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Abstract

If in a transformation semigroup we assume that the set
being acted upon has a semigroup structure, then the trans-
formation semigroup can be used to recognize languages of
unranked trees. This observation allows us to examine the
relationship connecting languages of unranked trees with
standard algebraic concepts such as aperiodicity, idempo-
tency, commutativity and wreath product. In particular, we
give algebraic characterizations of first-order logic, chain
logic, CTL* and PDL. These do not, however, yield decid-
ability results.

1 Introduction

There is a well-known decision problem in formal lan-
guage theory:

Decide if a given a regular language of finite bi-
nary trees can be defined by a formula of first-
order logic with three relations: ancestor, left and
right successor.

If the language is a word language (there is only one succes-
sor relation in this case) the problem is known to be decid-
able thanks to fundamental results of Schützenberger [12]
and McNaughton and Papert [9]. The problem is also de-
cidable for words when only the successor relation is avail-
able [15, 1]. However, no algorithm is known for the case
of tree languages, see [8, 11, 3, 2] for some results in this
direction.

There is a large body of work on problems of the type:
decide if a given regular word language can be defined us-
ing such and such a logic [5, 10, 13, 16, 17, 19]. Most of
the results have been obtained using algebraic techniques
of semigroup theory. Recently, there has even been some
progress for tree languages [18, 6, 4, 2]. There is, however,
a feeling that we still do not have the right algebraic tools to
deal with tree languages. In this paper we propose an alge-
braic framework, called unranked tree algebras, and study
the notion of recognizability in this framework. We wanted
it to be as close to the word case as possible to benefit from

the rich theory of semigroups. The main result of the paper
serves as an example of this close connection. We show how
the notion of wreath product of transformation semigroups
allows to capture different tree logics.

Tree algebras are defined for unranked trees, where a
node may have more than two successors, which are or-
dered. We feel that this more general setting is justified
by cleaner definitions, where semigroup theory can be used
more easily. The definition of a tree algebra itself is quite
obvious and probably not new; the contribution lies in high-
lighting how algebraic concepts relate to tree languages.

We begin our discussion of tree algebras with the free
tree algebra. For finite words, there is one natural free
semigroup: the set of nonempty words along with composi-
tion. For unranked, ordered, finite trees there are two natural
semigroups:

• Vertical free semigroup. Contexts – trees with a sin-
gle hole in some leaf – along with context composition
(see Figure ??).

• Horizontal free semigroup. Nonempty lists of trees
along with list concatenation.

The first semigroup also induces an action on the second: a
context can take a list of trees, substitute it for the hole and
return the resulting tree as a one-element list. This is indeed
an action, since for two contexts v, w and for a list of trees
h, we have:

(v ◦ w)(h) = v(w(h)) ,

i.e. it does not make a difference if we first compose v with
w and then act on h, or if first we act w on h and then act
v on the result. We call such a pair of semigroups a tree
algebra 1.

In the case of words, a subset of the free semigroup in-
duces a congruence, the Myhill-Nerode equivalence rela-
tion, which has finite index if the subset is regular. The
same concepts apply to tree algebras, except that we get
two congruences: one for the vertical semigroup and one
for the horizontal semigroup. A regular language of finite

1For technical reasons, our actual definition will require two additional
conditions, called the insertion conditions.
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trees can be thus seen as one where both congruences are of
finite index.

An important property of a tree algebra is that it is a spe-
cial case of a transformation semigroup. Recall that a trans-
formation semigroup is a semigroup along with an action
over a set. In the tree algebra, the acting semigroup is the
set of contexts, while that set acted upon is the set of forests
(which itself is equipped with a semigroup structure).

There is a well-developed theory of transformation semi-
groups that is useful in classifying regular word languages.
We hope that this theory might extend to the case of trees.
The point of this paper is to present some preliminary re-
sults in this direction. We show how logical properties of
a tree language, such as being definable in first-order logic,
correspond to algebraic properties of the language’s tree al-
gebra.

The main result is that a language is definable in first-
order logic if and only if it is recognized by a wreath product
of tree algebras (H,V ) that each satisfy:

• The horizontal semigroup H is aperiodic commuta-
tive;

• The vertical semigroup V is aperiodic;

• The tree algebra (H,V ) is distributive, i.e. satisfies:

v(g ·h) = v(g) ·v(h) for every v ∈ V and g, h ∈ H .

