
Bounded depth data trees

Henrik Björklund?1 Miko laj Bojańczyk2??

1 University of Dortmund
2 Warsaw University

Abstract. A data tree is a tree where each node has a label from a finite
set, and a data value from a possibly infinite set. We consider data trees
whose depth is bounded beforehand. By developing an appropriate au-
tomaton model, we show that under this assumption various formalisms,
including a two variable first-order logic and a subset of XPath, have
decidable emptiness problems.

1 Introduction

A data tree is a tree where each node has a label from a finite set, and a data
value from a possibly infinite set. We consider trees where there is a fixed bound
on the depth of nodes. For recognizing properties of such trees, we define an
automaton model that traverses the trees in a depth-first manner. We show
that the emptiness problem for the automata is decidable, by a reduction to
reachability for priority multicounter automata, a powerful model for recognizing
word languages [32]. The automaton model is used to show decidability of the
satisfiability problem for a two-variable first-order logic, and also for a fragment
of XPath. In the logic and XPath, we allow a rich vocabulary of navigational
predicates, such as document order, thus extending the work from [6], where
only successor axes were allowed.

The main application area for this paper is static analysis tasks for XML
databases. We would like to develop tools that automatically answer questions
such as: does property a of XML documents always imply property b?; or: is
property a vacuously true?

A very successful approach to static analysis has been to use tree automata.An
XML document is modeled as a tree, where the labels of the tree correspond to
tag names in the document. Many formalisms for XML can be represented as
tree automata, possibly extended with additional features, (see, e.g., [29, 23]).
Using this representation, a large body of techniques for tree automata can be
applied to solving static analysis tasks.

A drawback of the tree automaton approach is that it considers only the
tag names, and ignores other content stored in the document. For instance, one
cannot express key constraints such as: “every two nodes have different values
? Supported by the Deutsche Forschungsgemeinshaft Grant SCHW678/3-1 and the

DAAD Grant D/05/02223.
?? Supported by Polish goverment grant no. N206 008 32/0810.



stored in their unique key attribute”. Such constraints are clearly important for
databases, and can be expressed in, say, XPath. One way of extending the tree
automata approach beyond mere tag names is to consider data trees. In a data
tree, each node has a label from a finite set, and a data value from a possibly
infinite set. The data values are used to model the content of the document.
Recently, there has been flurry of research on models with data, including data
words [19, 31, 13, 14, 5, 22, 3], and data trees [8, 1, 4, 16, 6].

The typical tool for solving logics over trees without data is a finite-state
automaton. When data is added, the appropriate automaton almost always in-
volves counting: ranging from automata with semilinear constraints on runs [6],
through vector-addition systems [5], and on to faulty counter machines [14] and
lossy channel machines [22]. Complexities are often high: non-primitive recursive,
e.g. [14] and some results in [22], or as hard as reachability in vector-addition
systems [5] (a decidable problem, but not known to be primitive recursive [26,
21]).

Due to the above, logics for objects with data are usually quite weak. For
data trees, the present cutting edge is a fragment of first-order logic, where only
two variables are used, and only the child and next-sibling axes are allowed for
testing spatial relationship [6]. This logic has decidable emptiness, but most ex-
tensions are undecidable: adding a third variable, adding a second data value,
adding order on data values. One question left open in [6] was whether the logic
remains decidable if we add their transitive closures (i.e. descendant and follow-
ing sibling)? The outlook is not optimistic, since the extended problem subsumes
reachability for tree vector-addition systems, a difficult open problem [12].

In this paper, we try to deal with the extended axes. We show that if a fixed
bound on the depth is imposed, the logic from [6] remains decidable after the
descendant and following sibling axes (and even document order) are added to
the signature. (The following sibling axis is more interesting than the descendant
axis in bounded depth trees.) In terms of XPath, we extend the fragment from [6],
by allowing all navigational axes in Core XPath ([17]) in path expressions, and
considerably stronger predicate expressions, where the data values of two relative
paths can be compared, as long as the paths belong to the same subtree.

Another motivation to consider bounded depth trees is that the lower bounds
in [6] are somewhat artificial, using constructions alien to actual XML docu-
ments. Indeed, many XML data bases are wide, but not very deep (see, e.g.,[9]).
Therefore, considering trees of arbitrary depth, which turns out to be a major
technical difficulty, need not reflect problems in the real world. It is, however,
sometimes crucial to compare elements on a horizontal axis (which nodes are
later/earlier in the document), something that cannot be done by the logic in [6].

