
TREE-WALKING AUTOMATA DO NOT RECOGNIZE ALL
REGULAR LANGUAGES

MIKO LAJ BOJAŃCZYK†§ AND THOMAS COLCOMBET‡§

Abstract. Tree-walking automata are a natural sequential model for recognizing tree languages.
It is well known that every tree language recognized by a tree-walking automaton is regular. We
show that the converse does not hold.

1. Introduction. A tree-walking automaton is a natural type of finite automa-
ton for trees. At every moment in a run, a tree-walking automaton is located in one
node of the tree. In one step, the automaton moves to a neighboring node and changes
its state according to the transition relation. The step depends on the current state
of the automaton and some local information: the label of the current node, whether
or not it is the root, a leaf, a left child or a right child. The tree is accepted if one of
the accepting states is reached. For instance, a tree-walking automaton can check if
all nodes of the tree have the same label by doing a depth-first search.

Even though tree-walking automata were introduced in the early seventies by Aho
and Ullman [1], not much is known about this model.

This situation is different from the “usual” tree automata – branching tree au-
tomata – which are a well-understood object. In particular top-down, bottom-up
and two-way nondeterministic branching tree automata recognize the same class of
tree languages. The tree languages of this class are called regular, the name being
so chosen because the class enjoys many nice properties of regular word languages.
A comprehensive introduction to the standard theory of tree automata can be found
in [4].

As tree-walking automata are a particular case of two-way branching automata,
tree-walking automata recognize regular tree languages. Closure under union and
intersection is also simple. Until recently, however, other fundamental questions per-
taining to tree-walking automata remained unanswered:

1. Is every regular tree language recognized by a tree-walking automaton?
2. Can tree-walking automata be determinized?
3. Are tree-walking automata closed under complementation?

Much research has been dedicated to tree-walking automata. There are nondefin-
ability results for weakened models of tree-walking automata [9, 11, 2], as well as
definability results for strengthened models of tree-walking automata [9, 5, 7]. A line
of research is dedicated to logical characterizations of tree-walking automata [11] and
their pebble extensions [6]. There has also been some research on tree-walking au-
tomata with an output tape — which define tree-to-word transductions — [1] and to
expressiveness issues concerning this model [8].

Question 2 has been answered negatively in [3]. Question 3 is still open, the
only known result being closure under complementation of deterministic tree-walking
automata [10]. The contribution of this paper is to give a negative answer to the first
question.

†Work undertaken in Liafa (Paris, France) and Warsaw University (Poland).
‡Work undertaken in Warsaw University (Poland) and Irisa-CNRS (Rennes, France).
§Both authors were partially supported by the EU Research training network “Games and Au-

tomata for Synthesis and Validation”.

1

2. Preliminaries and the separating tree language. In this section we de-
fine the basic concepts and state our main result.

2.1. Basic definitions. The trees in this paper are finite, binary trees labeled
by a given finite alphabet Σ. A Σ-tree is a partial mapping t : {0, 1}∗ → Σ of finite,
nonempty and prefix-closed domain dom(t). Elements of this domain are called nodes
of the tree; the label of a node u is the value t(u). Additionally we assume that if v0
is a node of the tree, then so is v1, and vice versa. Nodes are partially ordered by
the prefix relation; when a node x is prefix of a node y, we say that x is above y,
or y is below x. The least node ε is called the root, maximal nodes are called leaves.
The nodes are also ordered lexicographically; we say that x is to the left (resp. right)
of y if x and y are incomparable by the prefix relation, and x is lexicographically
before y (resp. after y). Given a node u, the subtree of t rooted in u — we simply
say the subtree of u when the tree t is clear from the context — is the Σ-tree t′ of
domain {v : uv ∈ dom(t)} defined for all nodes v of t′ by t′(v) = t(uv). The depth of
a node u is |u| + 1, where |u| is the length of u as a word. The depth of a tree is the
maximal depth of its nodes. A balanced tree is one where all leaves are at the same
depth.

A set of trees over a given alphabet is called a tree language. A regular tree
language is a tree language recognized by a bottom-up branching tree automaton.
We assume the reader to be familiar with branching automata; see [4] for further
reading. We denote by REG the class of regular tree languages.

We now define (nondeterministic) tree-walking automata. The type of a node says
whether the node is a leaf and whether it is the root. There are four possible types;
we denote the set of types by Types.

Definition 1. A tree-walking automaton is a tuple A = (Q,Σ, I, F, δ), where Q
is a finite set of states, I, F ⊆ Q are respectively the sets of initial and accepting
states, and δ is the transition relation of the form

δ ⊆ (Q × Types × Σ × {ε, 0, 1})2 .

A configuration is a pair of a state and a node. The automaton can go in one
step from a configuration (q1, v1) to a configuration (q2, v2) if δ contains a transition

(q1, t1, a1, d1, q2, t2, a2, d2)

such that the type and label of vi are ti, ai and there is a node u such that vi = u · di

for i = 1, 2. A run is a nonempty sequence of configurations c1, . . . , cn in which every
two consecutive configurations are consistent with the transition relation. We say that
such a run is from c1 to cn; if both configurations c1 and cn are located at the same
node u, then the run is called a loop in u. A run is accepting if it starts and ends
in the root of the tree, the first state is initial and the last state is accepting. The
automaton accepts a Σ-tree if it has an accepting run in that tree. The set of Σ-trees
accepted is called the tree language recognized by the automaton. We use TWA to
denote the class of tree languages recognized by some tree-walking automaton.

The reader may be surprised by our definition of tree-walking automata. In other
texts, the transition relation is of the form

δ ⊆ Q × {root, left child, right child} × {leaf, nonleaf} × Σ × Q × {↑, 0, 1, ε}

2

In this definition – which can easily be shown equivalent to the one we use – the
second coordinate extends Types by saying if a node is a left child / right child, while
the {↑, 0, 1, ε} causes the automaton to move to the parent, left child, or right child
of the current node (or not move at all). The point of using our slightly more verbose
definition is that it allows to easily define “reversed” automata, which visit the tree in
a chronologically (or spatially) opposite manner. We will comment on these reversed
automata in the next section.

We would like to point out here that testing whether a node is a left or right child
is an essential feature of a tree-walking automaton. Indeed, Kamimura and Slutzki
show in [9] that tree-walking automata that do not have access to this information
cannot even test if all nodes in a tree have the same label.

Symmetry principles. As pointed out before, our definition of tree-walking au-
tomata — in particular in their nondeterministic form — easily adapts itself to sym-
metry arguments, which are very convenient in the proofs. There are two symmetries:
time symmetry and space symmetry. Their formal definition is in terms of transfor-
mations of a tree-walking automaton; namely each automaton has a time-reversed
and a space-reversed variant. The time-reversed automaton of A, denoted A−T , is
obtained from A be replacing each transition

(q1, t1, a1, d1, q2, t2, a2, d2) ∈ δ

with the transition

(q2, t2, a2, d2, q1, t1, a1, d1) .

On the other hand, the space-reversed automaton of A, denoted A−S , is obtained by
replacing each transition

(q1, t1, a1, d1, q2, t2, a2, d2) ∈ δ

with the transition

(q1, t1, a1, s(d1), q2, t2, a2, s(d2)) ,

where s(ε) = ε, s(0) = 1 and s(1) = 0. One can easily see that

(A−S)−T = (A−T)−S .

We extend the space symmetry s : {ε, 0, 1} → {ε, 0, 1} mapping to nodes (s :
{0, 1}∗ → {0, 1}∗) and trees in the natural manner. The following obvious fact encap-
sulates the properties of the reversed automata:

Fact 2.1. Let (q1, v1), . . . , (qn, vn) be a run of A in a tree t.
• (qn, vn), . . . , (q1, v1) is a run of A−T in t.
• (q1, s(v1)), . . . , (qn, s(vn)) is a run of A−S in s(t).

We say that an automaton is isomorphic to another if there exists a one-to-one
mapping f from the states of the first one to the states of the second such that there
exists a transition

(q1, t1, a1, d1, q2, t2, a2, d2)

3

in the first automaton iff there exists a transition

(f(q1), t1, a1, d1, f(q2), t2, a2, d2)

in the second automaton. In particular, the isomorphism notion does not involve the
initial nor the accepting states of the automata.

We say an automaton is self-symmetric if it is isomorphic to its time-reversed
and also to its space-reversed automaton. By adding (unreachable) states to an au-
tomaton, any tree-walking automaton can be made self-symmetric. In the sequel,
self-symmetric automata will be very convenient in reducing the number of cases to
be analyzed. Assume for instance, that we have proved a statement of the form: “for
every two states p, q, any run from p in the root to q in a leaf can be transformed
into one without loops”. If the automaton for which we proved this statement was
self-symmetric, we would also get the following statement for free: “for every two
states p, q, any run from q in a leaf to p in the root can be transformed into one
without loops”. This is because the time-reversal of a run from the root to a leaf is a
run from a leaf to the root, and being loop-free is invariant under time-reversals.

2.2. The Separating Language. As mentioned in the introduction, it is well
known that all tree languages recognized by tree-walking automata are regular:

TWA ⊆ REG . (2.1)

It has been long open whether this inclusion is strict. Engelfriet, Hoogeboom and
Van Best conjectured that this is indeed the case [7]. The subject of this paper is to
establish this conjecture.

In this section we describe a tree language L that is regular but not accepted
by any tree-walking automaton, and therefore witnesses the strictness of the inclu-
sion (2.1).

We consider trees with two possible labels: a and b. Moreover, a is only allowed in
the leaves. We sometimes refer to the symbol b as the blank symbol. Trees containing
only the blank symbol are called blank trees. In a blank tree, only the set of nodes is
important.

Let t be a nonblank tree with a occurring only in the leaves. We will define now
the branching structure bs(t) of t, which is a blank tree (since only the nodes of bs(t),
and not their labels, are relevant). We say a node u is a branching node of t if it is
either an a-labeled leaf of t, or if both left and right successors of u have a-labeled
leaves in their subtrees. We define the branching structure of t as the (unique) blank
tree bs(t) such that there is a bijection between the branching nodes of t and the nodes
of bs(t) that preserves the prefix relation and the lexicographic ordering of nodes. The
following drawing illustrates this definition on an example:

a
a

a a

Let K be the set of blank trees where all leaves are at even depth. The separating
tree language L mentioned at the beginning of this section is bs−1(K), i.e., the set

4

of trees whose branching structures have all leaves at even depth. We now state the
main result of this paper:

Theorem 2. The tree language L is regular, but is not recognized by any tree-
walking automaton.

Showing that L is regular is not difficult: it is recognized by a bottom-up deter-
ministic automaton with three states recognizing respectively the set of blank trees,
the set of trees whose branching structure has only branches of even length, and the set
of trees whose branching structure has only branches of odd length. For completeness,
a fourth “error” state can be added.

Fact 2.2 below shows that a stronger result holds:

Fact 2.2. The tree language L is definable in first-order logic with the prefix
relation and the left and right successor relations.

Proof. First note that there is a first-order logic formula with one free variable,
which is true in exactly the branching nodes of a tree. Therefore, the nodes of the
branching structure bs(t) can be interpreted as the branching nodes of t. (Note that
for a node interpreted by v, its left successor is interpreted as “first branching node
lexicographically after or at the left successor of v”, similarly for the right successor.) It
follows that if K is a property of branching structures defined by a first-order formula
ϕ, then bs−1(K) is also defined by a first-order formula. The first-order formula
for bs−1(K) is obtained from ϕ by restricting quantification to branching nodes, and
replacing the left/right successors by their above-mentioned interpretations (the prefix
relation is not changed).

Therefore, the statement of the fact will follow if we establish that the language K
is definable in first-order logic. This latter result is Lemma 5.1.8 in [12]. For com-
pleteness, we provide a proof for it below.

The main idea is that first-order logic can express whether a leaf in (01)∗(ε + 0)
is at even depth or not. We will refer to such a leaf as the middle leaf of the tree.
A first-order formula can detect the middle leaf by checking that each node above it
is either the leaf itself, the father of the leaf, the right child of a left child, the left
child of a right child, the left child of the root, or the root itself. The middle parity
of a tree is defined to be the parity of the depth of the middle leaf; it is definable in
first-order logic since the middle leaf is at even depth if and only if it is a left child.
The middle parity of a node is defined to be the middle parity of the subtree rooted
at this node.

Let M be the set of trees whose middle parity is even, and for which all children
of any internal node have the same middle parity. We claim that K = M . According
to the previous remarks, this implies that K is definable in first-order logic.

The inclusion K ⊆ M is obvious. For the other direction, let t be a tree outside K.
If all leaves in t have the same depth parity, then the middle parity is odd and t 6∈ M .
Otherwise, consider a node in t of maximal depth whose subtree has leaves of both
even and odd depth. But then by maximality, the middle parities of this node’s
children must be different and t 6∈ M .

The hard part in the proof of Theorem 2 remains: we need to show that the tree
language L is not recognized by any tree-walking automaton. The remainder of this
paper is devoted to proving this result.

In the next section, we define patterns; these are the same as used in [3]. A
pattern is a particular type of tree with distinguished nodes, called ports. As in [3],

5

we consider three particular patterns (the basic patterns) that confuse a tree-walking
automaton. Then, in Section 4, to every blank tree t we associate a tree made out
of basic patterns (its pattern expansion) whose branching structure – where ports
are considered as a-leaves – is t and is confusing for the automaton. We then study
throughout Sections 5 and 6 the possible runs of the automaton in expansions, and
their images in the original tree t. This study results in a precise understanding of
the behavior of the automaton in expansions: it can only perform a fixed number
of simple behaviors – such as left-to-right depth-first search, or move back to the
root, or nondeterministic search of a leaf, etc – and can only (nondeterministically)
switch between these behaviors a bounded number of times. In Section 7, we use this
knowledge about the tree-walking automaton for proving that it cannot recognize L.
In particular, we show that a simple local transformation, called the rotation, applied
to a sufficiently big tree cannot be detected by the automaton, while it transforms a
tree in the language into one which is not.

A more detailed overview of the proof is found in Section 4.2, after the concepts
of pattern and pattern expansion have been introduced.

We fix for the remainder of the paper a tree-walking automaton

A = (Q, {a,b}, I, F, δ) .

Eventually, we will show that A cannot recognize the tree language L. As noted in
the section on symmetry, we assume without loss of generality that the automaton A
is self-symmetric. We also assume without loss of generality that the automaton has
at least two states.

3. Patterns. In this section we define patterns, develop a pumping argument
for them, and then study its consequences for the automaton.

Patterns are fragments of trees with holes (called ports) in them. There are two
types of ports: leaf ports, which are in the leaves, and the root, which is also called a
port. Patterns can be assembled by gluing the root port of one pattern to a leaf port of
another pattern. A tree-walking automaton naturally induces an equivalence relation
on such patterns: two patterns (with the same number of ports) are equivalent if in
any context, the automaton cannot detect the difference when one pattern is replaced
by another. This equivalence relation (technically, a slightly finer one, which speaks
of states of the automaton) is the key notion in the study of patterns.

0 1 n-1

Fig. 3.1. A pattern of arity n

3.1. Patterns and pattern equivalence. A pattern is an {a,b, ∗}-tree where
the labels a and ∗ are only found in the leaves. For technical reasons we require that a
pattern has at least two nodes and that all ∗-labeled leaves are left children. A blank
pattern is any pattern with no a-labeled leaf. The i-th ∗-labeled leaf (numbered from
left to right, starting from 0) is called the i-th port. We number the ports from 0 to

6

be consistent with the usual tree terminology, where a left successor is denoted by 0
and a right successor by 1. Port ε stands for the root. The number of leaf ports is
called the arity of the pattern. In particular, patterns of arity 0 are {a,b}-trees. See
Fig. 3.1 for an illustration. Given an n-ary pattern ∆ and n patterns ∆0, . . . ,∆n−1,
the composition ∆[∆0, . . . ,∆n−1] is the pattern obtained from ∆ by simultaneously
substituting each pattern ∆i for the i-th port. We also allow some ∆i’s to be ∗. In
this case, nothing is changed for the corresponding ports. We write ∆[∆i/i] in the
particular case where all ∆j ’s but ∆i are ∗; i.e., a single substitution is performed at
port i. Given a set P of patterns, we denote by C(P) the least set of patterns which
contains P and is closed under composition.