Moreover, by tweaking the first two properties, we can get
characterizations of three other logics: PDL, CTL* and
chain logic.

Acknowledgments We would like to thank Olivier Carton,
Jean-Eric Pin, Thomas Schwentick, Luc Segoufin and Pas-
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2 Tree algebras and their wreath products

An unranked Σ-tree is a partial mapping t : N∗ → Σ
whose domain is finite and prefix closed. Additionally, we
do not allow horizontal gaps in the domain: if t(v · a) is
defined for v ∈ N∗, a ∈ N, then so is t(v · b) for all b < a.
Since we only consider unranked Σ-trees, we just write Σ-
tree from now on. An element of the domain of t is called
a a node of t. Nodes are ordered by the prefix relation. The
longest proper prefix of a node is its parent, a successor is
defined symmetrically. Two nodes are siblings if they have
the same parent. A leaf is a node without successors. The
subtree of t rooted in the node v, denoted t|v , assigns t(v·w)
to a node w. A forest is a finite sequence of trees. The
successor forest of a node is the forest of subtrees rooted in
that node’s successors.

A Σ-context is a Σ∪{∗}-tree, where ∗ is a special symbol
not in Σ. Moreover, ∗ occurs in exactly one leaf, which is

called the hole. The empty context is the one with the hole
in the root. When C is a context and t is a tree, C[t] is the
tree obtained from C by replacing the hole with t. Similarly
we define the composition of two contexts C ◦D.

A semigroup is a set together with a binary associative
operation, denoted here by · or ◦. A monoid is a semigroup
with a neutral element ε, which satisfies s · ε = ε · s = s for
all s in the semigroup. An action of a semigroup S on a set
Q is a mapping a : S ×Q→ Q that satisfies

a(s · t, q) = a(s, a(t, q)) for s, t ∈ S, q ∈ Q .

We use a functional notation for actions, writing s(q) in-
stead of a(s, q), when the action a is understood from
the context. In this notation, the above axiom becomes
(s · t)(q) = s(t(q)).

2.1 Tree algebras

In this section we formally define a tree algebra. We give
some examples and explore basic properties.

A tree prealgebra (H,V, act) is a pair of semigroups
along with an action act : V ×H → H of V onH . We call
V the vertical semigroup and H the horizontal semigroup.
We will denote the semigroup operation of V by ◦ and the
semigroup operation of H by ·. We denote the action of
V on H using functional notation, writing v(h) instead of
act(v, h).

A tree algebra is a tree prealgebra (H,V, act) with two
more actions inr , inl : H × V → V satisfying inserting
conditions, i.e, for all h, g ∈ H and v ∈ V .

inl(h, v)(g) = v(h · g) inr (h, v)(g) = v(g · h)

Note that a tree prealgebra is a special case of a trans-
formation semigroup. The novelty is that the two sets are
equipped with semigroup structure. Adding inserting con-
ditions is technically important as they guarantee that we
can go from forests to contexts an vice versa without prob-
lems.

Example: The standard tree algebra over Σ is the tree al-
gebra where H is the set of nonempty Σ-forests (equipped
with concatenation) and V is the set of nonempty contexts
(equipped with context composition). A context acts on a
forest substituting it into the hole, the returned value is a for-
est with just one tree. The left insertion operation inl(h, v)
plugs a forest consisting of h and a hole into the hole of
v (see Figure ??); similarly for inr but the hole is to the
right of h. It can be verified that the insertion conditions
are satisfied. Observe that thanks to insertions we can con-
struct arbitrary context without having the hole explicitly as
a constant.

Note. It might seem more natural to call the above object
the free tree algebra. As we will later see, the free tree al-
gebra has to be slightly different – in the free tree algebra,
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there is a distinction between leaf labels and inner node la-
bels. It is much more to work with trees where there is only
one type of labels, hence the somewhat artificial concept of
standard tree algebra.

Example: Let H be any semigroup. Let V be the set HH

of all transformations of H into H , with composition as the
operation. To obtain a tree algebra from (H,V ) it suffices
to add actions. The action of V on H is just function appli-
cation. The left and right insertions are uniquely determined
by the inserting conditions.