What do we gain by bounding the depth? The main idea is that a bounded
depth tree actually bears more resemblance to a word than a tree. If a bounded
depth tree is written down as a string (the way XML documents are stored in
text files), a finite string automaton can recover the tree structure by using its
finite control to keep track of the path leading to the current node. This simple
observation is the essence of our approach. However, it is not immediately clear



how the string automaton should deal with data values. We discover that the
appropriate model is an extension of multicounter automata, where a limited
form of zero test is allowed [32].

The paper is structured as follows. In Section 2 we define bounded depth
data trees, and some notions for discussing them. Section 3 contains the main
contributions of the paper. Here, we present our automaton model, describe its
basic properties, and prove that the corresponding emptiness problem is decid-
able. Section 4 describes a fragment of first-order logic, which, thanks to the
automaton model, can be shown to have a decidable satisfiability problem. Sec-
tion 5 describes applications for XPath. Due to space limitations, many proofs
have been omitted, and will appear in the full version of the paper.

2 Definitions

To simplify technicalities, we do not actually consider data trees, but data forests.
Informally, a data forest is an ordered sequence of data trees. Formally, a data
forest is a partial function

t : N+ → Σ ×∆

with nonempty finite domain. The set Σ is called the alphabet and is required to
be finite, while the set ∆ is called the data domain, and may be infinite (usually,
we use the natural numbers for ∆). The nodes of the forest are elements of the
domain of t. The first coordinate of t(x) is called the label of the node x, while
the second coordinate of t(x) is called the data value of x. Furthermore, the set
of nodes must be closed under parents and previous siblings:

– The parent of a node a1 · · · anan+1 ∈ N∗ is the node a1 · · · an.
– The previous sibling of a node a1 · · · an ∈ N∗ is the node a1 · · · an−1(an− 1).

(A node with an = 0 has no previous sibling.)

Preceding siblings are defined by taking the transitive closure the previ-
ous sibling. The opposite of previous/preceding siblings are next/following sib-
lings. A node has at most one previous/next sibling, but possibly many preced-
ing/following siblings. A root in a forest is any node without a parent; there
may be many roots. The depth of a node a1 · · · an is the number n; in particular
each root has depth 1. The opposite of parent is child. The transitive closure of
the child relation is the descendant relation, similarly ancestors are defined for
parents. A leaf is a node without children.

A depth k data forest is one where all leaves have depth k. We could also
consider forests where leaves have depth at most k; however the more general
type can be easily encoded in the special one by adding dummy nodes. When
considering depth k data forests, we assume without loss of generality that the
label set Σ is partitioned into k disjoint sets Σ1, . . . , Σk such that nodes of
depth i are only allowed to use labels from Σi. This assumption can be easily
ensured by expanding the alphabet.

A class of a data forest is a maximal set of nodes with the same data value.



Let t be a forest. The depth-first-search traversal (DFS traversal) of t is a
sequence v1, . . . , vn of nodes of t satisfying:

– Each non-leaf node appears twice, and each leaf appears once.
– If i < n and vi appears for the first time, i.e. vi 6∈ {v1, . . . , vi−1}, then vi+1

is the leftmost child of vi, except if vi is a leaf, in which case vi+1 is the next
sibling of vi, or, if vi is a rightmost child, the parent of vi.

– If i < n and vi is seen for the second time, i.e. vi ∈ {v1, . . . , vi−1}, then vi+1

is the next sibling of vi, or the parent of vi if vi is a rightmost child.

There is only one DFS traversal, and it must begin with the leftmost root and
end with the rightmost root. Later on, it will be convenient that non-leaf nodes
are visited twice. If we remove repetitions from the DFS traversal (by deleting
second occurrences), we get the document ordering on nodes of a forest.

3 Automata

This section contains the main contribution of the paper. In Section 3.1, we
define an automaton model for bounded depth data forests. After showing some
properties that can be recognized by our automata in Section 3.2, we show in
Section 3.3 that the automata have decidable emptiness. The decidability proof
is by reduction to reachability in an extended model of multicounter automata
(Petri nets). Therefore, we have no primitive recursive upper bound for the
complexity; lower bounds are also open.