(p,i)

(q,ε)

Fig. 3.2. A pattern ∆ with (p, i, q, ε) in δ∆

A run in a pattern is defined just as a run in a tree, except that the ports (both
root and leaf) are treated as being a nonleaf left child with the blank label. The
latter assumption is for technical reasons; it will allow us to compose runs in larger
patterns from runs in smaller ones. Moreover, we require that a run in a pattern visits
ports at most twice: a port may occur only in the first and last configurations. In
the following definition, illustrated by Fig. 3.2, we show how to describe a transition
relation corresponding to a pattern for the automaton.

Definition 3. The automaton’s transition relation over an n-ary pattern ∆,

δ∆ ⊆ (Q × {ε, 0, . . . , n − 1})2 ,

contains (p, i, q, j) if in ∆ there is a run from state p in port i to state q in port j.

From the point of view of the automaton, the relation δ∆ sums up all important
properties of a pattern and we consider two patterns equivalent if they induce the
same δ relation, i.e., patterns ∆ and ∆′ are equivalent if δ∆ = δ∆′ . This equivalence
relation is a congruence with respect to composition of patterns, thanks to the techni-
cal assumptions. The essence of this equivalence is that if one replaces a sub-pattern
by an equivalent one, the automaton is unable to see the difference. Here, we only
consider contexts that are consistent with our technical assumptions: the root of the
pattern corresponds to a left child, and the nodes plugged into the leaf ports are not
leaves and have the blank label.

Fig. 3.3. The patterns ∆0, ∆1 and ∆2

The following lemma was shown in [3], Lemma 9:

7

Fig. 3.4. An inner loop

Lemma 3.1. There are blank patterns ∆0,∆1,∆2 – of respective arities 0, 1 and 2
– such that any pattern in C({∆0,∆1,∆2}) of arity i = 0, 1, 2 is equivalent to ∆i.

Those patterns will be used a lot in the constructions below. To keep the drawings
uncluttered, we omit to specify the names ∆0,∆1 and ∆2 as this information can be
reconstructed from the number of leaves; see Fig. 3.3.

Note that the lemma may fail for i = 3 when nondeterministic automata are
involved, see [3]. The patterns ∆0, ∆1 and ∆2 are the key to our proof. In a sense, their
construction encapsulates all of the pumping arguments that we will do with respect
to the automaton A. For instance, the pattern ∆1 is equivalent to a composition of
any number of copies of ∆1 patterns. In particular, if the automaton can go from
the leaf port of ∆1 to the root port, then there must be a state that is used twice
along the way. We write CA to denote the set C({∆0,∆1,∆2}); from now on almost
all patterns considered will be taken from CA.

3.2. Inner loops. Although simply defined, the relation δ∆ is rather cumber-
some to work with. The automaton may do some redundant moves, such as going
one step down, and then one step up, without any apparent purpose (a phenomenon
called oscillation in [3]). It is convenient to eliminate this obfuscating phenomenon.
This is the purpose of the inner loop relation introduced in the next definition.

First however, we state Fact 3.2 which is a consequence of Lemma 3.1. In this
statement and elsewhere, by the expression plugging the ∆1 pattern into some/any
port of a pattern ∆, we refer to one of the patterns ∆1[∆],∆[∆1/1], . . . ,∆[∆1/n],
where n is the arity of the pattern ∆. Similarly, the pattern obtained by plugging ∆1

into all ports of a pattern ∆ represents the pattern ∆1[∆[∆1, . . . ,∆1]].

Fact 3.2. Plugging the ∆1 pattern into some port of a pattern in CA yields an
equivalent pattern.

Proof. Induction on the structure of the pattern, using Lemma 3.1 in the basis of
the induction.

Consider now a composition of two patterns ∆[∆′/i], and the junction of these
patterns, i.e., the node v that corresponds to port i in ∆. By the fact above, we may
well assume that v is on the junction of two ∆1 patterns: one plugged into the leaf
port i of ∆ and one plugged into the root port of ∆′. In particular, any loop that can
be done on the junction of two ∆1 patterns can be replicated in ∆[∆′/i]. Hence the
importance of such loops; we call them “inner loops” in the following definition:

Definition 4. The inner loop relation over states is the least transitive and re-
flexive relation →ε over states such that p →ε q holds whenever (p, ε, q, ε) or (p, 0, q, 0)
belongs to δ∆1

.

8

The following lemma formalizes the comments preceding the introduction of the
inner loop relation. It shows how →ε describes all possible loops on interfaces between
patterns from CA:

Lemma 3.3. Let ∆,∆′ ∈ CA be patterns of nonzero arity and let v be the junction
node corresponding to the leaf port i of ∆ and the root of ∆′. There is an inner
loop p →ε q if and only if there is a run from (p, v) to (q, v) in ∆[∆′/i].

Before proceeding with the proof, we would like to comment on the relevance of
this lemma. Recall that by our definition of runs within patterns, the loop from (p, v)
to (q, v) is not allowed to visit any of the ports. Therefore, the relation →ε tells us
what are the possible loops that can be done on the interface of two patterns without
visiting any ports. In particular, the possible types of such loops do not depend on
the two patterns ∆ and ∆′, as long as they are from CA.

Another important consequence of this lemma is that it gives us a sort of normal
form of runs through patterns in CA. Any loop on a junction between patterns can be
replaced by the →ε relation, therefore a run through a pattern in CA can be seen as
going directly from the source to the target, with all the loops being represented by
the →ε relation.

Proof. Assume that p →ε q. By definition of →ε, there is a run from (p,w)
to (q, w) in ∆1[∆1] where w is at the junction of the two ∆1 patterns. But this
run can be reused within ∆[∆′/i], since by Fact 3.2 we may assume without loss of
generality that both ∆ and ∆′ have ∆1 plugged into all their ports.

Reciprocally, assume that there is a run from (p, v) to (q, v) in the pattern ∆[∆′/i].
This run can be reused in the same pattern where a ∆0 has been substituted for all
ports but for some leaf port – say port 0 – of ∆′. By Lemma 3.1, this new pattern
is equivalent to the composition of two ∆1 patterns. It then follows by definition
that p →ε q holds.

Definition 5. For a pattern ∆, the relation γ∆ is the set of tuples (p, i, q, j)
such that p →ε p′ and q′ →ε q for some p′, q′ satisfying (p′, i, q′, j) ∈ δ∆.

Observe that a consequence of the definition above is that if p →ε q, then (p, i, q, i)
belongs to γ∆ for all ports i of ∆.

The γ relation has nicer closure properties than δ; hence from now on we will
be using it – and not the δ relation – to describe runs in patterns. For instance, γ
satisfies the following “swallowing” property:

(p, ε, q, 0), (q, ε, r, 0), (r, 0, s, ε) ∈ γ∆1
implies (p, ε, s, 0) ∈ γ∆1

.

This is because (q, ε, r, 0), (r, 0, s, ε) ∈ γ∆1
implies q →ε s. Another useful property of

the γ relation — resulting from the equivalence of ∆1 and ∆1[∆1] — is as follows:

(p, ε, q, 0) ∈ γ∆1
iff (p, ε, r, 0), (r, ε, q, 0) ∈ γ∆1

for some r .

Note that the left-to-right implication fails for the δ relation, since the state r may re-
quire some loops on the junction between the ∆1 patterns before the run reaches (q, 0).

Obviously, if two patterns are equivalent, then they have the same γ relations.
Let us remark also that a form of the converse also holds: if two patterns in CA have
the same γ relations, then they are equivalent. However this fact is of no use in the
remainder of the proof, and we need not establish it.

4. Pattern expansions and the proof strategy. In this section we introduce
pattern expansions and then give an overview of our proof strategy.

9

4.1. Pattern expansions. The pattern pre-expansion of a blank tree t is the
pattern obtained by replacing every inner node of t with the pattern ∆2 and replacing
every leaf with a port ∗. Thus, the pattern pre-expansion has as many leaf ports as t
has leaves.

The pattern expansion ∆t of t is the pattern obtained by plugging ∆1 into all
ports of the pattern pre-expansion (see Fig. 4.1). Note that the expansion and the
pre-expansion are equivalent as patterns. With every node v of t we associate a
node [v] in the pattern ∆t in the natural way (see Fig. 4.1); this node does not
depend on t. A junction node in a pattern expansion is any node of the form [v];
it is called a junction leaf when v is a leaf of t. Note that a junction leaf is not a
leaf in the pattern ∆t, since it has ∆1 as its subtree. The ∆1 patterns plugged in
the pattern expansion are used so that every junction node is on the interface of two
patterns of nonzero arity in CA. In particular, junction nodes are a suitable place for
using Lemma 3.3.

[w]

[v]
v

w

Fig. 4.1. A blank tree t and its pattern expansion ∆t

We denote by ∆a a fixed pattern of arity 0 equal to ∆1[∆
′
a
] where ∆′

a
is some zero

arity pattern containing exactly one a-labeled leaf. The particular form of ∆′
a

is not
important, but we can fix it to be a two-leaf tree with a in the left leaf, and b in the
other nodes. The only two important points concerning ∆a is that first it contains a
single leaf labeled by a, and second, that ∆a is equivalent to ∆1[∆a]. This last point
is obtained by remarking that ∆a equals ∆1[∆

′
a
] which is equivalent to ∆1[∆1[∆

′
a
]],

itself equal to ∆1[∆a].
Given a blank tree t, the tree ∆a

t is obtained by plugging ∆a into all leaf ports
of ∆t, i.e., ∆a

t = ∆t[∆a, . . . ,∆a]. Clearly the branching structure of ∆a

t is t. If the
tree-walking automaton were to accept the tree language L, it would have to accept
every tree ∆a

t for t ∈ K and reject every tree ∆a

t for t 6∈ K. We will eventually
show that this is impossible, due to the way tree-walking automata get lost in pattern
expansions.

In order to avoid confusion we remark here that ∆a

t is treated as a tree, and not
a pattern of zero arity. Therefore, a run over ∆a

t is allowed to visit the root several
times, as opposed to runs over patterns of zero arity.

A junction configuration is defined to be a configuration of the form (q, [v]) for
some node v ∈ {0, 1}∗. We will write such a configuration [q, v]. If v is a node of a
blank tree t, then [q, v] can be interpreted as a configuration in either the pattern ∆t

10

or the tree ∆a

t . In either case, [q, v] is a configuration whose node is a junction node.
Moreover, if v is a leaf of t (i.e., [v] is a junction leaf), the junction configuration is
also called a leaf configuration (this, of course, is relative to the tree t). We use square
brackets for junction configurations; these describe configurations in the branching
structure t. On the other hand, normal configurations are written with round brackets;
these describe configurations in the pattern expansion ∆t or in the tree ∆a

t .

The following lemma shows that the γ∆2
relation describes the way our fixed

tree-walking automaton can move between neighboring junction nodes in pattern ex-
pansions:

Lemma 4.1. Let t be a blank tree and v a node of t. The following statements
are equivalent for any states p and q:

1. In the pattern expansion ∆t there is a run from [p, v] to [q, v].
2. p →ε q.
3. In the pattern expansion ∆t there is a run from [p, v] to [q, v] that does not

visit any other junction node [w], w 6= v.

Proof. From 1 to 2. By cutting the pattern expansion ∆t at the junction node [v],
we write it ∆[∆′/i] for some two patterns ∆ and ∆′ in CA of nonzero arity, and i the
number of [v] as a leaf port of ∆. Applying Lemma 3.3 to it yields p →ε q.

From 2 to 3. Let ∆ and ∆′ be either ∆1 or ∆2, and i be a leaf port of ∆. Let v′

be the port i of ∆. By using p →ε q together with Lemma 3.3 to ∆[∆′/i], we obtain
that there is a run from (v′, p) to (v′, q) which does not visit the ports of ∆[∆′/i]. By
definition of the pattern expansion ∆t, the junction node [v] appears either as port 0
of a ∆1 pattern or as port 0 or 1 of a ∆2 pattern. Similarly it is also the root port of
a ∆1 or a ∆2 pattern. Hence [v] can be identified with node v′ in a pattern ∆[∆′/i]
above. We can transfer the run we had witnessed on ∆[∆′/i] to ∆t, obtaining a run
from [p, v] to [q, v] that does not visit any other junction node [w], w 6= v.

From 3 to 1. Straightforward.

Lemma 4.2. Let t be a blank tree and v ·a, v · b nodes of t, with v ∈ {0, 1}∗

and a, b ∈ {ε, 0, 1}. The following statements are equivalent for any states p and q:

1. In the pattern expansion ∆t, there is a run from [p, v ·a] to [q, v ·b].
2. (p, a, q, b) ∈ γ∆2

.
3. In the pattern expansion ∆t, there is a run from [p, v ·a] to [q, v ·b] that does

not visit any other junction node [w], w 6∈ {v ·a, v ·b}.

Proof. Let us treat first the case a = b. In this case p →ε q iff (p, a, q, b) ∈ γ∆2

(recall the observation below Definition 5). Hence the equivalence between items 1,
2 and 3 is a direct translation of Lemma 4.1. We assume below that a 6= b, and
set c ∈ {ε, 0, 1} to be different from a and b.

From 1 to 2. Assume there is a run in ∆t from configuration [p, v ·a] to configu-
ration [q, v ·b]. Let p′ be the last state assumed by the run while visiting the junction
node [v ·a], and let q′ be the first state assumed at the junction node [v · b] after
crossing [v ·a] for the last time. If the corresponding subrun from [p′, v ·a] to [q′, v ·b]
does not visit [v ·c], then (p′, a, q′, b) belongs to δ∆2

. Otherwise it visits [v ·c], and let
p′′ and q′′ be the first and last state, respectively, assumed by that subrun at [v ·c].
Then p′′ →ε q′′ by Lemma 4.1. Also, by construction, (p′, a, p′′, c) and (q′′, c, q′, b)
are in δ∆2

. This shows (by plugging ∆1 into port c of ∆2) that (p′, a, q′, b) belongs
to δ∆2

. Moreover, by Lemma 4.1, we have p →ε p′ and q′ →ε q. By definition of γ∆2
,

(p, a, q, b) ∈ γ∆2
follows.

11

From 2 to 3. Since (p, a, q, b) ∈ γ∆2
there exist two states p′ and q′ such that:

p →ε p′, (p′, a, q′, b) ∈ δ∆2
, and q′ →ε q .

By Lemma 4.1, these three properties provide a run in the pattern expansion ∆t that
successively passes through the configurations:

[p, v ·a], [p′, v ·a], [q′, v ·b], [q, v ·b]

without visiting any junction node other than [v ·a] and [v ·b].
From 3 to 1. Straightforward.

The above lemma shows that runs of the automaton between neighboring junction
nodes in pattern expansions can be assumed to have a very particular form. Take for
instance a blank tree t and two nodes v and w, with v above w. If there is a run
in ∆t that goes from [v] to [w] then, by Lemma 4.2, there is a run that does this
by going directly from v to w using the shortest path. This means performing only
a series of “steps” of the form (p, ε, q, 0), (p, ε, q, 1) ∈ γ∆2

. A similar characterization
holds when v and w are incomparable: the automaton first goes directly from [v] in
the up direction, then does one of the steps (p, 0, q, 1), (p, 1, q, 0) ∈ γ∆2

(a “go to the
sibling” move) and then goes directly downward to [w]. This principle is formalized
in Lemma 6.1.

4.2. The proof strategy. We are now ready to overview the proof strategy.
Recall that our aim is to find trees s ∈ L and s′ 6∈ L such that any accepting run in s
can be transferred to s′. In fact, the trees s, s′ will be respectively of the form ∆a

t

and ∆a

t′ for some blank trees t ∈ K and t′ 6∈ K. Therefore, we need to develop a good
understanding of runs within trees of the form ∆a

t .
The remainder of this paper is divided into three sections, which correspond to

ever larger parts of a run over a tree of the form ∆a

t . Such a run can be analyzed on
three scales.

The greatest scale is analyzed in Section 7. Fix a tree ∆a

t . In this greatest scale, we
will be most interested in runs that connect leaf configurations to one another, without
passing through the root of the tree. (This is because without loss of generality, we
may assume the root is visited at most |Q| times.) Consider such a run that goes
from one leaf configuration [p, v] to another leaf configuration [q, w]. Within such a
run, we can isolate all the intermediate leaf configurations:

[p, v] = [r1, u1], . . . , [rn, un] = [q, w] .

