the idempotent power. Recall the well known fact that in
every finite monoid A of size n, the function a 7→ an! maps every element of A
to an idempotent, i.e.

an! · an! = an!,

and this element is the unique idempotent power of a, i.e. if

ak · ak = ak implies ak = an!.

The unique idempotent power of a is usually denoted by aω, but we use the
notation a# to avoid conflict with the ω power in infinite words. Using the
idempotent power, we can define for every w ∈ Σ∗ a monoid morphism type,
denoted by w#, as follows: a monoid morphism h is mapped to the unique
idempotent power of h(w). To show that this is indeed a monoid morphism
type, we need to show that for every monoid morphisms

h : Σ∗ → A g : A→ B

with A and B being finite monoids, and g being surjective, we have

g(h(w)#) = (g ◦ h(w))#.

This is checked below, assuming that n and m are the sizes of A and B.

g(h(w)#) = (by definition)

g(h(w)n!) = (because g is a monoid morphism)

g(h(w))n! = (because m ≤ n and m! is an idempotent powe)

(g(h(w))m! = (by definition)

(g ◦ h(w))#.

�

The functor of T. We now define the profinite monad T. An object Σ is
mapped by T the compactification of the T-algebra TΣ, i.e.

TΣ
def
= TΣ.

The remaining components of the monad, i.e. how T acts on functions, as well
as the unit and multiplication operations, are defined and proved correct in the
following theorem.
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Theorem 11.1 There are unique operations

Tf : TΓ→ TΣ for f : Γ→ Σ

unitTΣ : Σ→ TΣ

mulTΣ : TTΣ→ TΣ

such that for every finite T-algebra A and every T-morphism

h : TΣ→ A,

the following diagrams commute

TΓ
Tf //

h◦Tf !!

TΣ

h̄
��

A

Σ
unitTΣ //

unitTΣ

��

TΣ

h̄
��

TΣ
h // A

TTΣ

Th̄
��

mulTΣ // TΣ

h̄

��
TA

mulA // A

.

Furthermore, equipped with the above operations, T is a monad.

First observe that the operations from the statement of the theorem, if they
exist, are uniquely specified by the diagrams in the statement of the theorem,
because an element of TΣ is uniquely specified by its values under all possible
profinite extensions h̄. We need to check that the operations actually produce
types, i.e. the values that they produce satisfy (7). Let us first check that Tf
produces types, i.e. that

g ◦ h ◦ T = g ◦ h̄ ◦ Tf

holds for every finite T-morphisms

h : TΣ→ A g : A→ B

where A,B are finite. This is checked below:

g ◦ h ◦ Tf = (by definition of Tf)

g ◦ h ◦ Tf = (by (8))

g ◦ h ◦ Tf = (by definition of Tf)

g ◦ h̄ ◦ Tf

For the unit operation, the check is even simpler:

g ◦ h ◦ unitTΣ = (by definition of unitTΣ)

g ◦ h ◦ unitTΣ = (by definition of unitTΣ)

g ◦ h̄ ◦ unitTΣ

Before checking that the multiplication operation defined in the theorem pro-
duces types, we check that T is a functor, i.e.

T(f ◦ g) = Tf ◦ Tg for every f : ∆→ Σ and g : Γ→ ∆.
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To prove the above equality, we show that the two sides of the equality are equal
after being composed with functions of the form h̄ with

h : TΣ→ A

a T-morphism into a finite T-algebra. This is checked below and illustrated in
Figure 4.

h̄ ◦ T(f ◦ g) = (by definition of T(f ◦ g))

h ◦ T(f ◦ g) = (because T is a functor)

h ◦ Tf ◦ Tg = (by definition of Tg)

h ◦ Tf ◦ Tg = (by definition of Tf)

h̄ ◦ Tf ◦ Tg

TΣ

T(f◦g)

((

Tg
��

h◦Tf◦Tg=h◦T(f◦g)

##
TΓ

Tf
��

h◦Tf // A

T∆

h̄

;;

Figure 4: T is a functor.

Multiplication in T To prove that the multiplication operation of the monad
T is produces types, one uses the following lemma in the special case of A = TΣ.

Lemma 11.2 If A is a T-algebra, then there is a unique operation

mulĀ : TĀ→ Ā,

which makes the following diagram commute

TĀ

Th̄
��

mulĀ // Ā

h̄

��
TB

mulA // B

(9)

for every T-morphism h : A→ B into a finite T-algebra B.
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Proof.
The diagram (9) leaves no choice in the definition of mulĀ, since an element of
Ā is uniquely defined by its images under all possible h̄. We check below that
the multiplication operation is well-defined, i.e. it produces T-morphism types.
Let then

h : A→ B g : B→ C

be T-morphisms with B and C being finite T-algebras. We need to show that

g ◦ h ◦mulTĀ = g ◦ h̄ ◦mulTĀ.

This is done below and illustrated in Figure 5.