A tree algebra morphism from (H,V, act , inl , inr ) to
(G,W, act ′, inl

′, inr
′) is a pair (α, β) of functions α :

H → G and β : V → W that preserve all operations
in the tree algebra: not only the displayed operations but
also the multiplications in semigroups. A set L of Σ-forests
is recognizable if there is a tree algebra morphism (α, β)
from the standard tree algebra over Σ to some finite tree al-
gebra (H,V, act , inl , inr ) such that L is the inverse image
α−1(F ) of some F ⊆ H . The morphism (α, β) is said to
recognize L. A language of Σ-trees is recognizable if it is
the restriction of a recognizable set of forests to forests with
just one tree.

Example: Consider the set L of trees with an even
number of nodes. We present here a finite tree algebra
(H,V, act , inl , inr ) recognizing L. Both H and V are
{0, 1} with addition modulo 2. All the actions are also addi-
tion. The recognizing morphism maps a context (resp. for-
est) onto 0 if it has an even number of nodes.

Example: A language L of Σ-trees is called label-testable
if the membership t ∈ L depends only on two sets of labels:
those of internal nodes of t and those of leaves of t. (So a
label in a leaf is considered different from a label in an inner
node). The appropriate tree algebra is defined as follows.
Both H and V are the same semigroup: the set of pairs of
nonempty subsets of Σ with coordinate-wise union as the
operation. The first coordinate keeps track of the labels in
the leaves, while the second coordinate keeps track of the
labels in the inner nodes. This determines the actions, which
must also be coordinate-wise union.

2.1.1 Universal algebra viewpoint

Another way to look at a tree algebra is from the point of
view of universal algebra. In this setting, a tree algebra is a
two-sorted algebra (with the sorts being H and V ) along
with five operations: (i) semigroup operations in H and
V , (ii) an action of V on H and (iii) two actions of H on
V . Tree algebras are of course defined equationally by: (i)
semigroup equations for H and V , (ii) equation saying that
act is an action, (iii) insertion conditions for inl and inr .
We even do not need to require that inl and inr are actions
as this follows from the rest of the equations.

The universal algebra viewpoint gives us definitions of
such concepts as subalgebra, cartesian product, quotient and
morphism (which coincides with the previously given defi-
nition).

A free tree algebra can be slightly different than the stan-
dard tree algebra defined above. Let Σ be a set of generators
for H and let Γ be a set of generators for V . One can verify
that the free tree algebra contains forests where Σ are the
leaf labels, while Γ are the labels of inner nodes. In this
paper we are only interested in the case where Γ = Σ; the
definition of the standard tree algebra takes only one param-
eter. However, it may be interesting in the future to consider
also the case of Γ 6= Σ.

In the free tree algebra over Σ, the generators are a node
context and a node node forest:

Any other element of the free tree algebra, be it a forest
or a context, can be generated from the above elements us-
ing the tree algebra operations. In particular, a morphism
from the free tree algebra is uniquely defined by specifying
its values on these generators.

2.1.2 Tree algebras and regular languages

The point of tree algebras is to have an algebraic formal-
ism for regular languages of unranked trees. In this section
we show that languages recognized by finite tree algebras
are exactly the regular languages. We use here a Myhill-
Nerode definition of regular languages. We also introduce
the concept of a syntactic algebra.

Let L be a set of Σ-trees. We associate with L two equiv-
alence relations on the standard tree algebra over Σ:

• Two nonempty Σ-forests g, h are L-equivalent if for
every (perhaps empty) Σ-context v, either both or none
of the trees v(g), v(h) belong to L.

• Two nonempty Σ-contexts v, w are L-equivalent if for
every nonempty Σ-forest h, either both or none of the
trees v(h), w(h) are L-equivalent as forests.

A language is called regular if both of these equivalence
relations are of finite index (in fact a finite index of the
first implies a finite index of the second). This definition
coincides with various other existing definitions of regular
languages, such as via automata or monadic second-order
logic.

One can verify that both equivalence relations are con-
gruences with respect to the operations of the standard tree
algebra. This allows us to define the quotient of the standard
tree algebra with respect to L, where the horizontal semi-
group HL consists of equivalence classes of nonempty Σ-
forests, while the vertical semigroup VL consists of equiv-
alence classes of nonempty Σ-contexts. The quotient tree
algebra

(HL, V L, actL, inl
L, inr

L)

3



is called the syntactic tree algebra of L. The morphism
(αL, βL) which to every element of the standard tree al-
gebra assigns its equivalence class in (HL, V L) is called
the syntactic morphism. The syntactic morphism recognizes
L. This shows the more difficult direction of the following
equivalence:

Fact 2.1 A language is regular if and only if it is recogniz-
able.