Since no leaf configurations are visited in the meantime, a run from [ri, ui] to [ri+1, ui+1]
corresponds to either: (a) a loop in the root of the pattern ∆1[∆a]; or (b) a run from
one junction leaf to another in the pattern ∆t. The case (a) can be treated as a sort
of ε-transition for leaf configurations. The interesting case is (b).

In Section 6, we treat the runs of type (b), which correspond to the intermediate
scale. These runs are in ∆a

t , but since no a-labeled leaf is visited during those runs,
they are also runs in the pattern expansion ∆t. We first show that whether or not
there is a run of type (b) from [ri, ui] to [ri+1, ui+1] does not depend on the tree t but
only on the nodes ui and ui+1. This allows us to consider the notation [p, v] → [q, w],
meaning: there is a run from [p, v] to [q, w] in some (equivalently, every) pattern
expansion ∆t for which v, w are nodes of t. A type of run that realizes [p, v] → [q, w]
is called a move; a classification of the possible types of move is the subject of Section 6.

12

As a preparation, in Section 5, we consider the smallest scale: the pattern ∆2. By
Lemma 4.2, any move within a pattern expansion can be decomposed into a certain
number of traversals of the pattern ∆2. Hence the need for an investigation of the
relation γ∆2

.

Before proceeding, we describe in general terms what are the results of these
investigations in the Sections 5, 6 and 7.

The main result of Section 5 is Proposition 5.10, which gives a characterization
of the possible ways the automaton can go from the leaf port to the root port of ∆1.
Generally speaking, this characterization says that the automaton either gets com-
pletely lost, or it must do some sort of depth-first search. Even though stated in terms
of the ∆1 pattern, these results can also be applied to the ∆2 pattern. Indeed, by
Lemma 3.1, any run from a leaf port to the root port in ∆2 can also be transfered
to ∆1, by simply plugging the unused leaf port with ∆0.

The main result of Section 6 is Proposition 6.10. This proposition roughly says
that there are only eleven types of interesting moves between junction leaves in a
pattern expansion. The interesting moves — called elementary moves — are moves
such as: “go to the next junction leaf to the left”; or “go to any junction leaf to the
left”. Proposition 6.10 states that if a move is not elementary, then it contains a
“shift”, a phenomenon of inherent confusion for the automaton.

Finally, in Section 7, we show that tree-walking automata cannot detect a properly
placed rotation, which concludes the proof. Given a blank tree T and a node x, the
rotation of T with the pivot x is the tree T ′ defined as follows: we move the subtrees
of x·00, x·01 and x·1 to the new positions x·0, x·10 and x·11 (see Fig. 7.1). Clearly
doing a rotation in a tree with all leaves at even depth creates a leaf at odd depth.
We will show, however, that given a very large balanced blank tree T , one can find
a pivot x such that ∆a

T ′ cannot be distinguished from ∆a

T by our fixed tree-walking
automaton A.

5. The pattern ∆2. In this section we investigate the γ relations of the patterns
∆0, ∆1 and ∆2. The main result, Proposition 5.10, uncovers by a case distinction
the possible ways the tree-walking automaton can cross the pattern ∆1. This is
important for our analysis of pattern expansions, since by Lemma 4.2 every path
through a pattern expansion corresponds to a sequence of traversals of ∆2 patterns.

From now on, instead of the γ∆0
, γ∆a

, γ∆1
and γ∆2

relations, we will be using
the more graphical notation depicted in Fig. 5.1. Note that the p x q notation may
be somewhat misleading: we start with state p in port 1 and end in state q in port 0.
The left state is chronologically before the right one, although the movement is in the
left direction.

Due to the equivalences in Lemma 3.1, the relations γ∆1
, γ∆2

satisfy properties
such as the following, which we call swallowing rules:

(p, 0, q, 1) ∈ γ∆2
, (q, ε, r, 0) ∈ γ∆1

implies (p, 0, r, 1) ∈ γ∆2
.

Using our graphical notation, this can be rewritten into the first property among the
following ones:

p y q ↓ r implies p y r
p ↑ q x r implies p x r
p x q ↓ r implies p x r
p ↑ q y r implies p y r .

(5.1)

13

p 	 q if (p, ε, q, ε) ∈ γ∆0
p ↖ q if (p, 1, q, ε) ∈ γ∆2

p ↗ q if (p, 0, q, ε) ∈ γ∆2

p 	a q if (p, ε, q, ε) ∈ γ∆a
p ↘ q if (p, ε, q, 1) ∈ γ∆2

p ↙ q if (p, ε, q, 0) ∈ γ∆2

p ↑ q if (p, 0, q, ε) ∈ γ∆1
p x q if (p, 1, q, 0) ∈ γ∆2

p ↓ q if (p, ε, q, 0) ∈ γ∆1
p y q if (p, 0, q, 1) ∈ γ∆2

p q if p ↖ q and not p ↗ q

p q if p ↗ q and not p ↖ q p q if p ↑ r ↗ r ↖ r ↑ q for some r

p q if p ↙ q and not p ↘ q p q if p ↓ r ↘ r ↙ r ↓ q for some r

p q if p ↘ q and not p ↙ q

Fig. 5.1. Graphical notation for γ∆0
, γ∆a

, γ∆1
, γ∆2

We will now illustrate how time symmetry can be used to show the second implication;
the third and fourth are then obtained using space symmetry.

Let then p, q and r be such that p ↑ q x r holds. As the reader may recall, our
tree-walking automaton is self-symmetric; i.e., there is an isomorphism i : Q → Q,
which maps the automaton onto its time-reversed variant. Let i(p), i(q) and i(r) be
the time-reversed counterparts of p, q and r. By Fact 2.1, every run from p to q can
be reversed to obtain a run from i(q) to i(p); likewise for q and r. If we reverse a run
witnessing p ↑ q, we obtain a run witnessing i(q) ↓ i(p). In the same way, there is a
run witnessing i(r) y i(q). In particular, we have

i(r) y i(q) ↓ i(p) .

Now we can apply the already shown first implication in (5.1), to obtain i(r) y i(p).
Since the isomorphism i is its own inverse, we obtain the desired p x r.

In a similar way, using space symmetry, we can derive the two last statements
of (5.1) from the two first one. Later on, we will be using this type of reasoning a lot,
omitting the details of the argumentation.

The following lemma shows that the 	 and 	a notation is not misleading in
suggesting a loop:

Lemma 5.1. The relations 	 and 	a are transitive.

Proof. We only do the proof for 	. We first claim that p 	 q holds if and only if
either p →ε q holds, or p ↓ p′ 	∗ q′ ↑ q holds for some states p′, q′ (where 	∗ is the
transitive closure of).

The left to right implication of the claim is shown as follows. If p 	 q holds, then
there exist p′′, q′′ such that

p →ε p′′ , (p′′, ε, q′′, ε) ∈ δ∆0
and q′′ →ε q .

. Let us analyze the run corresponding to (p′′, ε, q′′, ε) ∈ δ∆0
in the pattern ∆1[∆0]

(which is equivalent to ∆0), the junction node being v. If this run does not visit v,
then we have p′′ →ε q′′, and consequently p →ε q. Otherwise, there exist states p′

14

and q′ such that (p′′, ε, p′, 0) and (q′, 0, q′′, ε) belong to δ∆1
, and there is a path from

configuration (v, p′) to configuration (v, q′) in the pattern ∆1[∆0]. From this path we
deduce p′ 	∗ q′. Hence p ↓ p′ 	∗ q′ ↑ q.

The right to left implication of the claim is shown as follows. If p →ε q, we
obviously have p 	 q. Otherwise, assume that there exist states p′, q′ such that
p ↓ p′ 	∗ q′ ↑ q holds. This means there are states p′′, p′′′, q′′′, q′′ such that:

p →ε p′′, (p′′, ε, p′′′, 0) ∈ δ∆1
, p′′′ →ε p′,

q′ →ε q′′′, (q′′′, 0, q′′, ε) ∈ δ∆1
, and q′′ →ε q .

From p′′′ →ε p′ 	∗ q′ →ε q′′′ we obtain p′′′ 	∗ q′′′. Together with (p′′, ε, p′′′, 0) ∈ δ∆1

and (q′′′, 0, q′′, ε) ∈ δ∆1
we obtain a run from state p′′ in the root to q′′ in the root

in ∆1[∆0]. Hence (p′′, ε, q′′, ε) belongs to δ∆0
. Together with p →ε p′′ and q′′ →ε q

we obtain p 	 q. This concludes the proof of the claim.
Let us now show the transitivity of 	. Assume p 	 q 	 r. If either p →ε q

or q →ε r holds, then we have p 	 r by definition of 	. Otherwise, according to the
claim above, there exist states p′, q′, q′′, r′ such that:

p ↓ p′ 	
∗ q′ ↑ q ↓ q′′ 	

∗ r′ ↑ r .

Since q′ ↑ q ↓ q′′ implies q′ →ε q′′, we obtain p′ 	∗ r′ by transitivity of 	∗. Using the
other direction from the claim, we get p 	 r.

For 	a, the proof is the identical. The only property required from the pattern
∆a is that it is equivalent to ∆1[∆a]; this fact was observed above while defining the
pattern ∆a.

5.1. Depth-first search. In this section we define the key concept of depth-first
search (DFS). The main result, Lemma 5.5, states that p p can only be realized using
a DFS (similarly for , and).

qqqq

qq

Fig. 5.2. A right-to-left DFS

Definition 6. A state pair (q, q̄) is a right-to-left DFS (see Figure 5.2) if

q ↘ q , q 	 q̄ , q̄ x q , and q̄ ↗ q̄ .

The pair is a left-to-right DFS if

q ↙ q , q 	 q̄ , q̄ y q , and q̄ ↖ q̄ .

Throughout the paper, we will try to keep the convention that if two states q̄ and
q appear simultaneously, then q̄ is a state that is going up in the tree and q is a state
that is going down in the tree.

15

We now illustrate the way a left-to-right DFS allows A to walk through a pattern
expansion. Consider a pattern expansion ∆t and a left-to-right DFS (q, q̄). Using q ↙
q repeatedly, the automaton can go from q in [ε] to q in the leftmost junction leaf
(all this reasoning is done using Lemma 4.2). If v and w are successive leaves of t,
then the automaton can go from [q̄, v] to [q, w]. This is done by using a sequence of
steps q̄ ↖ q̄, then doing a step of the form q̄ y q, and then a sequence of q ↙ q steps.
Finally, using q̄ ↖ q̄, the automaton can go from q̄ in the rightmost junction leaf to q̄
in [ε]. Moreover, if we plug ∆0 in every leaf port of ∆t, then q 	 q̄ together with the
above observations can be used to obtain a left-to-right depth-first search of all the
junction nodes in the pattern ∆t[∆0, . . . ,∆0].

In Lemma 5.4, we will also show the converse: without doing a DFS, the automa-
ton cannot systematically visit all junction nodes in a pattern of the form ∆t[∆0, . . . ,∆0].
First, however, we provide some preparatory results. In the following lemma, we say
that a run omits a node if it never crosses it.

Lemma 5.2. Let t be a blank tree, with nodes v, w. Let ρ be a run in ∆t[∆0, . . . ,∆0]
from configuration [p, v] to configuration [q, w] for some states p, q. Then;

1. If v = w then p 	 q.
2. Assume v = w and let u be a node strictly below v. If ρ omits [u], then p →ε q.
3. Assume v is above w and let u be a node strictly below w. If ρ omits [u],

then p ↓ q.
4. Assume v is above w, let u be a node strictly below w, and let u′ be a node to

the right of w and strictly below v. If ρ omits [u] and [u′] then p ↙ q.
5. Assume v is to the left of w, and let u, u′ be nodes respectively strictly below

v, w. If ρ omits [u] and [u′] then p y q.

Proof. We would like to clarify that ∆t[∆0, . . . ,∆0] is treated here as a pattern
of arity zero, and not a tree. Therefore, by definition of runs in patterns, ρ never
visits the root port. Below, we treat successively the five cases. Each explanation is
followed by a drawing illustrating the situation.

1. By transitivity of 	 (Lemma 5.1), it suffices to consider runs ρ where v is
only visited in the first and last configuration. If the run never goes below [v],
in this case, by putting a port in the node [v], the run can be replicated in
a pattern equivalent to ∆1, yielding (p, 0, q, 0) ∈ δ∆1

and hence p →ε q.
Otherwise, the run only visits nodes below [v], and is therefore a root-to-root
run in a pattern equivalent to ∆0.

[v]

2. Again, by transitivity of the →ε relation, it suffices to consider the case
where v is only visited in the first and last configuration. There are two
cases. Either the run never goes below [v], and we can reuse the argument of
item 1. Otherwise the run only visits nodes below [v], but not the node [u].
Therefore, if we put a port into node [u], ρ becomes a root-to-root loop in a
pattern equivalent to ∆1, witnessing (p, ε, q, ε) ∈ δ∆1

; consequently p →ε q.

16

[v]

[u]

3. First we show, that without loss of generality we may assume that ρ visits
[v], [w] only in the first and last configurations. Indeed, if we take the longest
prefix of ρ that is a loop in [v], this prefix satisfies the assumptions of item
2, and can therefore be replaced by an inner loop →ε. The same can then
be done for the suffix, removing additional visits to [w]. Once ρ is assumed
to visit [v] and [w] only once, it is easily seen to witness (p, ε, q, 0) ∈ δ∆1

and
hence p ↓ q: if we put the root port in [v] and a leaf port in [w], we get a
pattern equivalent to ∆1.

[w]

[v]

[u]

4. As in the previous point, we may assume that ρ visits [v], [w] only in the first
and last configurations (we use the assumption on the node [u] being omitted
and below both [v] and [w]). If we put one leaf port (the left port) in [w],
one leaf port (the right port) in [u′], and the root port in node [v], we get
a pattern equivalent to ∆2. Then the run ρ witnesses (p, ε, q, 0) ∈ δ∆2

, and
hence p ↙ q.

[w]

[v]

[u]

[u]

´

5. Again, we assume that ρ visits [v], [w] only in the first and last configurations
(this time, we need to use both [u] and [u′]). We put the left port in node [v],
the right port in node [w] (the root port stays unchanged).

17

[w][v]

[u] [u]́

We need now a simple combinatorial result concerning labeling of trees.

Lemma 5.3. Let Σ be an alphabet and consider a balanced Σ-tree t of depth at
least |Σ|+ 1. There exist three nodes w,w0, w1 with the same label, such that w0 is to
the left of w1 and w is above both w0 and w1.

Proof. Induction on |Σ|. The base case of |Σ| = 1 is obvious. Otherwise let a be
the root label of t. If both the subtrees of nodes 0 and 1 contain a’s, we are done.
Otherwise one of these is a Σ \ {a}-tree and the induction hypothesis can be applied
to it.

The following lemma is the first important characterization of runs on patterns.
It says that there are only two types of root-to-root runs over the pattern ∆0: either
a run that does not visit anything, only does an inner loop →ε; or a systematic DFS
traversal.

Lemma 5.4. Let q, q̄ be such that q 	 q̄. Then either q →ε q̄, or there is a
(left-to-right or right-to-left) DFS (r, r̄) such that q ↓ r and r̄ ↑ q̄.

Proof. Let t be the blank balanced tree of depth |Q|2 + 2. Let Γ be the pattern
obtained from ∆t by substituting ∆0 for all leaf ports, i.e., Γ = ∆t[∆0, . . . ,∆0].
By definition of expansions, the pattern Γ can be rewritten as ∆1[Γ

′] in which, by
Lemma 3.1, the pattern Γ′ is equivalent to ∆0.

By q 	 q̄, there exists a run in Γ from [q, ε] to [q̄, ε]. First we show that we can
furthermore enforce the following property (*) of ρ: every subrun starting and ending
at the same junction node [v] for v a nonleaf node of t, only visits junction nodes
below [v]. This is proved by induction on the number of junction nodes in the run.
Indeed, take a minimal loop in some junction node [v] that visits junction nodes not
below [v]. By minimality, the loop never visits nodes below [v]. Hence, by Lemma 4.1,
this loop can be replaced by another of same initial and final configurations which
does not visit any junction node other than [v].