TĀ

T(g◦h)

##

Th̄

��

mulĀ // Ā

h̄

��
g◦h

zz

TB

g◦mulB

mulC◦Tg

  

Tg

��

mulB // B

g

��
TC

mulC

// C

Figure 5: Multiplication in T is well-defined.

g ◦ h ◦mulTĀ = (by (9))

mulC ◦ T g ◦ h = (by (8))

mulC ◦ T(g ◦ h̄) = (because T is a functor)

mulC ◦ Tg ◦ Th̄ = (by definition of Tg)

mulC ◦ Tg ◦ Th̄ = (because g is a T-morphism)

g ◦mulB ◦ Th̄ = (by (8))

g ◦mulB ◦ Th̄ = (by (9))

g ◦ h̄ ◦ ◦mulĀ

�

So far we have proved that the operations in the statement of Theorem 11.1
are well defined, i.e. they produce T-morphism types, and that T is a functor.
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We now check the remaining axioms of a monad. We skip proving that mul-
tiplication and unit are natural, i.e. the upper two diagrams in Figure 1. We
only show that multiplication is associative and consistent with the unit, i.e. the
lower two diagrams in Figure 1.

To prove that the multiplication operation in the monad is associative, we
apply the following lemma to the special case of A = TΣ.

Lemma 11.3 Let A be a T-algebra, and let mulĀ be as in Lemma 11.2. Then
the following diagram commutes:

TTĀ
mulTĀ //

TmulĀ
��

TĀ

mulĀ
��

TĀ
mulĀ

// Ā

Proof.
Because an element of Ā is uniquely determined by its values under h̄, with h
ranging over T-morphisms from A into finite T-algebras, it suffices to show that
the diagram commutes when extended with such a h̄, i.e.

h̄ ◦mulĀ ◦ TmulĀ = h̄ ◦mulĀ ◦mulTĀ.

Let us then fix h : A → B and prove the above equality. The calculation is
performed below and also illustrated in Figure 6.

h̄ ◦mulĀ ◦ TmulĀ = (by (9))

mulB ◦ Th̄ ◦ TmulĀ = (by T applied to (9))

mulB ◦ T mulB ◦ TTh̄ = (because T is a functor)

mulB ◦ T
(
mulB ◦ Th̄

)
= (by definition of Th̄)

mulB ◦ TmulB ◦ Th̄ = (by (9) with the T-morphism being mulB ◦ Th̄)

mulB ◦ Th̄ ◦mulTĀ = (by definition of Th̄)

mulB ◦ Th̄ ◦mulTĀ = (by (9))

h̄ ◦mulĀ ◦mulTĀ

�

We now check the last axiom of a monad, namely that the following diagram
commutes:

TΣ

idΣ

##

unitTTΣ//

TunitTΣ
��

TTΣ

mulTΣ

��
TTΣ

mulTΣ

// TΣ
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TĀ

mulĀ
��

Th̄

��

TTĀ

mulTĀ
��

TmulB◦Th̄ ,,

TmulĀ

33

TTh̄ // TTB

T mulB
��

Ā

h̄

��

TĀ

mulĀ

��

Th̄

%%

mulB◦Th̄

&&

TB

mulB

��
TB

mulB // B

Ā

h̄

99

Figure 6: The four-sided faces in the diagram commute by (9), or by T applied
to (9). The three-sided faces in the diagram commute by the definition of T on
functions, or by T applied to the definition of T on functions.

Let us first check the upper triangular face of the diagram:

h̄ ◦mulTΣ ◦ unitTTΣ = (by (9))

mulA ◦ Th̄ ◦ unitTTΣ = (by definition of Th̄)

mulA ◦ Th̄ ◦ unitTTΣ = (by definition of unitTΣ)

mulA ◦ Th̄ ◦ unitTTΣ = (because T is a monad)

mulA ◦ unitTA ◦ h̄ = (because mulA is the identity on units)

h̄

Let us now check the lower triangular face of the diagram:

h̄ ◦mulTΣ ◦ TunitTΣ = (by (9))

mulA ◦ Th̄ ◦ TunitTΣ = (because T is a functor)

mulA ◦ T(h̄ ◦ unitTΣ) = (by definition of unitTΣ)

mulA ◦ T(h ◦ unitTΣ) = (because T is a functor)

mulA ◦ Th ◦ TunitTΣ = (by definition of Th)

mulA ◦ Th ◦ TunitTΣ = (by definition of TunitTΣ)

mulA ◦ Th ◦ TunitTΣ = (because h is a T-morphism)

h ◦mulTΣ ◦ TunitTΣ = (because T is a monad)

h̄
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This completes the proof that T is a monad.

11.2 From a T-algebra to a T-algebra.

Having defined the monad T, it is natural to ask what are finite T-algebras,
and what are the languages recognised by them. In this section, we discuss how
every T-algebra can be transformed into a T-algebra. Since this transformation
preserves finiteness, it gives a source of examples of finite T-algebras. However,
the algebras produced by this transformation are not very interesting, because
they are essentially decorations of T-algebras. More interesting examples will
be given in Section 14.

From A to Ā. An element of a ∈ A can can be interpreted as an element of
Ā, namely as the T-morphism type which maps a T-morphism h to h(a). We
denote this interpretation by ιA, by definition it makes the following diagram
commute:

A

h ��

ιA // Ā

h̄
��

B

. (10)

for every T-morphism h into a finite T-algebra B. It is tempting to think of ιA
as an embedding. However, for ιA to be an embedding, one would require that
every distinct elements of A can be distinguished by some T-morphism into a
finite T-algebra. This additional assumption is true in all monads studied in this
paper, at least for finitely generated T-algebras, but it can be false, e.g. with a
very restrictive notion of finite T-algebra.