Moreover, the syntactic tree algebra of L can be found in
any tree algebra recognizing L:

Lemma 2.2 The syntactic tree algebra of L is a quotient of
any tree algebra recognizing L.

Proof
Let (H,V, act , inl , inr ) be some algebra recognizingL, un-
der a morphism (α, β). Let F ⊆ H be the “accepting set”,
i.e. a tree t belongs to L if and only if α(t) ∈ F .

We will prove that two nonempty forests (resp. con-
texts) with the same images under α (resp. β) must be L-
equivalent. Let then g, h be two nonempty forests with the
same images under α. Suppose that v(h) ∈ L for some
context v. We have α(v(h)) ∈ F and:

α(v(h)) = β(v)(α(h)) = β(v)(α(g)) = α(v(g))

So α(v(g)) ∈ F and in consequence v(g) ∈ L. Therefore
we can define a function α′ that assigns to each element of
h ∈ H the unique L-equivalence class of Σ-forests contain-
ing α−1(h). We do the same thing for contexts, obtaining a
function β′.

A little calculation shows that (α′, β′) is a tree algebra
morphism, therefore the syntactic tree algebra of L is a quo-
tient of (H,V, act , inl , inr ). �

2.1.3 Equations

We will be using equations (in the sense of universal al-
gebra) to specify classes of tree algebras. Consider for in-
stance the class of tree algebras where the horizontal semi-
group satisfies:

h ·h = h and g ·h = h ·g for g, h ∈ H . (1)

If the syntactic tree algebra of a language satisfies the equa-
tions, it means that the membership in the language does not
depend on the order or multiplicity of successor subtrees.

An important corollary of Lemma 2.2 concerns equa-
tions. As equations are preserved under quotients we get
the following.

Corollary 2.3 If some tree algebra recognizing L satisfies
an equation, then so does the syntactic tree algebra of L.

Example: Consider the class TJ1 of tree algebras that sat-
isfy equations (1) and also:

v(g · h) = v(g) · v(h) (v ◦ w)(g) = v(h) · w(h)
for v, w ∈ V, g, h ∈ H .

Recall that a language is label testable if membership in the
language depends only on the set of labels in the tree (cf. ex-
ample on page 3). We claim that a language is label testable
if and only if its syntactic tree algebra is in TJ1. The “only
if” part follows from Corollary 2.3: the tree algebra that
calculates the set of labels in a tree satisfies the equations
defining TJ1, hence so does the syntactic algebra. The “if”
part is also simple: using the equations, we can rewrite any
two trees into each other, as long as they have the same la-
bels. The idea is that a tree t can be rewritten into a forest
containing exactly the trees a(b) or a, where b is a label of
an inner node of t, while b is a label of leaf of t.

2.1.4 Monoids

In our definition, a tree algebra is a pair of semigroups. It
is also perfectly valid to consider monoids instead of semi-
groups. The obtained tree algebras behave slightly differ-
ently, being better for some applications and worse for oth-
ers.

Let us consider here the case when both the horizon-
tal and vertical components are monoids. This means that
the standard tree algebra contains the empty forest ε in the
horizontal free monoid and the empty (identity) context in
the vertical free monoid. This has some surprising conse-
quences.

First of all, the generators become simpler. Indeed, for
an alphabet Σ, the free algebra is generated only by contexts
Ca of one letter and one hole since we can obtain a-leaves
by substituting the empty forest ε into the hole. In particular,
there is no distinction between leaf and inner labels in the
free algebra; and hence there is no distinction between the
standard and free tree algebra.

Second, the contexts become richer. For instance, we
can apply the inserting condition to the empty context ∗ and
obtain a context that we denote ∗h:L. This is the context

h ∗

that maps g to h · g. In the standard tree algebra, as we have
defined it, the contexts are forests of trees, with one of the
trees having a hole.

Third, the inserting conditions are simplified. We only
need to define ∗h:L and ∗h:R, since inl(h, v) = v ◦ ∗h:L.