Let then ρ be a run from [q, ε] to [q̄, ε] that satisfies property (*).
If ρ does not visit some junction node, then by Lemma 5.2, q →ε q̄ holds.
Otherwise, given a node v of t, let first(v) be the state in which the junction

node [v] is visited for the first time in the run ρ. Similarly we define last(v). By
Lemma 5.3, there are three nonleaf nodes w,w0, w1 of t such that first and last coincide
on them, w is above both w0 and w1, and w0 is to the left of w1 (see Figure 5.3).

Consider first the case where [w0] is visited before [w1]. Let r be first(w) and r̄
be last(w). By Lemma 5.2, r 	 r̄. From property (*) we derive that the run cannot
visit [w0] then [w1] and then again [w0]. Hence we can apply Lemma 5.2 to configu-
rations [r̄, w0] and [r, w1] and obtain r̄ y r. Also, from the definition of first and last
and Lemma 5.2, we obtain r ↙ r and r̄ ↖ r̄. Overall (r, r̄) is a left-to-right DFS and
by Lemma 5.2, q ↓ r and r̄ ↑ q̄.

18

[w]

[w]₀
[w]₁

Fig. 5.3. The nodes [w], [w0] and [w1]

If [w1] is visited before [w0], a similar argument gives a right-to-left DFS.

We now proceed to another one of our DFS characterizations: the relation can
only be realized by doing a DFS.

Lemma 5.5. If q̄ q̄, then (q, q̄) is a left-to-right DFS for some state q.

Proof. Unraveling the definition of q̄ q̄, we have that q̄ ↖ q̄ holds but q̄ ↗ q̄
does not. Let t be the blank balanced binary tree of depth 3 (i.e., with four leaves).
Let Γ be the pattern ∆t[∆0,∆0,∆0,∆0]. Since q̄ ↖ q̄ implies q̄ ↑ q̄, and the pattern

∆2[∗,∆2[∆1[∆0],∆1[∆0]]]

is equivalent to ∆1, there is a run in this pattern from [q̄, 0] to [q̄, ε]:

[1][0]

This run has to visit the junction node [1] since otherwise Lemma 5.2 would give q̄ ↗ q̄;
a contradiction. Let p be the first state assumed by this run at the junction node [1],
and let p̄ be the last.

By Lemma 5.2, we have q̄ y p, p 	 p̄ and p̄ ↖ q̄. We cannot have p →ε p̄, since
we would otherwise get q̄ ↗ q̄. By Lemma 5.4, we obtain states r, r̄ such that (r, r̄)
is a DFS and p ↓ r, r̄ ↑ p̄. By swallowing, we obtain q̄ y r, r̄ ↖ q̄ (and we can forget
about states p and p̄).

Two cases have to be considered depending on the orientation of the DFS (r, r̄).
• Assume first that (r, r̄) is a left-to-right DFS. We have r ↓ r and r̄ ↑ q̄. Thus,

r 	 q̄ follows from r ↓ r 	 r̄ ↑ q̄. We obtain that (r, q̄) is a left-to-right DFS
as well.

• Otherwise, (r, r̄) is a right-to-left DFS. By r ↘ r 	 r̄ ↖ q̄, we get r →ε q̄.
But then q̄ y r →ε q̄ ↖ q̄ gives q̄ ↗ q̄; a contradiction.

5.2. Subtree omission. This section is devoted to showing the following propo-
sition.

Proposition 5.6. For all p and q, p ↑ q if and only if p ↖ q or p ↗ q.

19

The right to left implication is obvious; the remainder of this section is devoted
to showing the left to right implication. The intuitive idea is illustrated in the picture
below: whenever there is a run as on the left, there is also an equivalent run as in the
middle or in the right:

We first show the following intermediate result.

Lemma 5.7. If q̄ ↑ q̄, then

• q̄ ↗ q̄ or q̄ ↖ q̄; or
• there is a right-to-left DFS (r, r̄) such that q̄ y r and r̄ ↑ q̄.

Proof. As in the proof of Lemma 5.5, we obtain that q̄ ↗ q̄ holds or there are two
states r, r̄ such that (r, r̄) is a DFS, and both q̄ y r and r̄ ↑ q̄ hold. The first case as
well as the second when the DFS is right-to-left are conclusions of the lemma.

In the remaining case, (r, r̄) is a left-to-right DFS. But then by q̄ y r 	 r̄ ↖ r̄
we obtain q̄ ↑ r̄. Combining this with r̄ ↖ r̄ ↑ q̄, we obtain the desired q̄ ↖ q̄.

A variant symmetric to the one above can be obtained, where (r, r̄) is a left-to-
right DFS and q̄ x r and r̄ ↑ q̄ hold.

Lemma 5.8. If p ↑ q then p ↑ r ↑ r ↑ q for some state r.

Proof. This results from a pumping argument. Since ∆1[∆1] is equivalent to ∆1,
we can expand the ∆1 pattern into the composition of n times itself, for any n. This
means that there are states r1, . . . , rn such that p = r1 ↑ . . . ↑ rn = q.

If n is large enough, some state r is repeated, and the result follows by transitivity
of ↑.

We will now prove Proposition 5.6. Since we have the implication

p ↑ r ↖ r ↑ q implies p ↖ q ,

and its symmetric counterpart for ↗, Lemma 5.8 allows us to restrict attention to
the case where p = q. That is, we need to show that p ↑ p implies p ↖ p or p ↗ p.

If in either Lemma 5.7 or its symmetric variant the first case holds, we are done.
Otherwise there are states q, q̄, r and r̄ such that:

p y q, q ↘ q, q 	 q̄, q̄ x q, q̄ ↗ q̄, q̄ ↑ p,

p x r, r ↙ r, r 	 r̄, r̄ y r, r̄ ↖ r̄, r̄ ↑ p .

By p x r 	 r̄ y r we get p →ε r. Together with q̄ ↑ p and r ↓ r this gives q̄ →ε r.
Together with q 	 q̄ and r 	 r̄, this yields q 	 r̄ by Lemma 5.1. Then p y q 	 r̄ ↖ r̄
shows p ↑ r̄. Finally, we combine this with r̄ ↖ r̄ ↑ p and obtain p ↖ p.

20

5.3. A characterization of moves over ∆1. In this section, we present a
classification of the possible ways the automaton can go in ∆1 from the leaf port
to the root port. This is the main result of Section 5. Before we proceed with
Proposition 5.10, we show a certain “denseness” property of the relations , and :

Lemma 5.9. For any states p, q and R = , , :

p R q implies p R r R r R q for some state r .

Proof. The case of follows straight from the definition. We only do , the other
case is done symmetrically. If p q, then p ↗ q, and thus also p ↑ q. By Lemma 5.8,
there must be some state r such that p ↑ r ↑ r ↑ q. By Proposition 5.6, we must have
at least one of r ↗ r, r ↖ r. But we cannot have r ↖ r, since this would yield p ↖ q
and contradict p q; hence r r. For similar reasons p r and r q must also hold.

Note that the converse implication may fail. This is because p q requires p ↖ q
to fail, while there may be some other state s satisfying p ↑ s ↖ s ↑ q.

Proposition 5.10. If p ↑ q, then:
1. p q; or
2. p q; or
3. p q; or
4. for some states r1, r2:

(a) p ↑ r1 r1 ↑ q and p ↑ r2 r2 ↑ q; or
(b) p ↑ r1 r1 ↗ r2 r2 ↑ q; or
(c) p ↑ r1 r1 ↖ r2 r2 ↑ q .

Proof. If neither case 2 nor 3 holds, then by Proposition 5.6 we must have
both p ↗ q and p ↖ q. Let R↑(p, q) be the set of states r such that p ↑ r ↑ r ↑ q
holds; this set is nonempty by Lemma 5.8. Let R↗(p, q) ⊆ R↑(p, q) be the set of
those states r in R↑(p, q) such that r ↗ r. Similarly we define R↖(p, q). Note that
by Proposition 5.6,

R↑(p, q) = R↗(p, q) ∪ R↖(p, q) .

Now a case analysis proves the lemma:
• If R↗(p, q) ∩ R↖(p, q) is nonempty, then item 1 holds;
• R↗(p, q) is empty. By p ↗ q, in the pattern ∆1[∆2[∆1, ∗]], there is a run

from state p′ in port 0 to state q′ in port ε that does not visit port 1, where
p →ε p′ and q′ →ε q. This run uses two states q1, q2 at the intermediate
junction nodes [ε] and [0]. These states satisfy p ↑ q1 ↗ q2 ↑ q:

[ε]

[0]

21

The set R↗(p, q1) is empty, since it is included in R↗(p, q). Further-
more, since p ↑ q1 holds, the set R↑(p, q1) must be nonempty and conse-
quently R↖(p, q1) is nonempty by Proposition 5.6. Therefore we can choose r1

in R↖(p, q1) which is not in R↗(p, q1). This means

p ↑ r1 r1 ↑ q1 .

Similarly, there is some state r2 such that

q2 ↑ r2 r2 ↑ q

Since q1 ↗ q2, we have r1 ↗ r2, and therefore item (b) holds;
• R↖(p, q) is empty. By a reasoning as above, we have item (c);
• Finally, if R↗(p, q) ∩ R↖(p, q) is empty, yet both R↗(p, q) and R↖(p, q) are

nonempty then clearly item (a) holds.

The point of characterizing ↑ and ↓ is that these are the most basic types of
move the automaton can make in a pattern expansion. Indeed, by Lemma 4.2, in
order to move from one junction node to another, the automaton needs to traverse
the ∆2 pattern. Since the pattern ∆2 can be seen as having ∆1 plugged in each of its
ports, each such traversal must employ one of the moves ↑ or ↓. But then we can use
Proposition 5.10 in order to uncover other possible moves of the automaton.

When put together, Proposition 5.10, Lemma 5.9 and Lemma 5.5 give us some
idea of how a tree-walking automaton can move upward within a pattern expansion:
it may either get completely lost (by allowing a move from a node to any node above
it, case 1 in Proposition 5.10), allow a depth-first search in some fixed direction and
nothing else (cases 2 and 3), or, finally, do some depth-first searches coupled with
moves in opposing directions (case 4).

6. Moves. In the previous section, we analyzed the way an automaton can move
through single instances of the basic patterns ∆0,∆1 and ∆2. In this section, we
consider runs through larger objects built as compositions of ∆1 and ∆2 patterns,
i.e., pattern expansions. We are especially interested in the way the tree-walking
automaton can go from one junction leaf of such an expansion to another. Recall
Lemma 4.1, which said that any loop in a junction node can be replaced by the →ε

relation, and hence swallowed by the γ relations. This means, that any run between
two junction nodes in a pattern expansion can be assumed to be a nonlooping sequence
of steps consistent with the γ relation. In a tree, a nonlooping path is the shortest
possible path.

Note that all patterns considered in this section and the previous ones use only
the blank symbol. The a label will only be introduced in the final section, Section 7.
From this perspective, the sections leading up to Section 7 can be seen as an analysis
of runs that never see the a label.

6.1. Pattern paths and moves. Before proceeding with a classification of pos-
sible moves, we introduce a more convenient syntax for describing runs between junc-
tion nodes within a pattern expansion. Essentially, by Lemma 4.2, such a run can be
decomposed as a sequence of moves taken from γ∆2

. Moreover, by closure properties
of γ∆2

, the runs can be assumed to have a certain normal form.
A pattern path (path for short) is a word over the alphabet {ε, 0, 1} × {ε, 0, 1}.

A pattern path can be used to go from one junction node to another in a pattern

22

expansion in the following manner. An empty pattern path can stay in the same
junction node, while the pattern path π ·(a, b) can go from [v] to [u·b] if its prefix π
can go from [v] to [u·a]. We write v →π w when π can go from [v] to [w].

The →π relation can also be annotated with states of the automaton. Given
states p, q, and a pattern path π = (a1, b1) · · · (an, bn), we write p →π q if there are
states p = r1, . . . , rn+1 = q such that for all i = 1, . . . , n, the tuple (ri, ai, ri+1, bi)
belongs to γ∆2

. In the special case of π = ε, we require p →ε q. Given two states p, q
and two nodes v, w, we write [p, v] →π [q, w] if both p →π q and v →π w hold.

A pattern path is called normalized if it is the shortest path between two junction
nodes. For having more understandable normalized paths, we use the following ab-
breviations: ↙= (ε, 0), ↘= (ε, 1), ↗= (0, ε), ↖= (1, ε), y= (0, 1), and x= (1, 0).
Let us define the following languages:

Up = (↗ + ↖)+, Down = (↙ + ↘)+,

Left = (Up + ε) x (Down + ε), Right = (Up + ε) y (Down + ε),

Side = ε + Left + Right .

The sets Up,Down,Left,Right,Side are called respectively the set of upward, down-
ward, left, right and sideway paths. A pattern path is normalized iff it belongs
to Up + Down + Side. Given nodes of a tree v and w, π(v, w) denotes the only nor-
malized path such that v →π(v,w) w. As expected, for nodes v and w, π(v, w) ∈ Up
iff w is strictly above v; π(v, w) ∈ Down iff w is strictly below v; π(v, w) ∈ Left iff w
is to the left of v and; π(v, w) ∈ Right iff w is to the right of v. A set of normalized
pattern paths is called a move; and we write vMw if π(v, w) ∈ M .

We will now show some results about the possible paths that the automaton can
use when going from one node to another, these were mentioned after Lemma 4.2.
We begin with the following lemma, which shows how paths correspond to runs of the
automaton, at least as far as junction nodes are concerned:

Lemma 6.1. The following are equivalent for nodes v, w in a blank tree t.
1. There is a run in ∆t from [p, v] to [q, w].
2. [p, v] →π(v,w) [q, w] holds.
3. There is a run in ∆t from [p, v] to [q, w] which visits only junction nodes [u]

such that v →π u for some prefix π of π(v, w).

Proof. This is a generalization of Lemma 4.2, and the same proof works: any loop
appearing in a run can be contracted using the →ε relation.

Since the normalized path connecting v and w does not depend on the tree t but
only on the nodes v, w, we obtain the following:

Corollary 6.2. Let v, w be nodes of a blank tree t. Whether or not there is a
run from [p, v] to [q, w] in ∆t depends only on π(v, w) and not on t.

The above corollary justifies the notation [p, v] → [q, w], where no particular path
or tree is mentioned; it is equivalent to p →π(v,w) q. We will often be using this
notation from now on.

Definition 7. For states p and q, we define U(p, q) to be the set of upward
paths π such that p →π q. Similarly, we define D(p, q), L(p, q), R(p, q) and S(p, q)
for downward, left, right and sideways paths respectively.

In particular, a direct consequence of this definition is that for two distinct nodes v
and w and states p and q, [p, v] → [q, w] if and only if

π(v, w) ∈ U(p, q) ∪ D(p, q) ∪ S(p, q) .

23

The following lemma will be used several times; it transfers some properties of γ∆2

to equalities on the sets U,D,L,R. Its meaning is natural, but the statement as well
as the proof are slightly clouded by the case of the normalized path ε.

Lemma 6.3. The move R(p, q) is the union of (U(p, p′) + ε) y (D(q′, q) + ε) for
states p′, q′ satisfying p ↑ p′ y q′ ↓ q. A similar statement holds for L.

Proof. We only do the case of R. We begin with the right-to-left inclusion.
Let p′, q′ be states such that p ↑ p′ y q′ ↓ q, and let

π ∈ (U(p, p′) + ε) y (D(q′, q) + ε) .

We can write π as π1 y π2 with π1 ∈ U(p, p′) + ε and π2 ∈ D(q′, q) + ε).
The first case is when both π1, π2 are empty and therefore π =y. By assumption,

we have p ↑ p′ y q′ ↓ q and hence p y q, by swallowing. Consequently p →π q
and π ∈ R(p, q). If neither of π1, π2 is empty, then π1 ∈ U(p, p′) and π2 ∈ D(q′, q),
which gives the desired result. The remaining cases where only one of π1 or π2 is
empty are treated by combining the two first cases.

We now treat the left-to-right inclusion. Let π be in R(p, q). By definition
of Right, π can be written as π1 y π2 with π1 ∈ Up+ε and π2 ∈ Down+ε. As above,
we first consider the case when π1, π2 are both empty. In this case, we have p y q.
But then, by looking at the path from port 0 to port 1 in the pattern ∆2[∆1,∆1]
which is equivalent to ∆2, we can find states p′, q′ such that p ↑ p′ y q′ ↓ q, which
completes the proof.

