
A new algorithm for testing if a regular

language is locally threshold testable

Miko laj Bojańczyk

Institute of Informatics, Warsaw University

Abstract

A new algorithm is presented for testing if a regular language is locally threshold
testable. The new algorithm is slower than existing algorithms, but its correctness
proof is shorter. The proof idea is to restate the problem in Presburger arithmetic.

Key words: Formal Languages

A language L ⊆ A∗ is called locally threshold testable (LTT) if it is a Boolean
combination of languages of the form: a) words that have w ∈ A∗ as a prefix;
or b) words that have w ∈ A∗ as a suffix; or c) words that have w ∈ A∗

as an infix at least n times. For instance, the language a+b+a+b+ is locally
threshold testable, as witnessed by: “words that have a as a prefix, have ab
as an infix exactly two times, and have ba as an infix exactly one time”. By
Gaifman’s theorem, locally threshold testable is equivalent to being definable
in first-order logic with the successor relation on positions.

This paper presents a new proof of the following theorem:

Theorem 1 It is decidable if a regular language L is locally threshold testable.

As observed by Beauquier and Pin in [1,2], the above problem is decidable by
a result of Thérien and Weiss [8]. A polynomial time algorithm – with respect
to the minimal deterministic automaton for L – was presented by Pin in [4,5].
The approach of [8,2,1,4,5] uses semigroup theory; the crux is that a language
is locally threshold testable if and only if its syntactic semigroup satisfies
certain swapping conditions. However, proving that the swapping conditions
are sufficient requires involved combinatorics. The proof in this paper does
not use semigroups, only Parikh images and Presburger arithmetic. The point
is to provide an alternative proof of decidability, even if the algorithm is quite
slow (several exponentials).

Preprint submitted to Elsevier 29 May 2007

The rest of the paper is devoted to a proof of Theorem 1. There are two
important parameters in the definition of LTT: the maximal size of the words
w and the maximal counting threshold n. If the maximal size of words w is at
most k, then the language is called k-locally threshold testable. Our approach
is to first calculate k (in Section 1) and then n (in Section 2).

1 Calculating k

The results and techniques in this section are not new. Essentially, the Delay
Theorem of [7] is reproved, but using automata instead of semigroups. This
section is included to make the paper self-contained.

A k-scanner is a transducer f : A∗ → B∗ that only sees the input through
windows of size at most k. The scanner is defined in terms of functions

short : A≤k → B∗ prefix , infix , suffix : Ak → B∗ .

The output of the scanner upon reading an input word w ∈ A∗ is defined as
follows. If |w| ≤ k, then the scanner outputs short(w). Otherwise, the scanner
begins by outputting the result of prefix on the k-letter prefix of w. Then it
consecutively processes the k-letter infixes of w (not including the prefix and
suffix) from left to right, and appends to the output the value of infix for
each such infix. Finally, the scanner applies suffix to the k-letter suffix, and
appends the result to the output.

A 1-scanner is essentially a homomorphism. A 2-scanner can, for instance,
output an input letter only if it is different from the previous one.

Consider an automaton B with input alphabet B, and let f : A∗ → B∗ be
a scanner. Here and afterward, the term automaton refers to a deterministic
finite state automaton. A language L ⊆ A∗ is recognized by B ◦ f if L is the
set of words w such that f(w) is accepted by B. The following theorem shows
that the window size of f can be bounded by the size of an automaton for L:

Theorem 2 Let L be a regular language. One can effectively compute a k ∈ N
such that if L is recognized by B ◦ f for some automaton B and scanner f ,
then L is recognized by B ◦ g for some k-scanner g.

Note that in the above theorem, only the scanner f is replaced by g, while the
automaton B stays the same.

Proof. Let m be the window size of f . Let A be an automaton recogniz-
ing L, with states Q. Let A, B be the input alphabets of A, B respectively;
in particular f transforms A∗ into B∗. Finally, let l = |Q||Q|, and let k = 2l.