The above may be seen as advantages of the monoid ap-
proach. There are some disadvantages, however. Consider
for instance the class of tree algebras that satisfy the equa-
tion v ◦ w = v for all idempotents v ∈ V and all w ∈ V
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(recall that an element v is an idempotent if v ◦ v = v).
When V is a monoid, this collapses to w = ε and corre-
sponds to trivial languages. When V is a semigroup, this
is an interesting property and corresponds to languages that
depend only on nodes of bounded depth.

From now on, we return to tree algebras in the semigroup
sense.

2.1.5 Path languages

In this section we give an example of a class of languages
that can be defined via equations in a tree algebra.

A path in a Σ-tree t is a word

t(ε) t(v0) t(v0v1) . . . t(v0v1 . . . vn) ∈ Σ∗

obtained by reading all the labels leading to some leaf
v0 . . . vn. A language L of unranked trees is called path-
testable if membership t ∈ L depends only on the set of
paths in the tree t.

We claim that a language is path-testable if and only if its
syntactic tree algebra satisfies the following three equations:

h · h = h for h ∈ H
g · h = h · g for g, h ∈ H

v(g · h) = v(g) · v(h) for v ∈ V, g, h ∈ H

This characterization follows from a more general statement
proved in Theorem 4.4; it corresponds to the base of the in-
duction therein. We hope, however, that at least the only
if part of the statement is quite obvious: the syntactic tree
algebra of any path-testable language must satisfy all three
above equations. To our knowledge, this is the first decid-
able characterization of path-testable languages.

Note also that it is important that tree algebras consid-
ered here do not admit the empty forest ε in the horizontal
semigroup. Indeed, if this were the case, the third equation
would imply that

v(g) = v(ε) · v(g) for v ∈ V, g ∈ H .

The above equation corresponds to languages which depend
on paths that do not necessarily end in a leaf. It is not, for
instance, satisfied by the path-testable language: “all leaves
are at even depth”.

2.2 Wreath product

In this section we define the wreath product of two tree
algebras. We use the standard definition of wreath prod-
uct of transformation semigroups and apply it to the special
case of tree algebras. The only thing we need to do is to
verify that the wreath product of two tree algebras is also a
tree algebra, i.e. it verifies the inserting conditions.

Definition 2.4 (Wreath Product) Let
B = (H,V, actB, inl

B, inr
B) and A =

(G,W, actA, inl
A, inr

A) be two tree algebras. The wreath
product C = B◦A is the tree algebra (I, U, actC , inl

C , inr
C)

defined as follows. The horizontal semigroup I is the prod-
uct semigroup H × G. The vertical semigroup U is
V G ×W , with the multiplication defined:

(f, w) ◦U (f ′, w′) = (f ′′, w ◦W w′)
where f ′′(g) = f(w′(g)) ◦V f ′(g)

The action actC of U on I is defined as follows:

actC((f, w), (h, g)) = (f(g)(h), w(g))
for (f, w) ∈ V G ×W , (h, g) ∈ H ×G .

The left insertion inl
C of I on U is:

inl
C((h, g), (f, w)) = (f ′, inl

A(g, w))
where f ′(g′) = inl

B(h, f(gg′))

The definition of the right insertion inr
C obtained by replac-

ing inl by inr in the above.

The definition above is the standard definition of wreath
product of two transformation semigroups (except for the
insertions part). We will try to give the reader some intu-
ition about this construction. The idea is that there are two
layers of the tree algebra: one – A – works on the tree first,
and then lets the second layer – B – read the output of the
first. In the vertical semigroup of the wreath product, this is
encoded on the two coordinates. The tree algebra C works
“business as usual” on the second coordinate (this choice of
coordinates is traditional). On the first coordinate, there is
a function f that waits for the result g of the first layer, and
after receiving this result returns the appropriate “second
level” vertical transformation f(g) ∈ V .

Lemma 2.5 The wreath product of two tree algebras is a
tree algebra.

The proof of this lemma is found in the appendix.
Example: The cartesian product of two tree algebras B×A
is a subalgebra of the wreath product B◦A. Indeed, keeping
the notation from the above definition, an element (v, w) of
the vertical part of B × A can be represented by (fv, w) of
the vertical part of B ◦ A, where fv is the constant function
with the value v. It can be checked that this is an algebra
morphism which is injective. This observation shows that
if a language is recognized by a cartesian product of two
algebras then it is also recognized by their wreath product.