Assume now that both π1, π2 are nonempty. Let p′, q′ be the states such that
p →π1

p′ y q′ →π2
q. We need to show that p ↑ p′ and q′ ↓ q. But this follows from

transitivity of ↓, ↑ and the inclusions ↙,↘ ⊆ ↓ and ↖,↗ ⊆ ↑. The remaining cases
where only one of π1 or π2 is empty are treated by combining the two first cases.

Furthermore, there exists a strong link between the set of upward moves (and by
time symmetry downward moves) and the behaviors of the automaton exhibited in
the previous section; this is the subject of the next lemma.

Lemma 6.4. If p q then U(p, q) = Up. The analogous results hold for , , ,
and , the corresponding moves being respectively Down, ↖+, ↗+, ↙+ and ↘+.

Proof. We treat the case . If p q, then by Lemma 5.9, there is a state r such
that p r r q. This shows ↖+⊆ U(p, q). The opposite inclusion must also hold,
since otherwise we would get p ↗ q.

The next lemma gives other required facts about U(p, q) and S(p, q).
Lemma 6.5. If p ↑ q then ↖+⊆ U(p, q) or ↗+⊆ U(p, q). If p ↗ q, then

↖∗↗⊆ U(p, q) or ↗+⊆ U(p, q). If p p′ y q then ε ∈ S(p, q).

Proof. First statement: for some r, p ↑ r ↖ r ↑ q or p ↑ r ↗ r ↑ q by Lemma 5.8
and Proposition 5.6. Second statement: for some p′, p ↑ p′ ↗ q must hold; then use
the first statement. Third statement: by Lemmas 5.9 and 5.5, there exists r, r̄ such
that p ↑ r̄ x r ↓ r 	 r̄ ↑ p′ y q. Hence p →ε q, i.e., ε ∈ S(p, q).

As hinted by Proposition 5.10 and Lemmas 6.3 and 6.4, there are not so many
ways that a sideway move can be done. The following eleven moves will play a special
role below.

Definition 8. An elementary move is any one of the eleven moves in Figure 6.1.

24

Stay = ε

=↖∗
y↙∗ =↗∗

x↘∗

= (↗ + ↖)∗ y↙∗ = (↗ + ↖)∗ x↘∗

=↖∗
y (↙ + ↘)∗ =↗∗

x (↙ + ↘)∗

= ε + (↗ + ↖)∗ y↘∗ = ε + (↗ + ↖)∗ x↙∗

= ε+ ↗∗
y (↙ + ↘)∗ = ε+ ↖∗

x (↙ + ↘)∗

Fig. 6.1. Elementary moves

6.2. Move Offsets. This section is devoted to moves that only depend on the
number of junction leaves between the source and destination, i.e., moves that do not
really depend on the structure of the tree.

We number the leaves of a tree t from left to right, starting from 0. Formally,
given a blank tree t and a leaf v of t, we denote by #t(v) the number of leaves in
the tree t that are lexicographically before v. For v and w leaves of t, we denote
by #t(v, w) the offset from v to w within t, i.e., the difference #t(w) − #t(v). This
number is positive when v is to the left of w. If v or w is not a leaf of t, then #t(v, w)
is not defined.

Definition 9. A move offset of two states p, q is an integer i such that for every
tree t and leaves v and w of t, #t(v, w) = i implies [p, v] → [q, w]. We write moff(p, q)
for the set of move offsets of p, q. We say that p, q admit a shift if moff(p, q) contains
two successive integers from {−2,−1, 0, 1, 2}.

The next lemma shows how move offsets can be described in terms of paths.

Lemma 6.6. For every states p, q,

0 ∈ moff(p, q) iff ε ∈ S(p, q) ,

1 ∈ moff(p, q) iff ↖∗
y↙∗⊆ S(p, q) ,

2 ∈ moff(p, q) iff ↖∗↗↖∗
y↙∗ + ↖∗

y↙∗↘↙∗⊆ S(p, q) ,

−1 ∈ moff(p, q) iff ↗∗
x↘∗⊆ S(p, q) ,

−2 ∈ moff(p, q) iff ↗∗↖↗∗
x↘∗ + ↗∗

x↘∗↙↘∗⊆ S(p, q) .

Proof. The case of 0 follows straight from the definition: if #t(v, w) = 0, then
v = w and therefore π(v, w) = ε (and vice versa). The remaining cases follow by
listing the paths that can connect nodes separated by 1, 2,−1,−2 leaves respectively.

In particular, directly from the definition of elementary moves, we deduce the
following corollary.

Corollary 6.7. Every elementary move has an offset among −1, 0, 1.

A typical example of a move offset of 1 is the depth-first search.

Lemma 6.8. If (p, p̄) is a left-to-right DFS then 1 is a move offset of p̄, p. If (p, p̄)
is a right-to-left DFS then −1 is a move offset of p̄, p.

25

Proof. If (p, p̄) is a left-to-right DFS then p̄ ↖ p̄ y p ↙ p holds. Thus the
move S(p̄, p) contains ↖∗

y↙∗ and the move offset 1 follows by Lemma 6.6. The
right-to-left case is the same.

The following lemma gathers a number of sufficient conditions for move offsets.

Lemma 6.9. For all states p̄, r̄ and q:
(i) If p̄ p̄ y q then 0 is a move offset of p̄, q.
(ii) If p̄ p̄ y q then 1 is a move offset of p̄, q.
(iii) If p̄ p̄ ↗ r̄ r̄ y q then both 1 and 2 are move offsets of p̄, q.
(iv) If p̄ p̄ ↖ r̄ r̄ y q then both −1 and 0 are move offsets of p̄, q.
(v) If p̄ p̄ y q q then both −1 and 0 are move offsets of p̄, q.

Proof.
(i) By Lemma 5.5, there is a state p such that (p, p̄) is a right-to-left DFS.

This gives, among others, p̄ x p and p 	 p̄. Together with the assumption
that p̄ y q, we obtain p̄ →ε q, and hence 0 is a move offset of p̄, q by
Lemma 6.6.

(ii) By Lemma 5.5, there is a state p such that (p, p̄) is a left-to-right DFS. By
Lemma 6.8, p̄, p has offset 1. From p ↙ p 	 p̄ y q, we have p ↓ q. Using
Lemma 6.6, it follows by swallowing that p̄, q also has offset 1.

(iii) The move offset 1 follows from the previous case, since p̄ p̄ y q. By
Lemma 6.6, the move offset 2 will follow once we show that S(p̄, q) contains
both

↖∗↗↖∗
y↙∗ and ↖∗

y↙∗↘↙∗ .

By Lemma 5.5, there are states p, r such that (p, p̄) and (r, r̄) are left-to-right
DFS’s. By r ↙ r 	 r̄ y q, we obtain r ↓ q. Then by

p̄ ↖ p̄ ↗ r̄ ↖ r̄ y r ↙ r ↓ q

we obtain that S(p̄, q) contains ↖∗↗↖∗
y↙∗.

It remains to show that S(p̄, q) contains ↖∗
y↙∗↘↙∗. This will follow once

we prove p ↘ r, by

p̄ ↖ p̄ y p ↙ p ↘ r ↙ r ↓ q .

It thus remains to show p ↘ r. By p ↙ p 	 p̄ ↗ r̄, we get p →ε r̄. Finally, if
we consider the path in ∆2[∆1, ∗] witnessed by p ↙ p →ε r̄ y r, we get the
desired p ↘ r.

(iv) By item (i), there is a move offset of 0.
By Lemma 5.5, there are states p, r such that both (p, p̄) and (r, r̄) are right-
to-left DFS’s. Using the space-symmetric variant of the proof of p ↘ r in
item (iii), we obtain p ↙ r. Now, by p ↙ r 	 r̄ y q, we have p ↓ q.
Consequently p̄ p̄ x p ↓ q; and applying the space-symmetric version of (ii)
we obtain an offset of −1 for p̄, p.

(v) The offset 0 follows from item (i). By Lemma 5.5, there are states p, q̄ such
that both (p, p̄) and (q, q̄) are right-to-left DFS’s.
Let us show that p̄ ↑ q̄. For this, we trace the following run

p̄ x p ↘ p 	 p̄ x p 	 p̄ y q 	 q̄ x q 	 q̄ ↗ q̄ ↗ q̄

26

that goes from state p̄ in port 0 to state q̄ in port ε of the following pattern,
which is equivalent to ∆1:

Now by p̄ ↑ q̄ ↗ q̄ x q ↘ q, we obtain that ↗∗
x↘∗⊆ S(p̄, q). By

Lemma 6.6, we obtain offset −1.

6.3. Classification of moves. In this section we state and prove Proposi-
tion 6.10, which says that if S(p, q) is nonempty then it is either a union of some
of the eleven elementary moves, or there is a shift. This separation of cases is at the
core of the argumentation of Section 7.

Proposition 6.10. If S(p, q) is nonempty then p, q have a move offset in
{−1, 0, 1}. Furthermore, either p, q admits a shift or S(p, q) is a union of elemen-
tary moves.

Proof. By Lemma 6.3, the move S(p, q) is a finite union of sets of the form {ε},
which is an elementary move, or

(U(p, p′) + ε) y (D(q′, q) + ε) where p′, q′ satisfy p ↑ p′ y q′ ↓ q or

(U(p, p′) + ε) x (D(q′, q) + ε) where p′, q′ satisfy p ↑ p′ x q′ ↓ q .

Let M ⊆ S(p, q) be a move of one of those forms, we prove that either S(p, q) contains
a shift, or there is an elementary move E such that M ⊆ E ⊆ S(p, q). If this holds
for all such moves M , we directly obtain the statement of the proposition, using
Corollary 6.7 for the offset of elementary moves.

By symmetry, we only consider the case M = (U(p, p′) + ε) y (D(q′, q) + ε).
We now apply Proposition 5.10 to p ↑ p′. This proposition distinguishes six cases,
namely , , , (a), (b) and (c). Similarly, we can do the time-reversed reasoning
for q′ ↓ q and also consider six cases.

If we have (b) or (c) for p ↑ p′, then by items (iii) and (iv) of Lemma 6.9 respec-
tively, we get a shift. In case of (a), we get a shift by using items (i) and (ii). By
the time-space-reverse variant of Lemma 6.9, the same happens if (a), (b) or (c) holds
for q′ ↓ q.

Only the other cases remain. There are nine possibilities:
• if p p′ and q′ q, we get M = by Lemma 6.4. Similarly, if p p′ and q′ q,

we get M = , and when p p′ and q′ q, we have M = .
• if p p′ and q′ q, we have M ⊆ by Lemma 6.4. Furthermore, using

Lemmas 6.4 and 6.5, we get ⊆ S(p, q). Similarly, if p p′ and q′ q, we
obtain M ⊆ ⊆ S(p, q).

• if p p′ and q′ q then p, q admit a shift. Indeed, 1 is a move offset of p, q: by
Lemma 5.9, p ↑ p′′ p′′ ↑ p′, and item (ii) of Lemma 6.9 gives offset 1. Offset 0
is also obtained by Lemma 5.9 and the time-space-reverse variant of item (i)
(i.e., if p̄ y q q then p̄, q have offset 0). Similarly for p p′ and q′ q.

27

• if p p′ and q′ q then p, q admit a shift by item (v) of Lemma 6.9.
• if p p′ and q′ q then p, q clearly admit a shift; 1 and 2 are move offsets.

6.4. Right-skipping moves. The results of Section 6.4 concern right-skipping
moves. A move is called right-skipping if it contains an element of

Right \ .

A right-skipping move can go the right in a pattern while omitting (skipping) the
junction leaf immediately to the right:

?

We say that states p, q are right-skipping if the move R(p, q) is right-skipping. A
left-skipping move is defined in the same fashion.

Lemma 6.11. Let p, q be states with a maximal move offset k. Let u, v be leaves
of a tree t, with #t(u, v) > k. If [p, u] → [q, v], then p, q are right-skipping.

Proof. Note that if the offset k can be arbitrarily large—i.e. there is no maximal
offset k—then p, q are right-skipping straight from the definition, thanks to any move
offset k ≥ 2. By the first clause of Proposition 6.10, k ≥ −1, and so #t(u, v) is at
least 0. Furthermore, it cannot be 0, since otherwise we would have p →ε q, and
therefore 0 ∈ moff(p, q); this would give k ≥ 0, a contradiction with #t(u, v) > k.

If #t(u, v) is at least 2, then p, q are right-skipping by definition; the remaining
case is 1. The path π(u, v) witnesses p y q, and consequently the existence of p′, q′

such that p ↑ p′ y q′ ↓ q. By Proposition 5.6, either p ↖ p′ or p ↗ p′ must hold.
If p ↗ p′, then ↗y ∈ R(p, q) is a witness for p, q being right-skipping. Other-
wise, p p′ y q. By Lemma 5.9 and item (ii) of Lemma 6.9, p, q has offset 1, which
gives k ≥ 1; a contradiction with #t(u, v) > k.

x x

00 01

1
00

01 1

Fig. 7.1. Rotating at node x

7. The Rotation. We have now gathered enough information about runs of
the automaton that never see the label a. In this section we consider runs that do

28

see a, and conclude the proof of Theorem 2. We will show that the tree-walking
automaton A cannot detect a well-placed rotation in a large balanced tree.

We proceed as follows. We start with a blank balanced binary tree T of large
even depth. Clearly all leaves of T are at even depth, and therefore A must accept
the tree ∆a

T . We then choose a pivot node x in T and perform a rotation at that
node. Rotation is the operation depicted in Fig. 7.1; it moves the subtrees rooted
in x00, x01 and x1 to the new positions x0, x10 and x11. One can easily see that the
resulting tree T ′ has some leaves at odd depth and hence A should not accept ∆a

T ′ .
We will, however, show that for a carefully chosen pivot, A does accept this tree,
thereby completing the proof of Theorem 2 :

Proposition 7.1. The tree ∆a

T ′ is accepted by A.

First we describe how to properly choose the height of the tree T and the pivot
in it. The remainder of the paper is then devoted to showing Proposition 7.1.

7.1. The pivot. The goal of this section is to construct a tree T , an accepting run
of A over ∆a

T , and a node x of T (the pivot), such that the properties of Definition 10
are satisfied. Essentially, these properties say that: the tree is balanced and large and
the path leading to the pivot contains a zigzag. Furthermore, some undesirable parts
of the accepting run do not use nodes below the pivot. These properties will be used
in the remainder of the paper in order to prove that doing a rotation in the pivot x
on the tree T gives a tree T ′ such that ∆a

T ′ is accepted by A. We begin by defining
the “undesirable” parts of the run. After that, we state Definition 10, and then we
show that the tree and pivot can indeed be found, in Lemma 7.3.

Let t be a blank tree. Recall the definitions of junction and leaf configurations
from Section 4.2. By distinguishing all the configurations whose node is either a
junction leaf, or the root of ∆a

t , every accepting run in ∆a

t can be decomposed into a
sequence of the following form:

(q1, v1), . . . , (qn, vn) , (7.1)

where each vi (i = 1, . . . , n) is either the root ε or [ui] for some leaf ui of t, and in
between two such configurations, no junction leaf nor the root is visited. In this case
the run linking (qi, vi) to (qi+1, vi+1) is either

(a) a run visiting at least once the root of ∆a

t (and no a-labeled leaf of ∆a

t);
(b) a loop inside the ∆1[∆a] subtree rooted in vi, which is equivalent to ∆a (hence

qi 	a qi+1); or
(c) a run from a junction leaf to another junction leaf in the pattern ∆t which

does not visit the root, (hence by Lemma 6.1, [qi, ui] → [qi+1, ui+1] holds,
where vi = [ui] and vi+1 = [ui+1]).

Such a sequence is called a rooted leaf run in ∆a

t . An unrooted leaf run is one
that never uses a step of the form (a). By shortcutting each part of the run starting
and ending in the root with the same state, we can safely assume that every rooted
leaf run uses at most 2|Q| steps of the form (a); hence the greater part of a rooted
leaf run is unrooted. Since an unrooted leaf run uses only leaf configurations, it can
be written as [q1, u1], . . . , [qn, un].