2

Each word w ∈ A∗ gives a transformation on states of A. A word u ∈ A+ is an
extender of w ∈ A∗ if the words w and wu give the same state transformation.
Since extenders of w are closed under concatenation, we may assume that each
extender has length at least m − 1. To make the extender unique, we chose
the first such u in the lexicograhic ordering.

Below, we define an l-scanner h : A∗ → A∗, which, intuitively speaking, adds
extenders to the input word. The scanner works as follows. If the input word
has at most l positions, then it is copied onto the output without changes.
Otherwise, the scanner looks successively at each position i = 1, . . . , n in the
input word a1 · · · an, and inspects the last l− 1 positions (these give the word
ai−l−1 · · · ai when i > l, or a1 · · · ai when i ≤ l). If this word has an extender
u, then the scanner outputs aiu, otherwise it only outputs ai. The above
procedure can be easily implemented in terms of maps prefix , infix , suffix .
Slightly ahead of time, we remark the key property of this scanner: it will
output an extender at least every l positions.

An induction on word length shows that transformations on states of A are
the same for w and h(w). In particular, B◦f recognizes L if and only if B◦f ◦h
recognizes L. The proof of the lemma will be completed by showing that the
composition f ◦ h is a 2l-scanner.

We need to define the maps short , prefix , infix , and suffix for the composition
f ◦ h. The short map is defined enumerating the results of f ◦ h on the short
words. Among the latter three maps, we only deal with infix . Let a1 · · · a2l

be an infix with 2l letters. Inspecting the last l letters al+1 · · · a2l, we can
determine what new word v ∈ B∗ will be appended by the l-scanner h to its
output. Unfortunately, this word v is not enough to apply the m-scanner f ;
for this we also need m − 1 letters from the previous output. We will show
that by looking at the letters a1 · · · a2l−1, we can also determine the last m−1
letters that have been produced by h before reading the new position a2l.
This information is enough to apply the m-scanner l to the newly produced
output v.

Since we have access to positions a1 · · · a2l−1, we know what output will be
produced by the l-scanner h when processing the letters al,. . . ,a2l−1. We will
show that h will output an extender at least once on these positions, which
concludes by assumption on extenders having at least m − 1 letters. Since
there are at most l = |Q||Q| possible state transformations, at least two of the
l + 1 words ε, al, . . . , al · · · a2l−1 induce the same transformation on states of
A. In particular, at least two of these words admits an extender, and therefore
so does one of the words a1 · · · al, . . . , al · · · a2l−1. This gives the desired result.
�

Corollary 1 For each regular language L ⊆ A∗ one can effectively calculate

3

a k ∈ N such that if L is locally threshold testable, then it is already k-locally
threshold testable.

Proof. A counting automaton is an automaton B that counts the number
of times each letter of the alphabet occurs in the input word, up to a given
threshold n. More formally, if the input alphabet is A = {a1, . . . , am}, then the
state space consists of vectors (i1, . . . , im) ∈ {0, . . . , n}m, while the transition
function is defined:

δ((i1, . . . , im), aj) = (i1, . . . , ij−1, max(n, ij + 1), ij+1, . . . , im) .

Clearly a language is k-locally threshold testable if and only if it is recognized
by B ◦ f , where B is a counting automaton and f is a k-scanner. The result
then follows from Theorem 2. �

2 Calculating n

Using Corollary 1, we have determined a candidate for the k such that L
may be k-locally threshold testable. This section is devoted to calculating the
counting threshold n. The new ideas of the paper are here.

The k-footprint πk(v) of a word v ∈ A∗ is a vector of naturals, which says:

• What words of length at most k are prefixes of v.
• What words of length at most k are suffixes of v.
• For each word w of length at most k, how many times does w occur as an

infix of v.