Let V,W be two classes of tree algebras. We write W◦V
for the class of algebras {B◦A : B ∈ V,A ∈ W}. We write
〈V〉 for the class

⋃
n∈N

Vn where Vn =

n times︷ ︸︸ ︷
V ◦ · · · ◦ V .
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When n = 0, we set Vn to be the class containing only the
trivial tree algebra where both semigroups have one element
each.

3 Temporal logics over unranked trees

In this section we define unranked extended temporal
logic UETL. We will use this as a framework to uniformly
describe first-order logic, chain logic, CTL* and PDL.

There are two types of formulas in UETL: tree formulas
and path formulas. A tree formula specifies a property of
trees; its semantics is a set of trees. A path formula specifies
a property of paths in trees; its semantics is a set of pairs
(t, π), where π is a path in the tree t (i.e. contiguous set
of linearly ordered nodes, not necessarily maximal). For
instance the path formula

[E2(Σ∗aΣ∗)]∗b

is true in those pairs (t, π) where the leaf at the end of π has
label b, while all other nodes on the path have at least two
independent descendants labeled a. The syntax and seman-
tics of UETL are defined as follows:

• Every letter a of the alphabet is a tree formula that is
true in trees whose root label is a. Any boolean com-
bination of tree formulas is a tree formula.

• For any k ∈ N and path formula φ, Ekφ is a tree for-
mula that is satisfied in a tree that contains at least k
maximal paths satisfying φ.

• Every tree formula φ is also a path formula, it is satis-
fied if the tree containing the path satisfies φ.

• If φ is a path formula, then φ∗ is a path formula that
is satisfied in paths that can be decomposed into zero
or more fragments satisfying φ. Similarly we define
disjunction φ + ϕ, complementation ¬φ and concate-
nation φ · ϕ for φ, ϕ path formulas.

We have chosen maximal paths in the semantics of Ek.
Arbitrary paths would give the same logic, but require one
more application of Ek. For instance, when Ek quantifies
over maximal paths, the property “some leaf has label a” is
written as E(a+ b)∗a. If Ek quantifies over arbitrary paths,
we need to write E(a+ b)∗(a[¬E(a+ b)]).

Example: The formula E2(a∗b(a + b)∗) is true in {a, b}-
trees that have at least two incomparable b’s. This property
is not definable in PDL (nor in CTL*) over unranked trees.
It is definable in first-order logic, since it can be rewritten
as ∃x, y. Pb(x) ∧ Pb(y) ∧ x 6≤ y ∧ y 6≤ x. The formula
E(aa)∗ is true in {a}-trees that have a maximal path of even
length. This property is not definable in first-order logic
(nor in CTL*).

The following theorem can be shown using the same
techniques as in [7, 3].

Theorem 3.1
• A language is definable in chain logic if and only if it

is definable by a UETL tree formula.

• A language is definable in first-order logic if and only
if it is definable by a UETL tree formula where the op-
erator φ∗ is not allowed.

• A language is definable in PDL if and only if it is defin-
able by a UETL tree formula where the operator Ekφ
is allowed only for k = 1.

• A language is definable in CTL* if and only if it is de-
finable by a UETL formula where φ∗ is not allowed
and Ekφ is allowed only for k = 1.

The reader unfamiliar with the logics stated above may well
treat this theorem as a definition. Note that for the variants
of first-order and chain logics considered here, the signature
does not contain the horizontal successor or order. There-
fore, properties like “there is a an a-labeled successor of v to
the left of a b-labeled successor of v” cannot be expressed.

4 The algebraic characterization

In this section we give an algebraic characterization of
several tree logics in terms of wreath products. In subsec-
tion 4.1 we define four classes of tree algebras. In sub-
section 4.2 we show our main result, Theorem 4.4, which
shows how wreath products of the four base classes charac-
terize first-order logic, chain logic, CTL* and PDL, respec-
tively.

4.1 The base classes

In this section we define the four base classes used in
Theorem 4.4. These are defined using standard semigroup
concepts of commutativity, aperiodicity and idempotency
along with a “new” notion of distributivity. We then go on
to prove that these classes behave properly, in particular it
is decidable if a given language can be recognized by a tree
algebra from any given base class.

First, we recall three important classes of semigroups:

• A semigroup is idempotent if it satisfies the equation
s · s = s for all s ∈ S;

• A semigroup is commutative if it satisfies the equation
s · t = t · s for all s, t ∈ S;

• A semigroup is aperiodic if for some n ∈ N it satisfies
the equation sn = sn · s for all s ∈ S.
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The following definition was already mentioned in sub-
section 2.1.5:

Definition 4.1 A tree algebra (H,V ) is distributive if it sat-
isfies the equation

v(g · h) = v(g) · v(h) for every v ∈ V and g, h ∈ H .