For junction configurations [p, v] and [q, w], we write [p, v] ⇒t [q, w] if in the
tree ∆a

t there is a run from [p, v] to [q, w] that does not visit the root. Note that
when v, w are leaves, this means that there is an unrooted leaf run in ∆a

t from [p, v]
to [q, w]. As opposed to the relation [p, v] → [q, w], this run may depend on the tree t
and not only on the nodes v and w.

29

We say that one state q is leaf reachable from another p if they can be connected by
an unrooted leaf run in some tree, i.e., [p, v] ⇒t [q, w] for some tree t and leaves v, w.
Equivalently, q is leaf reachable from p if there exist p = p1, . . . , pn = q such that
for every i = 1, . . . , n − 1, either S(pi, pi+1) is nonempty (which corresponds to case
(c)) or pi 	a pi+1 holds (corresponding to case (b); recall the definition of 	a from
Figure 5.1). (The right-to-left part of this equivalence is a consequence of the existence
of a move offset in {−1, 0, 1} shown in Proposition 6.10 and is not a priori obvious).
A component of the automaton is a maximal set of pairwise leaf reachable states; in
other words, it is a strongly connected component of the directed graph with Q as
nodes and an edge from p to q iff S(p, q) is nonempty or p 	a q.

Let us consider a rooted leaf run ρ as in (7.1), which witnesses the acceptance
of ∆a

t by A. The main point in choosing the pivot is to restrict our attention to
fragments of ρ that are unrooted leaf runs and only use states from one component.
We say the run changes components below a node y of t if it contains two successive leaf
configurations (qi, vi), (qi+1, vi+1) such that qi and qi+1 are in different components
and at least one of vi, vi+1 is below [y]. The run is rooted below y if there is some i
such that vi = ε, and either vi−1 or vi+1 exists and is below [y].

Definition 10. We define the following properties for a node x in a blank
balanced tree t with respect to a rooted leaf run of A in ∆a

t ,
1. the subtrees rooted in x and the children of x are log2(|Q|)-fractal (see below);
2. the subtree of x has depth larger than 4 + |Q| + 2 log2(|Q|);
3. the node x is below the node 01010101;
4. the run does not change components below x;
5. the run is not rooted below x.

Note that since the tree t is balanced, the number of leaves below a node v only
depends on its depth. Let then v be a node of t, whose depth |v|+1 is at most |x|+2.
From condition 2, it follows that the number of leaves in the subtree of v exceeds
all the following thresholds (the constants D,E defined below will be used in the
subsequent proofs):

|Q|, D = |Q|(|Q| + 1), E = 2D + 3|Q| . (7.2)

We will refer to the above property later on in the paper.
We will now proceed to show that such a run and a node (called the pivot) can

be found (Lemma 7.3) as long as t is a sufficiently large balanced tree of even depth.
Before we do so however, we need to define what a fractal tree is.

Within a tree t, we distinguish five characteristic types of nodes: 1) the root,
2) the leftmost leaf, 3) the rightmost leaf, 4) the remaining leaves, and — for the
sake of completeness — 5) the remaining nodes. We say a tree t′ simulates a tree t,
if for every two junction configurations in t that satisfy [p, v] ⇒t [q, w], one can
find two configurations satisfying [p, v′] ⇒t′ [q, w′] such that v and v′ have the same
characteristic type, as well as w and w′. Given a natural number m, a tree is called
m-fractal if it contains a proper subtree that simulates it and has depth larger than m.

Lemma 7.2. For every natural number m, all balanced binary trees of sufficiently
large depth are m-fractal.

Proof. For a tree t and states p, q, we can calculate the characteristic types of
nodes v, w satisfying [p, v] ⇒t [q, w]. This information is sufficient to see whether one
tree simulates another. Moreover, it can be calculated by a deterministic bottom-
up finite tree automaton. In case of a balanced binary tree, this information is a

30

(regular) property of its depth and is thus ultimately periodic. This means that there
exist constants N and k such that every balanced blank tree of depth n ≥ N is
simulated by the balanced blank tree of depth n − k. Hence every balanced tree of
depth at least max{m,N} is m-fractal.

Lemma 7.3. There exist a blank balanced binary tree T , an accepting run ρ of A
in ∆a

T and a pivot x such that x satisfies properties 1 to 5 of Definition 10 with respect
to ρ.

Proof. Let N be more than the minimum depth of balanced tree obtained from
Lemma 7.2, and also larger than the depth |Q| log2(|Q|) from condition 2 in Defini-
tion 10. Let K be above log2(4|Q|) + 1. Finally, let T be a balanced blank tree of
even depth larger than N +K +8. The tree ∆a

T is accepted by A by hypothesis on A.
Consider now an accepting run, and its representation as in (7.1),

(q1, v1), . . . , (qn, vn),

where only the root and junction leaf configurations are displayed. We assume that
in this run, the root of ∆a

T is seen at most |Q| times. If this is not the case, some
state appears twice in the root, hence a configuration is seen twice in the run; one
can then shortcut the corresponding part of the run.

Let Vroot be all those junction leaves vi such that at least one of vi−1, vi+1 is the
root ε. One can easily see that the run is rooted below a node y if and only if [y] is
above some node in Vroot. Likewise, let Vcc be all those junction leaves vi such that
the state qi is in a different component than either qi−1 or qi+1 (or both). Again, the
run changes component below a node y if and only if [y] is above some node in Vcc.
Combining the above, a node x satisfies properties 4 and 5 from Definition 10 if and
only if x is not above some node in one of Vroot, Vcc. By assumption on the run not
visiting the root more than |Q| times, the sets Vroot, Vcc have together at most 4|Q|
nodes.

Let us count the number of nodes at depth K + 8 in T that are below 01010101.
There are 2K−1 such nodes; i.e., more than 4|Q| by construction of K. In particular,
there is a node x at depth K + 8 that satisfies conditions 3, 4 and 5. Furthermore,
since the whole tree has depth at least N + K + 8, the subtree of x has depth at least
N , and therefore x satisfies conditions 1 and 2.

Detection of the rotation. From now till the end of the paper, the tree T , the
run ρ and the pivot x are fixed according to Lemma 7.3. Let T ′ be the tree obtained
from T by doing a rotation in the pivot x; this tree clearly contains leaves at odd
depth. Our objective is to show that ∆a

T ′ is accepted by A. For this, we have to
show that the run can in some sense be replicated after the rotation. We will use
properties 4 and 5 from Definition 10 to show that only unrooted leaf runs that do
not change components need be considered.

We say that a component Γ ⊆ Q of the automaton A cannot detect the rotation
if for every two leaf configurations [p, v], [q, w] with p, q in Γ and v, w not below the
pivot,

[p, v] ⇒T [q, w] implies [p, v] ⇒T ′ [q, w] . (7.3)

Observe that it makes sense to speak about the configurations [p, v] and [q, w] in the
tree T ′ since the leaves v and w are not below the pivot, and hence are not affected
by the rotation.

31

Consequence for Proposition 7.1. Let us show that, under the assumption that
no component can detect the rotation, we have Proposition 7.1.

Consider the run ρ obtained from Lemma 7.3, and its representation as in (7.1):

(q1, v1), . . . , (qn, vn) .

Recall how we classified each of the runs linking (qi, vi) to (qi+1, vi+1), for i =
1, . . . , n − 1, according to their form, (a), (b) or (c). Define also ui to be the node
of T to be such that vi = [ui], when possible, for i = 1, . . . , n.

We claim the following: for i < j in {1, . . . , n} such that both vi and vj are
not below [x], there is a run of the automaton A from (qi, vi) to (qj , vj) in ∆a

T ′ .
Since neither v1 = ε nor vn = ε is below [x], our claim yields a run in ∆a

T ′ that
goes from (q1, ε) to (qn, ε). Since the original run from (q1, ε) to (qn, ε) in ∆a

T was
accepting, then q1 is initial and qn is final, and therefore the tree ∆a

T ′ is accepted by
the automaton.

The proof of the claim is by induction on j− i. The induction step is obvious, and
follows by concatenating runs. The nontrivial case is the base case of the induction,
when for every k with i < k < j, the node vk is below the pivot x. We now prove the
claim for this case.

Consider first the case when i+1 = j. We now look at the form of the subrun that
goes from (qi, vi) to (qi+1, vi+1). If this subrun is of the form (b), it can be directly
replicated on ∆a

T ′ without change. If the subrun from (qi, vi) to (qi+1, vi+1) is of
the form (c), then we use Corollary 6.2, which shows that a similar run can be used
in ∆a

T ′ from configuration (qi, vi) to (qi+1, vi+1). The last remaining case is when the
subrun from (qi, vi) to (qi+1, vi+1) is of the form (a), and in particular either vi = ε,
or vj = ε, or both hold. If vi = ε but vj 6= ε, we decompose the run from (qi, ε)
to (qj , vj) into a run from (qi, ε) to [q′, ε], which does not visit more than once the
nodes ε and [ε], followed by a run from [q′, ε] to [qj , uj], which does not visit ε nor a
junction leaf other than [uj]. This second piece of run can be reused in ∆a

T ′ according
to Corollary 6.2. Hence there is a run in ∆a

T ′ from (qi, vi) to (qj , vj). The case vi 6= ε
and vj = ε is obtained by time-symmetry. Finally, when vi = vj = ε, either the run
does not visit [ε], and can directly be reused in ∆a

T ′ , or it visits [ε]. In this latter case,
let q′ be the first, and q′′ be the last state assumed by the run when visiting [ε]. The
piece of run between [q′, ε] to [q′′, ε] does not visit any junction leaf, and consequently
by Lemma 4.1, there is a similar run which does not visit any junction node other
than [ε]. This run can be reused in ∆a

T ′ to obtain a run from (qi, vi) to (qj , vj).
Otherwise, we have i + 1 < j. For all k with i < k < j, the node vk is below [x],

which together with condition 5 of Definition 10 gives that no subruns of form (a)
happen between (qi, vi) and (qj , vj). Consequently, all the nodes vk are junction
leaves, and the run from (qi, vi) to (qj , vj) is an unrooted leaf run:

[qi, ui] ⇒T [qj , uj] .

Furthermore, by condition 4 of Definition 10, the states qi and qj belong to the same
component Γ of the automaton. Also, by hypothesis on i and j, neither ui nor uj is
below x. It follows that we can apply our assumption that no component can detect
the rotation, and get a run corresponding to:

[qi, ui] ⇒T ′ [qj , uj] .

This completes the proof of the claim, and consequently of Proposition 7.1. What
remains to be done is to establish that no component of the automaton can detect
the rotation. The remainder of this paper is dedicated to establishing it.

32

mm

v w

Fig. 7.2. An m-run offset

Using Proposition 6.10, we divide all components into two categories: components
with a shift, i.e., containing two states which admit a shift; and components without
a shift. Proposition 7.1 is then proved in the two following Sections 7.2 and 7.3 for
each of the two categories separately.

7.2. Components with a shift cannot detect the rotation. In this section
we fix a component Γ with a shift and prove that it cannot detect the rotation. In
order to do this, we extend the definition of move offsets to run offsets, where more
than one move can be used. The idea is that the shift in the component can be
exploited to allow the automaton to move around the tree in an almost arbitrary
fashion, independently of the structure of T .

A run offset between state p and state q is defined similarly to a move offset:

Definition 11. Given a natural number m ≥ 0 called the safety margin, an
m-run offset of states p, q is an integer i such that [p, v] ⇒t [q, w] holds for every two
leaves v, w of a tree t where #t(v, w) = i and v,w have both at least m leaves to their
left and right. We write roffm(p, q) for the set of m-run offsets of p, q.

We remark here, slightly ahead of time, that a consequence of x being below
01010101 is that all nodes below the pivot, and even some nodes not below the pivot,
have at least m leaves to their left and right, for fairly large values of m. This means
that those nodes are suitable for using run offsets.

The differences between move offsets and run offsets are that: 1) we replace →
with ⇒t (which depends on t and can read the label a); and 2) the leaves v, w
must have a “safety margin” of at least m leaves to their left and to their right, see
Figure 7.2.

We now list some basic properties of roff, which hold for any given states p, q, r.
First, moff(p, q) is included in roff0(p, q). Furthermore, if p 	a q holds, then 0 belongs
to roff0(p, q). Also, if both i, j ≤ 0 or both i, j ≥ 0, then

i ∈ roffm(p, q), j ∈ roffm(q, r) ⇒ i + j ∈ roffm(p, r) .

Finally, if ij ≤ 0 (i.e., if i, j are of opposite sign), then

i ∈ roffm(p, q), j ∈ roffm(q, r) ⇒ i + j ∈ roffm+min(|i|,|j|)(p, r) .

In particular, if j ∈ {−1, 0, 1} then i + j ∈ roffm+1(p, r).
A consequence of these properties, together with Proposition 6.10 is:

Lemma 7.4. For every component Γ and states p, q in Γ, roff |Q|−1(p, q) is
nonempty, and contains a value k with |k| < |Q|.

Proof. Since p and q are in the same component, there exists a sequence of states
p = r1, . . . , rn = q such that for all i = 1, . . . , n − 1, either ri 	a ri+1 holds, or the

33

move S(ri, ri+1) is nonempty. Without loss of generality, we assume that no state is
seen twice in this sequence, and therefore n ≤ |Q|.

By induction on i = 1, . . . , n, we will show that roffi−1(r1, ri) contains a value
k with |k| < n. For i = n ≤ |Q|, the statement of the lemma follows. For i = 1,
we naturally have 0 in roff0(r1, r1). By induction hypothesis, the set roffi−2(r1, ri−1)
contains a value k with |k| < i − 1. If ri−1 	a ri holds, then roffi−2(r1, ri) also
contains k, and therefore so does roffi−1(r1, ri). On the other hand, if S(ri, ri+1)
is nonempty, then moff(ri−1, ri) contains an offset j ∈ {−1, 0, 1} by Property 6.10.
In particular, the offset j belongs to roff0(ri−1, ri). Using the properties described
above, we obtain that k + j belongs to roffi−1(r1, ri). This concludes the induction
step, since |k + j| < i.

For a safety margin m and a natural number d called the threshold, a pair of
states p, q is called an (m, d)-right-teleport if roffm(p, q) contains all integers no smaller
than d. An (m, d)-left-teleport is when roffm(p, q) contains all the integers smaller
than −d. An m-full-teleport corresponds to roffm(p, q) containing all integers. Remark
that if p, q is an (m, d)-right-teleport and q, r is an (m, d)-left-teleport, then p, r is an
(m + d)-full-teleport.

Recall the constant D = |Q|(|Q| + 1) defined after Definition 10.

Lemma 7.5. If a component Γ contains a shift, either all pairs of states in Γ
are (2|Q|,D)-right-teleports, or all are (2|Q|,D)-left-teleports.

Proof. Let q1, q2 be states in the component Γ that admit a shift, i.e. have two
consecutive move offsets i, i + 1 ∈ {−2,−1, 0, 1, 2}. By adding i, i + 1 to the offset
obtained by applying Lemma 7.4 to the pair q2, q1, we infer that the cycle q1, q1 admits
two consecutive |Q|-run offsets k and k + 1 with |k|, |k + 1| ≤ n + 1 ≤ |Q| + 1.

Without loss of generality, let us assume that 0 ≤ k ≤ n and k′ = k + 1. Let

m ≥ |Q|(|Q| − 1) ≥ k(k − 1) .

We will show that m belongs to roff |Q|(q1, q1). Indeed, the number m can be written
as αk + β with β ∈ {0, . . . , k − 1}. In particular,

m = (α − β)k + β(k + 1) .

Let us remark that since m ≥ k(k − 1), then α ≥ k − 1, and consequently α − β ≥ 0.
Hence by using α−β times the run offset k and β times the run offset k′ = k +1, one
obtains

m ∈ roff |Q|(q1, q1) .