An algebraic structure on Ā. In Lemmas 11.2 and 11.3, we have shown
that if A is a T-algebra, then there is a multiplication operation

mulĀ : TĀ→ Ā

which turns the compactification Ā into a T-algebra. The following lemma
implies that compactification preserves finiteness of algebras.

Lemma 11.4 If A is a finite T-algebra, then Ā is isomorphic to the T-algebra
where the universe is the universe of A, and the multiplication is defined by

mulA : TA→ A.

Proof.
We claim that the isomorphism is the profinite extension

idA : Ā→ A
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of the identity on A. We claim that the above is a bijection, because its inverse
is ιA. To prove bijectivity, we need to show that

ιA ◦ idA idA ◦ ιA
are the identity functions on Ā and A respectively. For the latter, we in-
voke (10). The former is explained in the following diagram

Ā

h̄

��

idA // A

ιA
��h��

B Ā
h̄

oo

�

Lemma 11.5 If h : A→ B is a T-morphism, then there is a unique function

h̄ : Ā→ B̄

which makes the following diagram commute

Ā
h̄ //

g◦h ��

B̄

g

��
C

for every T-morphism g : B→ C with C finite.

Proof.
Note that the definition of Tf is actually a special case of this lemma, because
Tf is makes the diagram in the lemma commute for Tf , i.e. Tf = Tf . The
lemma is proved the same way as the we proved that Tf is well defined. �

The above lemma introduces a little clash of notation. If

h : A→ B

is a T-morphism such that B if finite, then h̄ has two definitions: namely the
profinite extension of A, which is of the type Ā → B, and the definition from
the above lemma, which is of the type Ā→ B. However, the two definitions are
essentially the same mapping, because they are equal up to the isomorphism
from Lemma 11.4.

Lemma 11.6 If h : A → B is a T-morphism, then h̄ defined in Lemma 11.5
is a T-morphism and makes the following diagram commute:

A
h //

ιA
��

B

ιB
��

Ā
h̄

// B̄
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Proof.
We first check the diagram in the statement of the lemma. It suffices to show
that the diagram commutes after the lower right corner is extended with f̄
where f : B→ C is a T-morphism into a finite T-algebra. This is shown in the
following diagram:

A
h //

ιA

��

B

f{{
ιB

��

C

Ā

f◦h
;;

h̄

// B̄
f̄

cc

The proof that h̄ is a T-morphism is in the following diagram.

TĀ

T f◦h

!!
Th̄

��

mulĀ // Ā

h̄

��

f◦h

��
TC

mulC // C

TB̄

Tf̄

==

mulB̄

// B̄
Tf̄

__

The upper and lower faces commute by Lemma 11.2, the right face commutes
by Lemma 11.5, and the left face commutes by applying the functor T to
Lemma 11.5. �

11.3 From a T-algebra to a T-algebra.

To go from a T-algebra A to a T-algebra, call it AT, one keeps the same universe
and defines the multiplication operation by

TA

mulAT !!

ιA // TA

mulA
��
A

Lemma 11.7 If A is a T-algebra, then AT is a T-algebra. If h : A → B is a
T-morphism, then the function underlying h is a T-morphism from AT to BT.

Proof.
By Lemma 11.6 applied to h̄ being

TιTΣ : TTΣ→ TTΣ
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we see that the following diagram commutes

TTΣ

TιΣ
��

ιTΣ // TTΣ

TιΣ
��

TTΣ
ιTΣ

// TTΣ

Let us write ιιΣ for the diagonal of the above diagram.
To prove that AT is a T-algebra, we will show that the following diagram

commutes (the outer perimeter of the diagaram says that mulAT
is associative

as required in a T-algebra):

TTA
ιιA

((

mulTA //

TmulAT

��

TA

ιAvv

mulAT

��

TTA
mulTA //

TmulA ��

TA

mulA

  

TA

mulA ++TA

ιA
66

mulAT

// A

The middle face of the diagram is the assumption that A is a T-algebra. The
right and bottom faces are the definition of mulAT

. The top face can be shown
using the definition of multiplication in TA, and does not use the algebraic
structure on A. Finally, for the left face, we use the following diagram:

TTA

TιA
))

TmulAT

%%

ιιΣ

,,
TTA

TmulA��
ιTA

// TTA

TmulA��
TA

ιA
// TA

The rectangular face commutes by Lemma 11.6. The lower triangular face
commutes by applying the functor T to the definition of mulAT

. The upper
triangular face commutes because it is the definition of ιιA.
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This completes the proof that AT is a T-algebra. To prove that h as in the
statement of the lemma is a T-morphism, we consider the following diagram:

TA
ιA

!!
mulAT

��

Th // TB

mulBT

��

ιB

}}
TA

Th //

mulA}}

TB

mulB ""
A

h
// B

The left and right faces commute by definitions of multiplication in AT and BT.
The bottom face commutes by assumption that h is a T-morphism. The top
face commutes by Lemma 11.6. �

12 Topology in the profinite monad

If A is a T-algebra, then define recA to be the subsets of the universe of A
that are recognised by T-morphisms from A into finite T-algebras. Define the
T-topology on a T-algebra to be the topology where the base open sets are recA.
Note that since recA is a Boolean algebra, it follows that the base open sets are
also closed, i.e. they are clopen.