The automaton model we define can be seen as an extension of the class
memory automata for words from [3] to bounded depth forests. These are, in
turn, a variant of the data automata from [5]. The basic idea is to use one class
memory automaton per depth level in the forest.

3.1 Class memory automata for forests of bounded depth

A depth k forest class memory automaton (k-FCMA) is defined as follows. It
has k + 1 state spaces: Q,Q1, · · · , Qk. Each has an initial and a final subset:

I, F ⊆ Q I1, F1 ⊆ Q1, · · · , Ik, Fk ⊆ Qk .

The idea is that the states Qi will be used to examine data values of nodes at
depth at least i, while the states in Q are used to examine properties that do
not involve data.

The automaton runs on an input depth k forest by visiting its nodes in the
DFS sequence (in particular, non-leaf nodes are visited twice). At every moment
of its run, it keeps its current state q ∈ Q – called the global state – as well as k
class memory functions of the form

f1 : ∆ → Q1 · · · fk : ∆ → Qk .

Therefore, a configuration of the automaton consists of: a node v of the for-
est t, the global state q and the class memory functions f1, . . . , fk. (Thanks to



the class memory functions, the automaton is a type of infinite-state system,
which contributes to the high complexity of emptiness. Each configuration can
be finitely represented, since the class memory functions have finite non-initial
support.) At the beginning of the run, v is the leftmost root, q is set to be a
designated initial state qI ∈ Q, while all the class memory functions f1, . . . , fk

assign initial states to all data values d ∈ ∆. (If there are many initial states,
this produces nondeterminism.)

A single step of the automaton works as follows. Assume that the automaton
is in a node v of depth i with data value d. Depending on the global state, the
values of f1(d), . . . , fi(d), and the label of v, the automaton picks a new global
state and new values of f1(d), . . . , fi(d). It then advances to the next node in
the DFS traversal. Therefore, the transition function is a set of rules from⋃

i=1,...,k

Q×Q1 × · · · ×Qi ×Σi ×Q×Q1 × · · · ×Qi

Note that since Σ is partitioned into sets Σ1, . . . , Σk, the label of a node deter-
mines its depth. In particular, the automaton knows if it is descending into a
successor, moving to the right sibling, or ascending into the parent.

Furthermore, when the automaton has just read for the second time a right-
most sibling v at depth i ∈ {1, . . . , k} (or for the first time, if v is a leaf), it does
some further processing on the class memory function fi, which we call a check-
reset. (The check-reset is done after the transition corresponding to the second
visit in v has been applied.) First, the automaton checks if the class memory
function fi is accepting, i.e. all data values are assigned either initial or accepting
states. If this is not the case, the run is aborted and cannot be continued. If this
check succeeds, the class memory function fi is reset, by assigning the initial
state (nondeterministically, if there is more than one) to all data values.

The automaton accepts the data forest if, after completing the DFS traversal,
it has an accepting global state (and the last-check reset has been successful).
Note however, that before this happens, a large number of memory check-resets
must be successfully carried out.

Example 1. Consider the following property of depth k forests: each data value
occurs at most once. To recognize this property, the automaton only uses the
states Q1 (all other state spaces Q and Q2, . . . , Qk contain one state q, which
is both initial and final, and is never modified). There are two states in Q1: an
initial state new and a final state old. The transition function advances new
to old, while old has no outgoing transitions. In other words, there is only one
transition for each letter a ∈ Σ:

(q, new, q, · · · , q, a, q, old, q · · · , q).

3.2 Some properties of FCMA

In this section we present some properties of bounded depth data forests that
can be recognized by FCMA. Apart from being useful later on, the results in
this section are meant to give a feeling for what FCMA can do.



Fact. FCMA are closed under union and intersection.

When the depth of a data forest is limited to 1, the forest is a data word, as
considered in [5]. Furthermore, data automata, the automaton model introduced
in [5] to recognize properties of data words, coincides with the restriction of
FCMA to depth 1. Lemma 1 below can be used to transfer results about data
words to data forests.

Lemma 1. Let A be a data automaton. The following properties of data forests
are recognized by FCMA:

– For every node v, the children of v, when listed from left to right, form a
data word accepted by A.

– For every node v, the descendants of v, when listed in document order, form
a data word accepted by A.