This proves that q1, q1 is a (|Q|, |Q|(|Q| − 1))-right-teleport.
Once one pair of states q1, q1 is a right-teleport, the same can be shown for all

other state pairs in the component Γ. Indeed, we will show that any two states p, q in
Γ are a (2|Q|, |Q|(|Q|+1))-right-teleport, which completes the proof of the lemma. We
need to show that the automaton can go from [p, v] to [q, w]. First, using Lemma 7.4,
the automaton can go from [p, v] to a configuration of the form [q1, u1], where u1 is
a leaf separated from v by at most |Q| leaves (note that u1 may be to the left or to
the right of v). In the same way, there is a leaf u2, separated from w by at most
|Q| leaves, such that the automaton can go from [q1, u2] to [q, w]. If the leaves v, w

34

have safety margins of 2|Q|, then the leaves u1, u2 have safety margins of at least |Q|.
Furthermore, if w was at least

|Q|(|Q| − 1) + 2|Q| = |Q|(|Q| + 1) = D

leaves to the right of v, then u2 is at least |Q|(|Q| − 1) leaves to the right of u1.
Therefore the (|Q|, |Q|(|Q| − 1))-right-teleport q1, q1 can be used to go from [q1, u1]
to [q1, u2]. This completes the proof that p, q is a (2|Q|,D)-right-teleport.

The left-teleport is obtained in the case when k is negative.

For the remainder of this section (Section 7.2), we assume that the second case in
the above lemma holds, i.e., all pairs of states are (2|Q|,D)-left-teleports. The case of
right-teleports is symmetric. We now proceed to show that the component Γ cannot
detect the rotation, i.e., that the implication (7.3) holds for any two leaves v, w not
below the pivot, and any two states p, q of the component Γ.

Consider all the leaf configurations of the unrooted leaf run from [p, v] to [q, w]:

[p, v] = [r0, u0] ⇒T [r1, u1] ⇒T · · · ⇒T [rn, un] ⇒T [rn+1, un+1] = [q, w] (7.4)

Without loss of generality we can assume that all the leaves u1, . . . , un are below the
pivot; the other parts of the run can be easily replicated in T ′ (as explained at the end
of Section 7.1). Note that since Γ is a component, all the states r0, . . . , rn+1 belong
to Γ.

We will do a case analysis. We say the leaf run from [p, v] to [q, w] satisfies
property (*) if for some 0 ≤ i < j ≤ n+1, the leaf uj is at least |Q| leaves to the right
of ui, i.e., #T (ui, uj) ≥ |Q|. We do the proof first for leaf runs that do not satisfy
this property, and then for those that do.

7.2.1. Leaf runs not satisfying (*). Recall that we assume that Γ is a compo-
nent such that every pair of states in it is a left-teleport. We make a case distinction
depending on the relative position of v and w with respect to the pivot.

If v is to the left of the pivot and w is to its right, then all the leaves below the
pivot separate v from w. By (7.2), there are more than |Q| of these leaves, which
contradicts our assumption on property (*) failing.

Consider now the case when v is to the right of the pivot and w is to the left.
If v has more than 2|Q| leaves to its right and w has more than 2|Q| leaves to its
left, we can use the (2|Q|,D)-left-teleport and go from [p, v] to [q, w] independently of
the rotation, since there are at least D leaves below the pivot x, thanks to (7.2). Let
us assume now that v has less than 2|Q| leaves to its right and w has less than 2|Q|
leaves to its left. By (7.2), node 11 has more than 2|Q| leaves in its subtree. In
particular, if there are less than 2|Q| leaves to the right of v, then v must be below 11.
Since u1 is below the pivot x, hence below 01, the path going from [p, v] to [r1, u1] is
of the form π ↖x↘ π′ ∈ S(p, r1). It follows that π x π′ also belongs to S(p, r1), by
swallowing. Hence, the automaton can go from [p, v] to [r1, v

′] for some v′ below 10.
In the same way, if w has less than 2|Q| leaves to its left, one shows that there exists a
leaf w′ below 001 such that the automaton can go in one move from [rn, w′] to [q, w].
We are in the situation where v′ has more than 2|Q| leaves to its right, w′ has more
than 2|Q| leaves to its left, and there are more than D leaves between w′ and v′. Now
we can use the (2|Q|,D)-left-teleport to go from [r1, v

′] to [rn, w′]. Furthermore,
since v′, w′ are not below the pivot, and the teleport is used to jump over the leaves
below the pivot, the resulting run cannot detect the rotation. The other cases are a
combination of the two previous ones.

35

Next we consider the case for which both v and w are to the right of the pivot.
Since condition (*) is not satisfied, all leaves u1, . . . , un are at most |Q| leaves away
from w. In particular all these leaves are below x1 since the subtree rooted in x1
contains at least |Q| leaves by (7.2). Let f be the unique bijection between the leaves

x x

Fig. 7.3. The bijection f

of T and the leaves of T ′ that preserves the leaf numbering (i.e., #T (v) = #T ′(f(v)),
see Fig. 7.3). Note that f is the identity function on leaves not below the pivot; in
particular f(v) = v and f(w) = w. We claim that the unrooted leaf run from [p, v] to
[q, w] can be replicated in the tree T ′ as follows:

[p, v] ⇒T ′ [r1, f(u1)] ⇒T ′ · · · ⇒T ′ [rn, f(un)] ⇒T ′ [q, w] .

Since all leaves u1, . . . , un are located below x1, the path connecting f(ui) to f(ui+1)
is identical to the one connecting ui to ui+1, for i = 1, . . . , n − 1. It follows that the
run from [r1, f(u1)] to [rn, f(un)] is valid in T ′. Only the first and last steps remain
to be considered. We only do the first one, the other being time-symmetric. Consider
the first step in the leaf run, when the automaton goes from [p, v] to [r1, u1]. Since v
is to the right of the pivot and u1 is below the pivot, the path from v to u1 is of the
form

π x π1π2 with π ∈ {↖,↗}∗ and π1, π2 ∈ {↙,↘}∗ .

Here π1 is chosen so that π x π1 leads from v to the pivot, while π2 leads from the
pivot to u1. Since u1 is at a distance at most |Q| from v, it is separated by at most
|Q| leaves from the rightmost leaf below the pivot. Therefore, the only left turns ↙
in π2 happen in its last log2(|Q|) letters. It follows from condition 2 of Definition 10,
that π2 has a prefix ↘k with k ≥ |Q|. Hence some state r has to be used twice in the
prefix. Since ↘ is transitive, we deduce that

π x π1 ↘ π2

also belongs to the move S(p, r1). But this path is the one linking v to f(u1) in T ′,
proving [p, v] ⇒T ′ [r1, f(u1)].

The last remaining case is when both v and w are to the left of the pivot. This
time we show that from a run of the form π y π1 ↙ π2, one can deduce a run of
the form π y π1π2, which can be used after the rotation. This case is in fact simpler
since Definition 10 need not be invoked, but rather swallowing is used.

7.2.2. Leaf runs satisfying (*). In this case we will show that the component Γ
contains a right-skipping move (or a right-teleport). After combining this with the
left-teleports from our assumption, we will show that any two leaf configurations with

36

states from Γ and nodes below the pivot can be reached one from the other, which
implies that Γ cannot detect the rotation. For this, we will use the assumption that
the pivot is below 01010101.

Recall the constant E = 2D + 3|Q| defined after Definition 10.

Lemma 7.6. Either all pairs of states in Γ are E-full-teleports, or some states r, r′

in Γ are right-skipping.

Proof. Recall that we are analyzing a run as in (7.4). For i = 0, . . . , n, let ki

be the offset #T (ui, ui+1). If some ki exceeds 1, the corresponding move R(ri, ri+1)
is by definition right-skipping and we are done. Furthermore, if some ki exceeds
the maximal move offset of ri, ri+1 (if that exists), then the corresponding move is
right-skipping by Lemma 6.11. We assume neither case happens.

Since (*) is satisfied, there are i < j such that #T (ui, uj) ≥ |Q|. We will inspect
the run from ui to uj and find in it a state used twice, the first configuration involved
being to the left of the second one. Since ki, . . . , kj−1 ≤ 1, we can assume that
#T (ui, uj) is exactly |Q|. Furthermore, if we choose i, j so that j − i is minimal, all
the leaves ui+1, . . . , uj−1 are to the right of ui and to the left of uj . Since, without
loss of generality, we can assume that no leaf is visited more than |Q| times, and using
the fact that the automaton has at least 2 states, we obtain j − i < |Q|2.

Claim. Let k = 1, . . . , |Q|. If g < h are such that the sequence rg, . . . , rh contains
at most k distinct states, and furthermore #T (ug, uh) ≥ k, then there are g′ < h′ in
{g, . . . , h} such that rg′ = rh′ and #T (ug′ , uh′) ≥ 1.

Proof. The proof is by induction on k. For k = 1 the statement is obvious.
Consider now k > 1. We take a longest suffix um, . . . , uh of ug, . . . , uh where the leaf
ug is not visited anymore (in particular, all leaves um, . . . , uh are to the right of ug).
By assumption on all moves going at most one position to the right, the leaf um must
be the leaf immediately to the right of ug, and therefore #T (um, uh) ≥ k − 1. If the
states rm, . . . , rh do not contain the state rg, then we apply the induction hypothesis.
Otherwise, the position among m, . . . , h where state rg is used gives us the desired
loop, since all nodes um, . . . , uh are to the right of ug.

Using this claim with g = i and h = j, together with j − i < |Q|2, we find two
indices i′ < j′ such that ri′ = rj′ = r, j′ − i′ < |Q|2 and #T (ui′ , uj′) ≥ 1. We will
use this to show that there is also a right-teleport in the component. When combined
with the left-teleport from our assumption on Γ, we will get a full-teleport.

By assumption on the values kl, each pair rl, rl+1 has some move offset ml ≥
kl. (We use here the convention that there is a move offset ml = 0 ≥ kl when
the run from [rl, ul] to [rl+1, ul+1] is of type (b), i.e. when rl 	a rl+1 holds.) By
Proposition 6.10 each nonempty move has a move offset in {−1, 0, 1}, and we have
ml ≥ −1. Furthermore, if ml > 1 then rl, rl+1 would be right-skipping, hence we have
−1 ≤ ml ≤ 1. Therefore,

1 ≤ #T (ui′ , uj′) = ki′ + · · · + kj′−1 ≤ mi′ + · · · + mj′−1 < |Q|2 .

(The last inequality is due to j′ − i′ < |Q|2, and ml ≤ 1.) However, since the sum

m = mi′ + · · · + mj′−1

is composed only of move offsets, it must belong to roff |Q|2(r, r), and therefore also
to roffD(r, r), since

D = |Q|(|Q| + 1) > |Q|2 .

37

We will now show that roff2D+2|Q|(r, r) contains all integers, and therefore r, r is a
(2D+2|Q|)-full-teleport. Indeed, let v and w be two leaves in a tree t, both with safety
margin at least 2D+2|Q|. We will show that the automaton can go from [r, v] to [r, w].
Using m ∈ roffD(r, r) (recall that m ≥ 1), starting from [r, v], we successively move
to the right by steps of m leaves. We stop as soon when have reached a configuration
[r, u] with u located at least D leaves to the right of w, possibly stopping immediately.
This leaf u is to the right of v, and hence has 2|Q| leaves to its left. Observe also that
the leaf u is numbered at most

max(#t(v),#t(w) + D + m − 1) .

If u = v, then u has 2|Q| leaves to its right. Otherwise if u has number at most
#t(w) + D + m − 1, and then u has at least

2D + 2|Q| − (D + m − 1)

leaves to its right. Since m < D, this value is larger than 2|Q|. We can therefore use
the (2|Q|,D)-left-teleport – that all state pairs in Γ have by assumption – to go from
[r, u] to [r, w].

Once one state pair r, r has been shown to be a full-teleport, the same can be
argued for the other state pairs in Γ. This is done in the same way as in the last part
of the proof of Lemma 7.5. As in that lemma, the safety margin must be increased
by |Q|, hence the value E = 2D + |Q| in the statement of the lemma.

Lemma 7.7. For v, w leaves below the pivot in T ′, and p, q in Γ, [p, v] ⇒T ′ [q, w].

Before we proceed with the proof, we show how this implies that Γ cannot detect
the rotation. Indeed, consider the leaf run

[p, v] ⇒T [r1, u1] ⇒T · · · ⇒T [rn, un] ⇒T [q, w]

that goes from [p, v] to [q, w]. As mentioned before, we assume that all u1, . . . , un are
below the pivot, and hence only the first and last moves cross the pivot. Thanks to
the yet unproved Lemma 7.7, it suffices to connect [p, v] with some leaf configuration
in T ′ below the pivot and also connect some leaf configuration in T ′ below the pivot
with [q, w]. We will therefore show that there are leaves u′

1 and u′
n in T ′ below the

pivot such that:

[p, v] ⇒T ′ [r1, u
′
1] and [rn, u′

n] ⇒T ′ [q, w] .

Consider first the path from v to u1 in T . This path first goes to the pivot, arriving
there in some state s, and then moves down to the configuration [r1, u1]. This im-
plies s ↓ r1. Hence, by the time-symmetric variant of Lemma 6.5, one of the sets ↙+

or ↘+ is included in D(s, r1). In the first case we pick u′
1 to be the leftmost leaf below

the pivot in T ′, while in the second case we take the rightmost one. The symmetric
reasoning also works for u′

n.

Only the proof of Lemma 7.7 remains. Let then v, w be leaves below the pivot,
and let p, q belong to Γ. We need to show that [p, v] ⇒T ′ [q, w] holds.

By Lemma 7.6, either all pairs of states r, r′ in Γ are E-full-teleports, or there
exists a pair of states r, r′ in Γ that is right-skipping. In the first case, there are more

38

than E leaves to the left and to the right of the pivot by (7.2), and hence to the left
and to the right of both v and w. The E-full-teleport p, q is usable, and the statement
of the lemma follows.

We now treat the case when some state pair r, r′ in Γ is right-skipping. By as-
sumption, all state pairs in the component Γ are (2|Q|,D)-left-teleports. Our strategy
is to combine the left-teleports with the right-skipping move r, r′. First, we use the
left-teleport to go from [p, v] to [r, u], with u being a specially chosen leaf to the left
of the pivot. We then use the right-skipping move and the properties of u in order to
move to [r′, u′], with u′ being a specially chosen leaf to the right of the pivot. Finally,
we use the left-teleport to reach the configuration [q, w]. This process is illustrated in
Fig. 7.4.

x

(p,v)(r,u) (q,w) (r ,u)´ ´

Fig. 7.4. The leaf run witnessing [p, v] ⇒T ′ [q, w]

We need to find leaves u and u′ such that the above strategy works. This is the
goal of the claim below. The first property in the statement allows to perform the
right-skip while the last three allow us to use the left-teleport.

Claim. There exist leaves u, u′ in T ′ such that:
• the path between u and u′ belongs to S(r, r′) (r, r′ taken from Lemma 7.6);
• there are at least D leaves between u and any node below the pivot;
• there are at least D leaves between any node below the pivot and u′; and
• there are at least 2|Q| leaves to the left and right of both u, u′.

Proof. The states r, r′ are right-skipping by assumption. Hence, by definition of
a right-skipping move and Lemma 6.3, one can find states s, s′ with

r ↑ s y s′ ↓ r′ ,

such that either U(r, s)\ ↖+ or D(s′, r′)\ ↙+ is nonempty. Consider first the
case when U(r, s)\ ↖+ is nonempty. This means that r ↗ s holds. Hence, by
Lemma 6.5, U(r, s) contains either ↖∗↗ or ↗+. By time-symmetry, in the case
when D(s′, r′)\ ↙+ is nonempty, D(s′, r′) contains either ↘+ or ↘↙∗.

Altogether, we obtain that R(r, r′) contains at least one of the following five moves
(using swallowing, we have simplified ↖∗↗ into ↖∗, and ↘↙∗ into ↙∗):

↗∗
y↙∗, ↖∗

y↘∗, ↗∗
y↘∗, ↖∗↗y↙∗, or ↖∗

y↘↙∗ .

We treat each of these cases separately. For ↗∗
y↙∗, take u to be the leftmost

leaf below 01 and u′ to be the leftmost leaf below 011 (see Fig. 7.5). Clearly the path
from u to u′ belongs to ↗∗

y↙∗, hence the first property of the statement holds.
By changing the leaves u and u′, we obtain similarly the other cases: for ↖∗

y↘∗,
take u to be the rightmost leaf below 0100 and u′ to be the rightmost leaf below 010;

39

x

u

01

011

u’

Fig. 7.5. The move from u to u′

for ↗∗
y↘∗, take u to be the leftmost leaf below 01 and u′ to be the rightmost

leaf below 010; for the case ↖∗↗y↙∗, take u to be the rightmost leaf below 0100
and u′ to be the leftmost leaf below 011; for ↖∗

y↘↙∗, take u to be the rightmost
leaf below 0100 and u′ to be the leftmost leaf below 01011. In each case, the path
from u to u′ belongs to S(r, r′) and therefore the first item of the statement is satisfied.