Stone dual. Consider a Boolean algebra

(A,∩,∪,¬).

Define an ultrafilter in A to be a subset U ( A which is closed under intersec-
tions, and which contains every element of A or its complement but not both.
The Stone space associated to A is defined to be the set of all ultrafilters in the
Boolean algebra, endowed with a topology where the base open sets are of the
form

{U : U is an ultrafilter containing a} for a ∈ A.

The following lemma follows straight from the definitions.

Lemma 12.1 If A is a T-algebra, then Ā, seen as a topological space with
T-topology, is homeomorphic with the Stone dual of recA.

12.1 The metric case

If A is finitely generated, and up to isomorphism there are countably many finite
T-algebras, then there recA is countable, and therefore the T-topology can be
defined by a distance. To define such a distance, one chooses some enumeration
of recA, and defines the distance between elements of A to be 1/n where n is
the number of the first language in recA that distinguishes the two elements.
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Lemma 12.2 If recA is countable, then for every

h : A→ B

12.2 Stone algebras

Having defined the monad T, it is natural to ask what are finite T-algebras, and
what are the languages recognised by them. In this section, we study a special
case of finite T-algebras, which are obtained by taking a natural closure of a
T-algebra. For this reason, these closures can be considered as the uninteresting
examples of finite T-algebras.

Back and forth between finite T-algebras and T-algebras. A T-algebra
A is called Stone if its universe is finite, and the multiplication operation is
continuous assuming the discrete topology on the universe. The reason for this
name is that the discrete topology is the only one which makes the finite universe
a Stone space. In Lemma 12.3 we show that there is a one-to-one correspondence
between finite T-algebras and finite T-algebras that are Stone. As we illustrate
in Section 14, there are interesting examples of finite T-algebras that are not
Stone.

To go from a finite T-algebra A to a finite T-algebra, call it A, one keeps
the same universe and applies Lemma ?? to its multiplication operation.

Lemma 12.3 The mapping A 7→ A is a one-to-one correspondence between
finite T-algebras and finite T-algebras that are Stone.

Proof.
To show that A is a T-algebra, one needs to show that the following diagram
commutes.

TTA
mulTA //

T mulA ��

TA

mulA��
TA

mulA

// A
.

This follows immediately from (9). The multiplication operation is easily seen
to be continuous.

To prove that the correspondence is one-to-one, it suffices to show that if A
is Stone, then A = AT. This is true by Lemma ??. �

Lemma 12.4 The mapping

h : TΣ→ A 7→ h̄ : TΣ→ A

is a one-to-one correspondence between T-morphisms into finite T-algebras and
continuous T-morphisms into finite T-algebras that are Stone.
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Proof.
That h̄ is a T-morphism follows from the definition of A and the diagram in
Theorem ??. For the converse implication, consider a continuous T-morphism

h : TΣ→ A.

and define

hT : TΣ→ AT.

To prove that hT is a T-morphism, we use the same diagram as in the proof of
Lemma 12.3:

TTΣ � v

((

mulTΣ //

ThT

��

TΣiI
vv

hT

��

TTΣ
mulTΣ //

Th ��

TΣ

h

  

TΣ

h ++TΣ
( �

66

hT

// A

Since h is continuous and extends hT, it follows that h = hT by Lemma ??. �

Clopen languages. As shown in Lemma 12.3, there is a one-to-one corre-
spondence between finite T-algebras and T-algebras which are Stone. This cor-
respondence extends to languages, as stated in the following theorem. In the
lemma, for L ⊆ A, we write L̄ ⊆ Ā for the closure, in the T-topology, of the
image of L under the ιA.

Theorem 12.5 Let A be a T-algebra. The following conditions are equivalent
for a subset L ⊆ Ā:

1. L is clopen in the T-topology of Ā;

2. L is recognised by a continuous T-morphism into a finite Stone T-algebra.

3. L is equal to K̄ for some K ∈ recA.

( Proof.
1 implies 2. Like any clopen set in a compact space, L is a finite union of base
open sets, i.e. sets of the form

h̄−1(a) for some T-morphism h : TΣ→ A.

By Lemma 12.4, every base open set is recognised by a continuous morphisms
into finite Stone T-algebras. Sets recognised by such morphisms are closed under
finite Boolean combinations.
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2 implies 3. By Lemma 12.4, if L is recognised by a continuous T-morphism
into a finite Stone T-algebra, then L is recognised by

h̄ : TΣ→ A

for some T-morphism h : TΣ→ A. To prove the implication, it suffices to show

h−1(A0) = h̄−1(A0) for every A0 ⊆ A, (11)

which follows from the denseness of the (injective image) of TΣ in TΣ.
3 implies 1. Follows from (11). �

13 Two applications of profinite monads

In this section we give two applications of profinite objects. The application
result says that profinite objects can be used to describe lattices of languages,
although the theorem is not effective in any way. The second application says
that although the profinite object makes sense for any class of languages, e.g. for
decidable languages, only recognisable languages can be used if one wants the
algebraic structure of the monad to be consistent with the topology.