The vector πk(v) therefore has 3(|A|+ |A|2 + · · ·+ |A|k) coordinates. For the
prefixes and suffixes, only the values 0, 1 need be used in the vector, however
the coordinates for infixes may contain arbitrarily large values.

Numbers i, j ∈ N are said to agree up to threshold n ∈ N, if they are either
equal or both greater than n. This definition is extended to vectors of natu-
rals coordinatewise. The definition of LTT can be reformulated as follows: a
language L ⊆ A∗ is k-locally threshold testable if and only if:

(*) There is n ∈ N such that any two words whose k-footprints agree up to
threshold n must either both belong to L or both be outside L.

Theorem 1 will therefore follow from the following lemma:

Lemma 1 Condition (*) is effective (given L and k).

4

Before proving the above lemma, we recall the definitions of semilinear sets
and Presburger arithmetic. A vector set X ⊆ Nm is called semilinear if it is a
finite union of linear sets, which are vector sets of the form:

{x + i1x1 + · · · + inxn : i1, . . . , in ∈ N}
for some x, x1, . . . , xn ∈ Nm .

Presburger arithmetic is the first-order theory of the natural numbers with
addition (N, +). Presburger’s Theorem [6] states that not only is Presburger
arithmetic decidable, but the vector sets defined by formulas with free variables
are exactly the semilinear sets. Moreover, this correspondence is effective. For
instance, the formula x = y describes the (linear) set {(0, 0) + i(1, 1) : i ∈ N}.

Proof. Consider the sets of footprints for L and its complement, i.e.

X = {πk(v) : v ∈ L} and Y = {πk(v) : v 6∈ L} .

In Lemma 2, we show that both these sets of vectors are semilinear, and can
be effectively calculated. Using the sets X and Y , condition (*) becomes:

There is some n ∈ N such that no two vectors x ∈ X and y ∈ Y can agree
up to threshold n.

The above question is a statement in Presburger arithmetic, and can therefore
be effectively answered. �

Lemma 2 For a regular language L ⊆ A∗, the vector set {πk(v) : v ∈ L} is
semilinear and can be effectively calculated.

Proof. For k = 1 this follows from Parikh’s theorem [3]. The case of k > 1
can be reduced to k = 1 by considering words over the expanded alphabet
A≤k+1, where each position is labeled with the next k + 1 letters (or less, if
the position is near the end of the word). �

Almost all the results in this paper easily extend to ranked trees. (Note that
for trees, we need to use the full power of Parikh’s theorem for context-free
grammars, and not just regular languages.) The only exception is Theorem 2,
for which no tree analogues are known.

I would like to thank the anonymous referee for many helpful comments.

5

References

[1] D. Beauquier and J.-É. Pin. Factors of words. In International Colloquium
on Automata, Languages and Programming, volume 372 of Lecture Notes in
Computer Science, pages 63 – 79, 1989.

[2] D. Beauquier and J.-É. Pin. Languages and scanners. Theoretical Computer
Science, 84(1):3 – 21, 1991.

[3] R. Parikh. On context-free languages. Journal of the ACM, pages 570–581, 1966.

[4] J.-É. Pin. The expressive power of existential first-order sentences of Büchis
sequential calculus. In International Colloquium on Automata, Languages and
Programming, volume 1099 of Lecture Notes in Computer Science, pages 300 –
311, 1996.

[5] J.-É. Pin. The expressive power of existential first-order sentences of Büchis
sequential calculus. Discrete Mathematics, 291(1-3):155 – 174, 2005.

[6] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In
Comptes Rendus du I congrès de Mathématiciens des Pays Slaves. Warszawa,
pages 92 – 1001, 1929.

[7] H. Straubing. Finite semigroup varieties of the form V ∗D. Journal of Pure and
Applied Algebra, 36:53–94, 1985.

[8] D. Thérien and A. Weiss. Graph congruences and wreath products. Journal of
Pure and Applied Algebra, 36(2):205 – 215, 1985.

6