Sometimes it is convenient to see how the data value of a node is related to the
data values of its neighborhood. The profile of a node is information about which
nodes among its ancestors, previous and next siblings have the same data value.
Once the depth k of forests is fixed, there are finitely many possible profiles. The
following lemma shows that these can be tested by an automaton:

Lemma 2. For each possible profile p, there is an FCMA that recognizes the
language: “a node has label a if and only if it has profile p”.

We will also need to use FCMAs to recognize languages of the form: “for
every class, a given property holds”. Here we present a general result of this
type. Note that it is not clear what we mean when saying that a class satisfies
some property, since it is not clear how the nodes of a class should be organized
once they are taken out of the data forest. Here we use one such definition, which
we call a take-out. Let t be a forest and V a set of nodes in this forest. The nodes
of the take-out are nodes of V , along with their ancestors. The labels in the take-
out are inherited from t, except we add a special marker to distinguish if a node
is from V , or just an ancestor of a node from V . The take-out is a forest without
data, where leaves may have different depths.

Lemma 3. Let L be a regular forest language (without data). An FCMA can
test if the take-out of every class belongs to L.

3.3 Decidable emptiness for the automata

In this section, we will show that emptiness is decidable for k-FCMA. The proof
is by reduction to emptiness of priority multicounter automata. Note that uni-
versality is undecidable even for 1-FCMA, as it is already undecidable for data
automata over words.



Priority multicounter automata A priority multicounter automaton is an
automaton over words (without data) that has a number of counters, which
can be incremented, decremented and tested for zero. (Multicounter automata
with zero tests correspond to Petri nets with inhibitor arcs.) To keep the model
decidable, the zero tests are restricted. This is where the priorities come in.

More formally, a priority multicounter automaton has a set C of counters, a
state space Q and an input alphabet Σ. Furthermore, the counters come with a
distinguished chain of subsets: C1 ⊆ · · · ⊆ Cm ⊆ C.

The automaton reads a word w ∈ Σ∗ from left to right, possibly using ε-
transitions. At each point in its run, the automaton has a current state q ∈ Q
and a non-negative counter assignment c ∈ NC . At the beginning, a designated
initial state is used, and all the counters are empty.

In a transition, the automaton reads a letter – possibly ε – from the word. De-
pending on this letter the automaton changes its state, and performes a counter
operations, that is, it increases a counter, decrements a counter, or checks that
all counters in Ci, for some i, are empty.

The above operations can fail: if a decrement is done on an empty counter; or
if a zero test fails. When the counter operation fails, the transition fails and the
run is aborted. The automaton accepts if at the end of the word it has reached a
designated accepting state. The following difficult result has been shown in [32]:

Theorem 1. Emptiness is decidable for priority multicounter automata.

Note that priority multicounter automata are an extension of multicounter
automata (where the zero tests are not allowed). In particular, no primitive
recursive emptiness algorithm is known.

Reduction to priority multicounter automata We now show that empti-
ness for FCMA can be reduced to emptiness of priority multicounter automata.
In particular, thanks to Theorem 1, emptiness is decidable for FCMA.

Let t be a depth k forest, and let v1, . . . , vn be its DFS traversal. Let trav(t)
be the word over Σ containing the labels of v1, . . . , vn. Since trav(t) does not
use the data values, it is irrelevant if t is a data forest or a non-data forest.

Theorem 2. Emptiness is decidable for k-FCMA, for all k ∈ N. Furthermore,
for each k-FCMA A, the set {trav(t) : t is accepted by A} is accepted by an
(effectively obtained) priority multicounter automaton.

By Theorem 1, the first clause of the theorem follows from the second one.
This section is therefore devoted to simulating a k-FCMA with a priority mul-
ticounter automaton.

We fix a k-FCMA A. We assume that in every transition

(q, q1, . . . , qi, a, r, r1, . . . , ri) ,

none of the states r1, . . . , ri are initial; and if some qj is initial, then so are
qj+1, . . . , qi. Any k-FCMA can be effectively transformed into one satisfying the
above assumptions.



The priority multicounter automaton that recognizes the traversals is defined
as follows. It is a conjunction of two automata. The first one checks that the
depths indicated by the labels are consistent with a DFS traversal, i.e. the input
word belongs to {trav(t) : t is a depth k forest}. Since the latter is a regular
word language, we do not even need to use counters.