13.1 Defining classes by implications and identities

One of the advantages of profinite objects is that they can be used to describe
lattices of languages, including the special case of pseudovarieties of languages.
The results of this section a generalisation of Theorem 5.2 in [9] from monoids
to arbitrary monads over sets.

Profinite implications. A profinite implication over an alphabet Σ is an ex-
pression of the form w → v, where w, v ∈ TΣ. A T-recognisable T-language
L ⊆ TΣ satisfies the implication if w ∈ L̄ implies v ∈ L̄. A set of T-recognisable
subsets of TΣ is said to be defined by a set of profinite implications if it con-
tains exactly the languages that satisfy all implications from the set. In the
following lemma, a lattice of languages is a family of languages that contains
the empty and full languages, and which is closed under finite unions and finite
intersections.

Theorem 13.1 Let Σ be a finite alphabet, and let L be a family of T-recognisable
subsets of TΣ. Then L is a lattice if and only if it is definable by profinite im-
plications.

Proof.
This theorem is true for Stone duals of Boolean algebras in general, and does
not need that assumptions that profinite objects are obtained from recognisable
subsets of an algebra. The more general result is as follows. Consider a Boolean
algebra A and its Stone dual Ā, i.e. the topological space of ultrafilters on the
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Boolean algebra. Then a subset of A is a lattice if and only if it is definable
by implications in Ā. The result is well known [], but we give a proof below to
make the text self-contained.

It is easy to see that if a subset of A is definable by profinite implications,
then it is a lattice. To prove the other implication, consider a lattice L ⊆ A.
We claim that L is defined by the set of implications:

{x→ y : for every a ∈ L, if x ∈ ā then y ∈ ā}. (12)

By definition, every element of L satisfies the implications above. Let then
a ∈ A be such that a satisfies all the implications above. To finish the proof of
the theorem, we need to show a ∈ L.

We first claim that every x ∈ ā satisfies

x ∈ b̄ ⊆ ā for some b ∈ L (13)

For x ∈ ā, define [x] ⊆ Ā to be the following intersection⋂
x∈b∈L

b̄.

It is easy to see that [x] is the set of all y ∈ Ā such that the implication x→ y
belongs to the set (12). By assumption that a satisfies all these implications, it
follows that [x] ⊆ ā. Note that [x] is an intersection of sets that are closed. By
compactness of the Stone dual, [x] is equal to an intersection of finitely many b̄
with x ∈ b ∈ L. Furthermore, the intersection is nonempty, because L contains
the greatest element of the Boolean algebra, being a lattice. Because L is closed
under finite intersections, it follows that [x] = b̄ for some b with x ∈ b ∈ L.
Together with [x] ⊆ ā, this proves (13).

From (13) it follows that ā is the union of all b̄ ranging over b ∈ L such that
b̄ ⊆ ā. By compactness, the union can be made finite, and by closure of L under
finite union, it follows that there is some b ∈ L such that ā = b̄. Finally, since
a, b are in the Boolean algebra, it follows that a = b. �

Defining pseudovarieties by identities As mentioned in its proof, Theo-
rem 13.1 does not use any properties of recognisability over a monad. We now
present a corollary of the theorem, which is more specific to monads, and which
says that pseudovarieties can be defined by identities.

Define a profinite identity to be a pair of profinite objects w, v ∈ TX, where
X is a finite set of variables. We say that a T-language L ⊆ TΣ satisfies such
an identity if

Tf(w) ∈ p−1L iff Tf(v) ∈ p−1L

holds for every unary polynomial p over TΣ and every valuation f : X → TΣ.

Corollary 13.2 Let L be class of recognisable T-languages. Then L is a pseu-
dovariety if and only if it is defined by a set of profinite identities.
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13.2 Uniform continuity of term operations

As mentioned in its proof, Theorem 13.1 does not use any assumptions on
recognisability. For instance, if the topology in TΣ were defined using a different
Boolean algebra of subsets, such as those recognised by some monad variant of
Turing machines, then the theorem would still be true. In this section, we
show that recognisable languages are special in their topology makes all term
operations uniformly continuous. The result in this section is a generalisation
of Theorem 4.1 in [10] from monoids to a certain class of monads over sets.

Uniformly continuous operations. We begin by defining the notion of a
uniformly continuous operation in a Stone dual. Let A be a set and let

L = {L1, L2, . . .}

be a countable family of subsets of A, along with some enumeration. We assume
countability so that the topology of the Stone dual is definable by a distance,
and therefore uniform continuity can be discussed. We say that L ∈ L separates
two elements of A if it contains exactly one of them. Define the L-distance on
A to be

distL(a, b) =
1

2n
where n is minimal such that Ln separates a, b.

It is easy to see that this is a distance, assuming that every two elements of A are
separated by some element of L. Unravelling the classical definition of uniform
continuity, a function

f : AX → A

with X finite is uniformly continuous with respect to L-distance if for every
finite set K ⊆ L there is some finite set M⊆ L such that

v1 ≡M v2 implies f(v1) ≡K f(v2) for every v1, v2 ∈ AX ,

where ≡K says that elements cannot be separated by languages from K, and
≡M is the analogous equivalence but lifted pointwise to functions. It follows
that although the definition of L-distance depends on the enumeration of L, the
notion of uniformly continuous function does not.