For the second item of the statement, note that in all five cases above, the leaf u
is located below 0100. Using condition 3 of Definition 10, we also know that the pivot
is below the node 01010101. Hence, all the leaves below 010100 are to the right of u
and to the left of the pivot. Furthermore, by (7.2), there are more than D such leaves.
The third item is similar: in all five cases, u′ is below 011 or 01011. Hence, the leaves
below 0101011 are to the right of the pivot and to the left of u′. And there are more
than D of them.

The fourth point is obtained by the same kind of arguments. The leaves below 00
are all to the left of u and the leaves below 1 are all to the right of u′. And in each
case there are more than 2|Q| of them. This completes the proof of the claim.

This completes the proof that no component with a shift can detect the rotation.

7.3. Components without a shift cannot detect the rotation. In this
section we consider a component Γ without shifts. This is the second and last case to
be considered in the proof of Proposition 7.1. According to Proposition 6.10, every
nonempty move S(p, q) with p, q in Γ is a union of the elementary moves

Stay , , , , , , , , , and

(see Fig. 6.1). Our strategy is as follows. First, we distinguish some elementary moves,
called “adjacency moves”. Then we show that all other moves can be simulated using
adjacency moves. Finally, we show that a component where all moves are adjacency
moves cannot detect the rotation.

Two paths in Right are called right adjacency similar if one can be obtained from
the other by replacing one fragment in by another one. More formally, two paths
are right adjacency similar if they can be decomposed as

y ↖k
y↙l z and y ↖m

y↙n z where k, l,m, n ∈ N, y ∈ Up + ε, z ∈ Down + ε .

Left adjacency similarity is defined in the same way by replacing ↖, y and ↙ by ↗, x
and ↘ respectively. Two paths are adjacency similar if they are either left or right
adjacency similar.

Definition 12. An adjacency move is an elementary move closed under adja-
cency similarity.

40

v w

z΄

z

y

w΄

Fig. 7.6. The nodes y, v, z, z′, w and w′

The following simple fact is given without further proof:

Fact 7.8. Stay , , , , , , and are adjacency moves.

Adjacency moves are going to be used in conjunction with fractality (see condi-
tion 1 of Definition 10). The following lemma presents a typical example of such an
argument (fractality is not explicitly mentioned, but the lemma refers to characteristic
types, and by consequence can be used with fractality).

Lemma 7.9. Fix a blank tree t, a node y and two nodes z, z′ on the leftmost
branch below y1. Furthermore, let w be a leaf in the subtree of z and let w′ be a leaf
in the subtree of z′; both with the same characteristic types within the subtrees of z
and z′, respectively (see Figure 7.6). Then, for any given leaf v below y0 and any
adjacency move M ,

if vMw then vMw′ .

Proof. Since M is an adjacency move, and hence also an elementary move, it is
of the form U y D. Assume now that vMw holds. This implies π(y1, w) ∈ D. It is
sufficient to prove that π(y1, w′) ∈ D also holds. Since M is an adjacency move, D
is of the form either ↙∗ or (↙ + ↘)∗. If D is ↙∗, this means that w is the leftmost
leaf below y1, and consequently also the leftmost leaf below z. Since, w′ has the same
characteristic type (wrt. z′) as w (wrt. z), this means that w′ is the leftmost leaf
below z′. By consequence z = z′, and we have π(y1, w′) ∈ D. Otherwise D is of the
form (↙ + ↘)∗. Since w′ is below y1, this implies π(y1, w′) ∈ D.

We will now eliminate the moves , , and , which are not adjacency
moves. This is done by simulating them by a sequence of adjacency moves. The
following lemma treats the case of , which is simulated by . The other cases
are symmetric.

Lemma 7.10. Let t be a tree and u, v be two leaves of t. If u v and v is not
the rightmost leaf of t, then there exists a leaf w such that u w v. If there exists a
leaf w such that u w v, then u v.

Proof. We only prove here the first implication; both implications can be seen in
the following picture:

41

v u

 y

 z

w

Let w be the next leaf in t after v. Since v is not the rightmost leaf, w exists. By the
choice of w, we have w v. Let us show u w.

Let y be the deepest node above both u and v. Since u v holds, v is the rightmost
leaf below y. Let z be the deepest node above both y and w. Since w is the next leaf
after v – which is the rightmost leaf below y – the leaf w is the leftmost one below z1.
But then we can use to go from u to w (the appropriate path doing a y from z0
to z1).

In the remainder of the proof, we only use the fact that for each p, q ∈ Γ, the
move S(p, q) is a union of elementary moves. We then use Lemma 7.10 in the following
manner. We enrich the automaton by allowing (after a nondeterministic choice) each
move to be possibly replaced by the sequence of followed by , likewise for
the other moves , and , by using time-, space-, and time-space-symmetric
variants of this operation. (Note that this transformation requires the use of extra
states.) According to the second implication of Lemma 7.10, the resulting automaton
is equivalent to A. Furthermore, any unrooted leaf run of the original automaton that
only uses states from Γ can be transformed – using the first implication of Lemma 7.10
– into an unrooted leaf run of the modified automaton where all moves happening
below the pivot (i.e., the source and target leaves of the move are below the pivot)
are adjacency moves. For this reason, from now, we assume that all moves happening
below the pivot are adjacency moves.

We proceed to show that Γ cannot detect the rotation. We have to show that

[p, v] ⇒T [q, w] implies [p, v] ⇒T ′ [q, w]

for any states p, q ∈ Γ and nodes v, w not below the pivot. As before (in Section 7.2),
since T and T ′ are equal over nodes not below the pivot, it suffices to establish the
lemma for unrooted leaf runs where all positions but the initial and final one are below
the pivot. In other words, the first move of the unrooted leaf run is used to enter the
subtree of the pivot, the last move is used to exit it, and in between all moves are
below the pivot. In this run all moves but the initial and final one are used between
leaf configurations below the pivot. Hence, according to the comment above, we can
assume that all the moves used in this unrooted leaf run are adjacency moves, possibly
except the first and last one.

Recall from Section 7.2.1 the bijection f that assigns to every leaf in T a leaf
in T ′ and preserves the numbering. Let V1, V2 and V3 be the sets of leaves of T
respectively below x00, x01 and x1. Let W1,W2,W3 be the sets of leaves of T ′

respectively below x0, x10 and x11 (see Fig. 7.7 for an illustration). By definition of
rotation, f(Vi) = Wi for i = 1, 2, 3. We say that two leaves v ∈ Vi and w ∈ Vj are
neighbors if |i−j| ≤ 1. If v, w are neighbors, then the path linking v to w and the path
linking f(v) to f(w) are adjacency similar. In particular, whenever the automaton
can go from v to w in one adjacency move, then it can do this also from f(v) to f(w).
Therefore, a leaf run that only does moves between neighbor nodes is mapped by f
onto a valid leaf run in the tree T ′.

42

V V V W W W1 12 23 3

x x

Fig. 7.7. The trees T and T ′

This remark is the key to our proof. The idea is that we will transform the run
from [p, v] to [q, w] into one where all moves below the pivot are between neighbor
leaves. Let the leaf run corresponding to [p, v] ⇒T [q, w] be

[p, v] = [r0, u0], [r1, u1], . . . , [rn, un], [rn+1, un+1] = [q, w] .

We will transform it into the following leaf run in T ′:

[p, v] = [r0, u0], [r1, f(u1)], . . . , [rn, f(un)], [rn+1, un+1] = [q, w] .

For this construction to work – i.e., for this sequence to be a valid leaf run over T ′

– it is sufficient to verify that: the step from [r0, u0] to [r1, u1] can be transformed
into a step from [r0, u0] to [r1, f(u1)] (similarly for the last step); and furthermore
that the following property (*) holds: for every 1 ≤ i < n, the leaves ui and ui+1 are
neighbors. We first establish the first property; then we will show that every run can
be transformed into one where (*) holds. (Property (*) may not hold for the original
run.)

First step of the leaf run. The move from [r0, u0] to [r1, u1] is an elementary move,
though perhaps not an adjacency move. Hence, there are three ways of entering
the subtree of the pivot: by going to the leftmost leaf below the pivot (using one
of , ,), to the rightmost one (using one of , ,) or anywhere (using one
of , , ,). In each of those cases, using the same argument as in Lemma 7.9,
we show that the same move goes from [r0, u0] to [r1, f(u1)]. The proof for the last
step of the leaf run is the same.

Proof of (*). According to the remark above, there are three ways to enter the
subtree of the pivot. By time symmetry, there are also three ways to exit this subtree.
This results in nine possibilities.

Case leftmost-leftmost. Consider first the case where the automaton enters in the
leftmost node of V1 and leaves by the same node. This means that u1 = un is the
leftmost leaf below x.

Since the subtree of the pivot is fractal, it contains a proper subtree that simulates
it. Since all subtrees of T are complete binary trees, we may as well assume that there
is a node u on the leftmost branch below x0 whose subtree simulates the subtree
of x. Since the leftmost node is one of the characteristic types (from the definition of
fractality), the leaf run that went from the leftmost node below the pivot back to this
leftmost node can be assumed to visit only nodes below u (see Fig. 7.8). Such a leaf
run satisfies property (*), since it never leaves V1 ∪ V2.

All other cases are solved using the same argument, except for two: when the
automaton enters in the leftmost leaf below the pivot and leaves in the rightmost one,

43

x x

u

Fig. 7.8. Moving the leaf run to V1

and when the automaton enters in the rightmost leaf below the pivot and leaves in
the leftmost one. The first of these is treated in the next item, the other follows by
time symmetry.

Case leftmost-rightmost. This time u1 is the leftmost leaf of V1 and un the right-
most leaf of V3. We are going to construct a similar leaf run satisfying (*).

As an intermediate step, we first construct a similar leaf run satisfying the a
different property (#): once a position in V3 is encountered during the run, no position
in V1 is visited anymore. Let us prove that we can transform the unrooted leaf run
into one that satisfies (#). Let 1 < i ≤ j < n be positions in the run that witness a
violation of (#): the leaves ui−1 and uj+1 belong to V3, the leaves ui, . . . , uj belong
to V1 ∪ V2, and at least one of ui, . . . , uj belongs to V1. We will replace this violating
subrun with one that does not visit V1. By iterating this operation, we get a run
where property (#) is satisfied.

By condition 1 of Definition 10, we can find on the rightmost branch below x01
a node u such that the subtree of u simulates the subtree of x0. Hence, one can find
leaves u′

i, u
′
j below u, such that the characteristic type of ui (resp. uj) in the subtree

of x0 is the same as the characteristic type of u′
i (resp. u′

j) in the subtree of u, and
there is a run from [ri, u

′
i] to [rj , u

′
j] that only uses leaves below u. By choice of u, all

these leaves are in V2. Therefore, in order to remove the violation of (#) witnessed
by i < j, it remains to connect [ri−1, ui−1] with [ri, u

′
i], and [rj , u

′
j] with [rj+1, uj+1].

This is a direct application of Lemma 7.9.
Thanks to the above argument, we may assume that the leaf run satisfies prop-

erty (#). If it already has property (*), then the problem is over. Otherwise there
is some moment in the leaf run where two consecutive leaf configurations are not
neighboring. Since after visiting V3 we never come back to V1, this can happen at
most once, where the source configuration [ri, ui] is in V1 and the target configura-
tion [ri+1, ui+1] is in V3. Moreover, the only way to go from a position in V1 to a
position in V3 via an adjacency move is by using . In particular, ui+1 is the leftmost
leaf in V3. However, if we want to use the move from [ri, ui] and satisfy property
(*), the only place we can go to is the leftmost leaf of V2.

In order to complete the proof, we will construct a new leaf run that satisfies
property (*) and goes from state ri+1 in the leftmost leaf of V2 to state ri in some
leaf u of V2. Then we can reuse the move ri ri+1 to go from u to ui+1, since
does not care about the position of the leaf u within V1 ∪ V2.

The leaf run that goes from ri+1 in the leftmost leaf of V2 – call this leaf v — to ri

in some leaf u of V2 is constructed in two stages. In the first stage, we show that there
is some leaf u′ in V2 such that the configuration [rn, u′] can be reached from [ri+1, v].

44

rnri+1

x x

y

ri+1 rn

x

y’

ri+1 rn

Fig. 7.9. Transforming the run from ri+1 to rn

Furthermore, the leaf u′ has at least |Q| leaves to the left and to the right that belong
to V2. In the second stage, we use this latter assumption to go from [rn, u′] to state ri

without leaving V2. This is done simply by using Corollary 6.7. The node where we
arrive is going to be u.

Therefore, in order to complete the proof of Proposition 7.1 – and therefore also
the proof of Theorem 2 – it remains to find some leaf u′ in V2 such that the configu-
ration [rn, u′] can be reached from [ri+1, v], and u′ has |Q| leaves to the left and right
inside V2. This process is illustrated in Figure 7.9.

Recall our assumption that the nodes ui+1, . . . , un are all in V2 ∪ V3. By condi-
tion 1, there is a node y on the leftmost branch below x10 whose subtree simulates the
subtree of x1 and has more than |Q| leaves. Using the same proof as for property (#),
we can transform the unrooted leaf run from [ri+1, ui+1] to [rn, un] into an unrooted
leaf run from [ri+1, ui+1] to [rn, u′

n], where only leaves from V2 or below y are used,
and where u′

n is the rightmost leaf below y. (This run is illustrated in the middle
picture of Figure 7.9.) Let y′ be the node on the leftmost branch below x01 such that
the subtree of y′ is the same as the subtree of y. By using the properties of adjacency
moves, one can shift – by |V2| leaves to the left – the run that goes from [ri+1, ui+1]
to [rn, u′

n] into a run that goes from [ri+1, v] to [rn, u′] where u′ is the rightmost leaf
below y′, which concludes the proof. Note that in V2, there are more than |Q| leaves
to the left and to the right of u′, by construction of y.

REFERENCES

[1] A. V. Aho and J. D. Ullman. Translations on a context-free grammar. Information and Control,
19:439–475, 1971.

[2] M. Bojańczyk. 1-bounded TWA cannot be determinized. In Foundations of Software Technol-

ogy and Theoretical Computer Science, volume 2914 of Lecture Notes in Computer Science,
pages 62–73. Springer, 2003.

[3] M. Bojańczyk and T. Colcombet. Tree-walking automata cannot be determinized. Theoretical

Computer Science, 350(2-3):164–173, 2006.
[4] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-

masi. Tree automata techniques and applications. Available on: http://www.grappa.univ-
lille3.fr/tata, 1997. release October, 1rst 2002.

[5] J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In G. Paum J. Karhumaki,
H. Maurer and G. Rozenberg, editors, Jewels Are Forever, Contributions to Theoretical

Computer Science in Honor of Arto Salomaa, pages 72–83. Springer-Verlag, 1999.
[6] J. Engelfriet and H. J. Hoogeboom. Automata with nested pebbles capture first-order logic

with transitive closure. Technical report, Leiden Institute of Advanced Computer Science,
2005.

[7] J. Engelfriet, H. J. Hoogeboom, and J. P. Van Best. Trips on trees. Acta Cybernetica, 14(1):51–
64, 1999.

45

[8] J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, l systems and two-way machines.
Journal of Computer and System Sciences, 20:150–202, 1980.

[9] T. Kamimura and G. Slutzki. Parallel two-way automata on directed ordered acyclic graphs.
Information and Control, 49(1):10–51, 1981.

[10] A. Muscholl, L. Ségoufin, and M. Samuelides. Complementing deterministic tree-walking au-
tomata. Information Processing Letters, 2005.

[11] F. Neven and T. Schwentick. On the power of tree-walking automata. Information and Com-

putation, 183(1):86–103, 2003.
[12] A. Potthoff. Logische Klassifizierung regulärer Baumsprachen. PhD thesis, Institut für Infor-

matik und Praktische Mathematik, Universität Kiel, 1994.

46