The real work is done by the second automaton, which we call B. To sim-
plify presentation, we use a slightly extended notion of transition. We will later
comment on how the extended notion can be realized by a standard priority
multicounter automaton. The control states of B are the global states Q of A.
It has a counter for each of the states in Q1, . . . , Qk used in the class memory
functions (we assume these state spaces are disjoint).

When the simulating automaton B is in state q ∈ Q, and the input letter is
a ∈ Σi (with i = 0, . . . , k) the automaton performs the following actions:

1. As preprocessing for the transition, B may nondeterministically choose to
increment any counter corresponding to an initial state.

2. In the next step, B nondeterministically picks a transition

(q, q1, . . . , qi, a, r, r1, . . . , ri)

of the simulated k-FCMA A. It decrements counters q1, . . . , qi, and then
increments the counters r1, . . . , ri.

3. In the third step, B sets its finite control to the the state r from the transition
chosen in step 2.

4. The last step corresponds to the check-reset and is carried out if the next
label is going to be from Σi−1 (this corresponds to a rightmost successor
node appearing for the second time in the DFS, or for the first time, if the
node is a leaf). In this case, the automaton B tests that all counters in

Qi \ (Fi ∪ Ii) (1)

are empty, and then empties all the counters in Qi.

We call such a sequence of actions a macrotransition. A macrotransition can be
carried out by a multicounter automaton with zero checks, by using ε-transitions
and additional control states. Perhaps the most delicate point is the last step in
the macrotransition. First of all, the automaton needs to know the next label.
Here, we can nondeterministically guess the next label in advance; this nondeter-
ministic guess is then validated in the next step. (The degenerate case of j = 0
is handled by using ε-transitions.)

At first glance, the automaton is not a priority multicounter automaton,
since the zero checks in (1) are done for disjoint counters. But this can easily
be fixed, by imposing a chain discipline on the zero checks. Indeed, when the
automaton is doing the zero check in (1), we know that in the previous moves
it has emptied the counters Qi+1, . . . , Qk. Therefore, it could equivalently zero
check the counters

Qi \ (Fi ∪ Ii) ∪ Qi+1 ∪ · · · ∪ Qk .



Furthermore, the emptying of the counters in Qi, which is done after (1), can
be simulated by a sequence of nondeterministic decrements on Qi and then a
zero check on Qi ∪ · · · ∪Qk. The automaton B accepts if it reaches an accepting
global state after processing all the nodes. It is fairly clear that if A accepts t,
then B accepts trav(t). Theorem 2 then follows once we show the converse:

Lemma 4. If t is a depth k forest whose DFS traversal is accepted by B, then t
can be labeled with data values so that the resulting data forest is accepted by A.

Proof
Consider an accepting run of B, with macrotransitions m1, . . . ,mn. Let v1, . . . , vn

be the DFS traversal of the forest t. These nodes correspond to the macrotransi-
tions m1, . . . ,mn. Recall that each macrotransition corresponds (in step 2) to a
transition of the automaton A. Let then δ1, . . . , δn be the sequence of transitions
of A that corresponds to m1, . . . ,mn.

We will assign data values to nodes of the forest t, so that the result s is
accepted by A, using the run δ1, . . . , δn. This is done progressively for v1, . . . , vn,
so that at each intermediate step j = 0, . . . , n the following invariant is satisfied.

Assume that data values have been assigned to nodes v1, . . . , vj . The sequence
δ1, . . . , δj is a partial run of A on t (that has read nodes v1, . . . , vj) such that:

For each class memory function fi ∈ {f1, . . . , fk}, and each non-initial
state q ∈ Qi, the counter q contains the number of data values d with
fi(d) = q.

This invariant can be easily shown by induction on j. �

4 A two-variable logic for bounded depth data forests

In this section, we define a first-order logic that can express properties of data
forests. Formulas of this logic can be effectively compiled into FCMA; in particu-
lar this logic has decidable satisfiability thanks to Theorem 2. Variables quantify
over nodes. Only two variables, x and y, are allowed. Furthermore, data values
can only be compared for equality, via a predicate x ∼ y. On the other hand, we
allow a large body of navigational predicates.