Example 9. Let Σ be a finite alphabet, let X be a set of finite monoids (e.g.
all finite monoids, or all aperiodic monoids), and consider the L-distance on the
monoid Σ∗ where L is all subsets of Σ∗ recognised by monoids in X. We claim
that concatenation is uniformly continuous with respect to L-distance. We need
to show that for every finite K ⊆ L there is some finite M⊆ L such that

w1 ≡M w2 and v1 ≡M v2 implies w1v1 ≡L w2v2.

holds for every words w1, w2, v1, v2 ∈ Σ∗. The languages M can be taken to
be all languages recognised by those monoids that are used to recognise the
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languages from K. The family M is finite because there are finitely many
possible monoid morphisms from Σ∗ to a finite set of finite monoids. The same
solution works for other operations in Σ∗ that can be built using concatenation.
�

Example 10. As in the previous example, consider the L-distance on Σ∗ where
L contains some language that is not recognisable. We show that with respect
to L-distance, concatenation might continuous, but not uniformly continuous.

To show that concatenation might be continuous, suppose that L contains
all singleton languages, e.g. L is the decidable languages. This implies that
the topology generated by L-distance is discrete, because every singleton set is
open. Therefore, the topology on finite powers of Σ∗ is also discrete, and thus
concatenation is continuous with respect to L-distance, like any other operation
on this monoid.

Let us now show that concatenation is not uniformly continuous. Consider
some non-recognisable language L ∈ L. We will show that there is no finite set
M of decidable languages such that

w1 ≡M w2 and v1 ≡M v2 implies w1v1 ≡{L} w2v2.

for every words w1, w2, v1, v2 ∈ Σ∗. Let then M be a finite set of languages
from L, or any languages for that matter. Because L is not recognisable, there
are infinitely many derivatives, i.e. languages of the form x−1L. Since there
are finitely many equivalence classes of ≡M, there must exist some two words
w1, w2 such that

w1 ≡K v2 and w−1
1 L 6= w−1

2 L.

The inequality of derivatives means that there is some v such that

w1v 6≡{L} w2v,

which proves that concatenation is not uniformly continuous. �

The two examples above are essentially Theorem 4.1 of [10]. The goal of this
section is to generalise that result to algebras over abstract monads. The role
of concatenation will be played by an arbitrary term operation on the universe
of a T-algebra A, i.e. an operation of the form

f : AX 7→ [[p]](f) ∈ A

where p ∈ TX for some finite set of variables. In our generalisation we assume
that the monad is finitary, and that it is over the category of (unsorted) sets. The
proof can be easily generalised to finitely sorted sets is straightforward. There is
one additional assumption in our generalisation, which will require some more
definitions. In the special case of monoids, this additional assumption boils
down to the observation that the syntactic congruence is obtained already by
looking at unary polynomials of the form u 7→ wuv.
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Observationally complete polynomials. The idea behind observational
completeness is that sometimes, instead of using all unary polynomials in the
definition of the syntactic congruence, one can use a smaller subset, e.g. unary
polynomials that use the variable only once. Let A be a T-algebra. We write
pol1A for the unary polynomials in an algebra A; this notation makes sense
because we use unsorted sets. A set P ⊆ pol1A is called observationally complete
for A if the following conditions are equivalent for every a, b ∈ A and every
subset L ⊆ A of the universe:

w ∈ p−1L iff w′ ∈ p−1L for every p ∈ pol1A (14)

w ∈ p−1L iff w′ ∈ p−1L for every p ∈ pol1A ∩ P . (15)

Recall that the condition in (14) is the equivalence relation defined in the proof
of the Syntactic Morphism Theorem.

Example 11. Consider the monad of finite words where algebras are monoids.
Call a unary polynomial nonduplicating if it uses its variable exactly once. It
is not difficult to show that the unary nonduplicating polynomials are observa-
tionally complete in every monoids. This holds in all finitary monads mentioned
in this paper, in particular in for the monad of ultimately periodic ∞-words.
�

Finite covers. We say that w ∈ TX is covered by v ∈ TY if

w = mulTXf(v) for some f : Y → TX.

A set W is said to have a finite cover, if there is a finite set V such that every
w ∈ W is covered by some v ∈ V . We assume the convention that the variable
in unary polynomials is called 1. We will be interested in finite covers for subsets

W ⊆ pol1A = T(A t {1})

Example 12. Consider the monad of finite words. Using the convention that
the variable in unary polynomials is called 1 (not to be confused with the monoid
neutral element), a nonduplicating unary polynomial in a monoid A is a word
of the form

w1v with w, v ∈ A∗

Therefore, every nonduplicating unary polynomial is covered by a1b ∈ {a, 1, b}∗.
Consider the monad of ultimately periodic ∞-words. A nonduplicating

unary polynomial in this monad is a word of one of the forms

v1w or v(1w)ω with v, w ∈ A∗.