For a fixed depth k, we define the logic FO2
k as the two-variable fragment of

FO, with the following predicates (some parameterized by i = 1, . . . , k):

di(x) x has depth i
a(x) x has label a (here a is a label from Σ)

x ↓i y y is a descendant of x and depth(y)− depth(x) = i
x ↓+ y y is a descendant of x

x + 1 = y x is the left sibling of y
x ≺ y x comes before y in the document ordering (the ordering

produced by a pre-order traversal)
x < y x and y are siblings, and x is to the left of y

ti(x, y) x � y and the nodes x, y share the same depth i ancestor
but not the same depth i + 1 ancestor



t0(x, y) x, y do not have a common ancestor
x ∼ y x and y have the same data value
x⊕ y y is the class successor of x, that is, x ∼ y, x comes before y

in the document ordering, and there is no z between x and y
(in the document ordering) which has the same data value.

The semantic of the logic is defined as usual. For instance, the following is a
long way of saying that all nodes have the same data value:

∀x∀y(x ↓+ y ⇒ x ∼ y) ∧ (x + 1 = y ⇒ x ∼ y) .

The predicates di, ↓+, ↓i and < are syntactic sugar, and can be removed
from the signature without loss of expressivity. For instance, di(x) is the same
as ti(x, x). In similar ways, ↓i, ↓+ can be defined in terms of ti, and < can be
defined in terms of ti and ≺. Since we only have two variables, x + 1 = y cannot
be defined in terms of <, and x⊕ y cannot be defined in terms of ≺ and ∼.

In the following example, we show that thanks to the bounded depth as-
sumption, two-variable formulas can express properties that seemingly require
three variables.

Example 2. We write a formula ϕ(x), which holds in a node x that has two
distinct descendants y ∼ z. The natural formula would be

ϕ(x) = ∃y∃z (y 6= z ∧ y ∼ z ∧ x ↓+ y ∧ x ↓+ z) .

The problem is that this formula uses three variables. We will show that for
depth k forests, ϕ can be written with only two variables. The idea is to do a
disjunction over the finitely many possible depths i of the node x:

ϕ(x) =
∨
i

di(x) ∧ ∃y(x ↓+ y ∧ ∃x(x 6= y ∧ x ∼ y ∧
∨
j≥i

tj(x, y))) .

In the above formula, the second existential quantifier ∃x actually corresponds
to the node z. We do not need to verify if the new node x is a descendant of the
“real” node x in the free variable; this is a consequence of ti(x, y).

Theorem 3. Every language definable in FO2
k can be recognized by a k-FCMA.

Corollary 1. Satisfiability is decidable for FO2
k.

5 XPath

We now apply our results to show decidability of some static analysis tasks for
XML. Our approach closely mirrors that in [6]. To avoid repetition, we only
explain which expressive power can be added to the fragment LocalDataXPath
from [6], while preserving decidability over bounded depth trees. Since we have
the predicates ↓+ and < in our logic, we can, unlike [6], capture the XPath
axes descendant (ancestor) and following (preceding). Also, we can allow



attribute comparisons in which both sides of the (in-)equality are relative, as long
as they stay within the subtree rooted at the node to which they are relative.

As in [6], decidability is shown by encoding XPath into two-variable logic.
We first give an example that illustrates how the bounded depth can be used
to encode XPath expressions that could not be handled in [6]. This example is
similar to Example 2 in the Section 4.

Example 3. Consider the XPath expression

child :: a/child :: b/@B1 = child :: c/next− sibling :: d/@B2.

It is not allowed in LocalDataXPath, since both sides of the equality are relative
paths. For bounded depth trees, however, we can encode it into the logic from
Section 4, using a technique similar to that of Example 2.

We now define BDXPath (Bounded Depth XPath). It is defined the same way
as LocalDataXPath from [6]; except that BDXPath can use all the navigational
axes in Core XPath [17]. Also, in predicate expressions, we allow comparisons of
attribute values with = and 6= as long as one of the following holds.

1. At least one side of the (in-)equality is an absolute location path (i.e., one
starting at the root, or document node); or

2. The comparison is relative, but safe (as defined in [6]); or
3. Both sides have location expressions that start with child or descendant

and do not use parent or ancestor.

Using the same proof, but aided by our more powerful two-variable logic, we
can upgrade the main XPath result from [6]:

Theorem 4. Over trees of bounded depth, Satisfiability and Containment for
(unary or binary) BDXPath is decidable. This holds even relative to a schema
consisting of a regular tree language and unary key and inclusion constraints.

Acknowledgements. We thank Wim Martens and Thomas Schwentick for valu-
able discussions.