Therefore, every nonduplicating unary polynomial in this monad is covered by
one of axb, a(xb)ω ∈ {a, x, b}∗.

Summing up, in both monads from this example, every algebra has a finite
cover for the set of nonduplicating unary polynomials. �
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Characterisation of uniformly continuous term operations. We are
now ready to state the theorem that characterises recognisability as a necessary
and sufficient condition for uniform continuity of term operations.

Theorem 13.3 Consider a finitary monad T in the setting of sets. Let A be a
finitely generated T-algebra which has an observationally complete set of unary
polynomials that has a finite cover. Let L be a countable family of subsets of the
universe of A. Then

1. if L contains only T-recognisable languages, then every term operation is
uniformly continuous for derL-distance, where derL is all derivatives of L.

2. if L contains at least one language that is not T-recognisable, then some
term operation is not uniformly continuous for L-distance.

Before proving the theorem, note that by the discussion in Example 12, the
assumptions of the theorem are satisfied by every algebra in the monad of finite
words, and by every algebra in the monad of ultimately periodic words.

Proof.
We skip the proof of the first item, which is proved as in Example 9, and does not
use the assumption on the observationally complete set of unary polynomials,
but uses the assumption on finite generation.

Let us consider the second item. Let P be a set of observationally complete
polynomials with a finite cover V , as in the assumptions of the theorem. Let
L ∈ L be some language that is not recognisable. Since A is finitary, we can use
the Syntactic Morphism Theorem. It follows that the equivalence in (14) has
infinite index, and therefore the equivalence relation defined in (15) as applied
to P has infinite index. For v in the finite cover V , define ∼v to be the relation
as in (15) but with polynomials restricted to those that are covered by v, i.e. ∼v
identifies a, b ∈ A if

a ∈ p−1L iff b ∈ p−1L for every p ∈ pol1 covered by v.

Since the relation (15) has infinite index and is the intersection of the finitely
many relations ∼v, there must be some v ∈ V such that ∼v has infinite index.
Recall that v is an element of TY for some finite set of variables Y . We claim
that the term operation corresponding to v, i.e.

f ∈ AY 7→ mulA(Tf(v)) ∈ A

is not uniformly continuous. To prove this, consider some finite set K ⊆ L.
Because the index of ∼v is infinite and the index of ≡K is finite, there must be
some a, b ∈ A such that

a 6∼v b and a ≡K b.

Unraveling the definition of ∼v, this means that there is some p ∈ pol1A that
is covered by v such that

[[p]](a) 6≡{L} [[p]](b).
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Unraveling the definition of covering, this means that

[[p]](a) = [[v]](fa) and [[p]](b) = [[v]](fb)

holds for some fa, fb : Y → A which agree on all arguments except some y1 ∈ Y ,
and which map y1 to the ≡K-equivalent elements a, b respectively. Summing up,
for every finite set K ⊆ L we have found valuations fa, fb such that

fa ≡K fb but [[v]](a) 6≡{L} [[v]](b),

and therefore the term operation corresponding to v is not uniformly continuous.
�

14 Profinite words

In this section, we illustrate the profinite monad construction from Section 11
in the special case of words. Consider the monad Σ 7→ Σ∗ that was used for
finite words. Let us denote by Σ 7→ Σ∗̄ the profinite version of this monad, as
defined in Section 11. In particular, Σ∗̄ is a monoid thanks to Lemma 11.7, and
Σ∗̄ is has a topology which makes it a Stone space. An element of Σ∗̄ is called
a profinite word over the alphabet Σ.

As discussed in Section 12.2, for every finite monoid M , one can extend its
multiplication operation to an operation

mul : M ∗̄ →M

which makes it into a finite ∗̄-algebra, and which is continuous assuming the
discrete topology on M . This construction is one source of finite ∗̄-algebras; but
it does not really introduce anything new with respect to finite monoids. In this
section we give an example of a finite ∗̄-algebra that is not obtained this way.

14.1 The unboundedness language

We say that a profinite word w ∈ Σ∗̄ has at least n letters in a subset Γ ⊆ Σ if
it has value n under h̄ where

h : Σ∗ → {0, 1, . . . , n}

is the monoid morphism which counts the number of letters in Γ up to threshold
n. The notion of exactly n letters is defined by saying at least n but not at least
n + 1. If a profinite word has at least n letters in Γ for every n, then we say
that it has an unbounded number of letters in Γ.

Lemma 14.1 The set of profinite words in 2∗̄ which have unboundedly many
ones is ∗̄-recognisable.

58



Proof.
The set is recognised by a ∗̄-morphism

h : 2∗̄ → A

where A is the finite ∗̄-algebra defined as follows. The universe A has three ele-
ments, call them 0, 1 and∞, which represent profinite words that have no ones,
a bounded number of ones, and an unboundedly number of ones respectively.
The multiplication operation

mulA : A∗̄ → A

is defined as follows. If the argument has only zeros, the value is zero. If the
argument has at least one letter ∞, or unboundedly many ones, then the value
is ∞. Otherwise the value is one. Note that the multiplication operation is
not continuous, at least assuming a discrete topology on the universe, because
the inverse image of 1 is not closed. We now prove that this multiplication is
associative, i.e. that the following diagram commutes:

(A∗̄)∗̄
mulA∗̄ //

(mulA)∗̄ ��

A∗̄

mulA��
A∗̄

mulA

// A

Consider a word w ∈ (A∗̄)∗̄. Our goal is to show that

mulA((mulA)∗̄(w)) = mulA(mulA∗̄(w)). (16)

We consider two cases, depending on whether w has an unbounded number of
letters in the set A∗̄ − 0∗̄.

• The word w has an unbounded number of letters outside 0∗̄. We will show
that (16) holds, because both sides are equal to ∞. Consider first the left
side. Let

hn : A∗ → {0, . . . , n}

be the monoid morphism that counts the number of nonzero letters. Our
assumption on w says that (h1)∗̄(w) has unboundedly many ones. Since
the image of h1 is a subset of A, it makes sense to compare values of h1

with values of mulA, in particular the following observation is easy to get:

h1(v) ≤ mulA(v) for every v ∈ A∗̄.

As in the proof of Lemma 6.2, a binary relation R ⊆ X × Y lifts to a
relation RT ⊆ TX × TY . Apply this construction to the natural ordering
on A, and call ≤ the resulting relation on A∗̄. As we have observed,

(h1)∗̄(w) ≤∗̄ (mulA)∗̄(w).
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The profinite word on the left of the above inequality has an unbounded
number of ones by our assumption, and therefore it is mapped by mulA
to ∞. It is not difficult to see that the mapping mulA is monotone with
respect to ≤, and therefore the left side of the equality in (16) is ∞.

To prove that the right side of the equality in (16) is also∞, by definition
of mulA we need to show that every n satisfies

hn(mulA∗̄(w)) = n.

Let muln be the multiplication operation in the monoid {0, . . . , n}. The-
orem ?? says that

A∗̄∗̄

hn
∗̄

��

mulA∗̄ // TA

hn

��
T{0, . . . , n} muln // {0, . . . , n}

To prove that the right side of the equality in (16) is also ∞, from the
definition of mulA we need to show that for every n, if start with w
and consider the right-down path in the above diagram, then we get n.
Because the diagram commutes, we can also consider the down-right path.
Our assumption on w says that (hn)∗̄(w) is a profinite word which has an
unbounded number of nonzero letters. On such words, hn gives result n.

• The other case is when w has a bounded number of letters outside 0∗̄. We
begin with a straightforward lemma, which uses the monoid structure of
profinite words that was described in Lemma 11.7. If a ∈ Σ, then let us
write [a]Σ ∈ Σ∗̄ for the corresponding profinite word.

Lemma 14.2 If w ∈ Σ∗̄ has a bounded number of letters in Γ ⊆ Σ then
it admits a finite decomposition

w = w0 · [a1]Σ · w1 · · ·wn−1 · [an]Σ · wn with wi ∈ (Σ− Γ)∗̄ and ai ∈ Γ.

By applying Lemma 14.2, there is a decomposition

w = w0 · [a1]A∗̄ · w1 · · ·wn−1 · [an]A∗̄ · wn

where wi ∈ (0∗̄)∗̄, ai ∈ A∗̄−0∗̄, and the · operation is in the monoid (A∗̄)∗̄.
Lemma 11.7 implies that

mulA∗̄(w) = mulA∗̄(w0) · a1 ·mulA∗̄(w1) · · ·mulA∗̄(wn−1) · an ·mulA∗̄(wn)

where the · operation is in the monoid A∗̄. Since mulA is a monoid mor-
phism, and it maps words in 0∗̄ to the identity in A, it follows that

mulA(mulA∗̄(w)) = mulA(a1) · · ·mulA(an).
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Let us now consider mulA((mulA)∗̄(w)). Lemma 11.7 says that (mulA)∗̄

is a monoid morphism, and therefore

mulA
∗̄(w) = mulA

∗̄(w0) ·mulA
∗̄([a1]A∗̄) ·mulA

∗̄(w1) · · ·mulA
∗̄(wn−1) ·mulA

∗̄([an]A∗̄) ·mulA
∗̄(wn).

By the axioms of a monad, we have

mulA
∗̄([ai]A∗̄) = [mulA(ai)]A.

Each word mulA
∗̄(wi) in the decomposition of mulA

∗̄(w) belongs to 0∗̄.
Therefore, because mulA is a monoid morphism that maps 0∗̄ to the iden-
tity, we get

mulA(mulA
∗̄(w)) = mulA([mulA(ai)]A) · · ·mulA([mulA(an)]A).

The result follows because mulA([a]A) = a holds for every a ∈ A.

This completes the proof that mulA : A∗̄ → A is a ∗̄-morphism. �

Let us define mso+inf to by applying the abstract notion of mso defined
in Section 6.1, with the unique predicate being the language of unboundedly
many ones. This class of languages was considered in [17]. From Lemma 6.2 it
follows that mso+inf contains only ∗̄-recognisable languages. It is not clear if
it contains all ∗̄-recognisable languages. It is an open problem whether or not
emptiness is decidable for mso+inf. As shown in [17], decidability of mso+inf
on profinite words would imply decidability of mso+u, which is an extension of
mso on infinite words, and whose decidability is an open problem.
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