References

1. N. Alon, T. Milo, F. Neven, D. Suciu and V. Vianu. XML with Data Values:
Typechecking Revisited. In JCSS, 66(4): 688-727 (2003).

2. M. Arenas, W. Fan and L. Libkin. Consistency of XML specifications. In Incon-
sistency Tolerance, LNCS 3300, 2005, pp. 15-41.

3. H. Björklund, T. Schwentick. On notions of regularity for
data languages Manuscript, 2006, available at http://lrb.cs.uni-
dortmund.de/∼bjork/papers/regular-data.pdf

4. M. Benedikt, W. Fan, and F. Geerts. XPath Satisfiability in the Presence of DTDs.
In PODS’05, 2005.

5. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on words with data. In LICS’06, pp. 7-16, 2006.



6. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
Variable Logic on Data Trees and XML Reasoning. In PODS’06, 2006.

7. P. Bouyer, A. Petit and D. Thérien. An algebraic approach to data languages and
timed languages. Inf. Comput., 182(2): 137-162 (2003).

8. P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, W. C. Tan. Reasoning about
keys for XML. In Inf. Syst., 28(8): 1037-1063 (2003).

9. B. Choi. What are real DTDs like. In WebDB’02, pp. 43-48, 2002.
10. J. Cristau, C. Löding, W. Thomas. Deterministic Automata on Unranked Trees.

In Fundamentals of Computation Theory (FCT’05), LNCS 3623, 2005, pp. 68-79.
11. C. David. Mots et données infinis. Master thesis, Université Paris 7, LIAFA, 2004.
12. P. de Groote, B. Guillaume, and S. Salvati. Vector Addition Tree Automata. In

LICS’04, pp. 64-73, 2004.
13. S. Demri, R. Lazic, D. Nowak. On the Freeze Quantifier in Constraint LTL: De-

cidability and Complexity. In TIME’05, 2005.
14. S. Demri and R. Lazic. LTL with the Freeze Quantifier and Register Automata.

In LICS’06, pp. 17-26, 2006.
15. K. Etessami, M.Y. Vardi, and Th. Wilke. First-Order Logic with Two Variables

and Unary Temporal Logic. Inf. Comput., 179(2): 279-295 (2002).
16. F. Geerts and W. Fan. Satisfiability of XPath Queries with Sibling Axes. In

DBPL’05, 2005.
17. G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath

Queries. In VLDB, 2002.
18. E. Grädel and M. Otto. On Logics with Two Variables. TCS, 224:73-113 (1999).
19. M. Kaminski and N. Francez. Finite memory automata. TCS, 134:329-363 (1994).
20. E. Kieroński and M. Otto. Small Substructures and Decidability Issues for First-

Order Logic with Two Variables. In LICS’05, 2005.
21. S.R. Kosaraju. Decidability of reachability in vector addition systems. In STOC’82,

pp. 267-281, 1982.
22. R. Lazić. Safely Freezing LTL. Foundations of Software Technology and Theoretical

Computer Science (FSTTCS), 2006.
23. W. Martens. Static analysis of XML transformation and schema. PhD Thesis,

Hasselt University, 2006.
24. W. Martens, J. Niehren. Minimizing Tree Automata for Unranked Trees. In 10th

International Symposium on Database Programming Languages, LNCS 3774, 2005.
25. M. Marx. First order paths in ordered trees. In ICDT’05, 2005.
26. E. Mayr. An algorithm for the general Petri net reachability problem. In STOC’81,

pp. 238-246, 1981.
27. M. Mortimer. On languages with two variables. Zeitschr. f. math. Logik u. Grund-

lagen d. Math., 21: 135-140 (1975).
28. K. Neeraj Verma, H. Seidl, T. Schwentick. On the Complexity of Equational Horn

Clauses. In CADE’05, 2005.
29. F. Neven. Automata, Logic, and XML. In CSL’02, pp. 2-26, 2002.
30. F. Neven and T. Schwentick. XPath Containment in the Presence of Disjunction,

DTDs, and Variables. In ICDT’03, 2003.
31. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over

infinite alphabets. ACM Trans. Comput. Log., 15(3): 403-435 (2004).
32. K. Reinhardt. Counting as Method, Model and Task in Theoretical Computer

Science. Habilitation-thesis, 2005
33. XML Path Language (XPath), W3C Recommendation 16 November 1999. Avail-

able at http://www.w3.org/TR/xpath.