Definition 4.2 We define the following four base classes of
tree algebras:

• X′ are the distributive tree algebras where the horizon-
tal semigroup is commutative idempotent;

• X are the distributive tree algebras where the horizon-
tal semigroup is commutative aperiodic;

• Y′ are the distributive tree algebras where the horizon-
tal semigroup is commutative idempotent and the ver-
tical semigroup is aperiodic;

• Y are the distributive tree algebras where the horizon-
tal semigroup is commutative aperiodic and the verti-
cal semigroup is aperiodic;

Note that the base class X′ is exactly the class described
in Section 2.1.5.

Lemma 4.3 It is decidable if a language is recognized by
one of the base classes.

Proof
The base classes are defined by equations. Therefore, by
Corollary 2.3, it is enough to verify if the syntactic tree al-
gebra belongs to the base class. �

4.2 The main theorem

In this section we state and prove the main theorem of
the paper. This theorem gives a uniform characterization of
four important tree logics: first-order logic, chain logic and
the temporal logics PDL and CTL*.

Theorem 4.4
For every tree language L,

• L is definable in PDL if and only if it is recognized by
〈X′〉.

• L is definable in chain logic if and only if it is recog-
nized by 〈X〉.

• L is definable in CTL* if and only if it is recognized by
〈Y′〉.

• L is definable in first-order logic if and only if it is
recognized by 〈Y〉.

The left to right implications are proved in Section 4.3
and the right to left implications are proved in Section 4.4.

4.3 Tree algebras recognize logics

In this section we prove the left to right implications in
Theorem 4.4, i.e. we show that a language definable in PDL
(resp. the other logics) can be recognized by 〈X′〉 (resp. the
other classes). We do the proof for PDL and only comment
on the differences for the other cases. We need to show
that for every tree PDL formula ϕ there is a tree algebra in
〈X′〉 recognizing the set of trees that satisfy ϕ. Recall that
X′ is the class of distributive algebras where the horizontal
semigroup is commutative and idempotent.

By Theorem 3.1, we can use the UETL syntax for PDL.
The proof is by induction on the structure of the formula.
For every path formula, we show an appropriate tree al-
gebra. The letter tests are obvious. The boolean opera-
tions are done using cartesian product. The hard step is
the branching quantifier E (note that in PDL Ek is not al-
lowed for k ≥ 2). Consider a formula of the form Eϕ.
Let Γ be the set of all tree formulas that are subformu-
las of ϕ. By induction hypothesis, each formula in Γ is
recognized by 〈X′〉. As shown in the example on page 5,
the cartesian product of two tree algebras is a subalgebra
of their wreath product. Thus if a language is recognized
by a cartesian product of two tree algebras it is also recog-
nized by their wreath product. Since 〈X′〉 is closed under
wreath products we may as well assume that there is one
tree algebra A = (G,W, act , inl , inr ) that simultaneously
recognizes all the formulas in Γ. This means that there is a
morphism (α, β) from the standard tree algebra into A and
a set F∆ ⊆ G for each set of formulas ∆ ⊆ Γ such that:

I(t) = ∆ iff α(t) ∈ F∆ (2)

where I(t) is the set the set of formulas from Γ that are true
in a tree t. Observe that {F∆ : ∆ = I(t) for some tree t} is
a partition of G. ja

znowu
zmie-
nilem...

For a leaf v = a0 · · · an in a tree t, we define πt(v) as

πt(v) = I(t|ε) I(t|a0) · · · I (t|a0···an
) ∈ P (Γ)+ .

This sequence says what formulas from Γ are true on the
path from the root to v. One can easily check that there
is a regular word language L ⊆ P (Γ)+ such that Eϕ is
satisfied in a tree t if and only if there is a leaf v satisfying
πt(v) ∈ L. Let S be a semigroup recognizing the word
language L under the morphism ρ : P (Γ)+ → S, i.e.

ρ−1(ρ(L)) = L .

We now proceed to define a tree algebra B =
(H,V, act ′, inl

′, inr
′) that belongs to X′ and such that B◦A

recognizes the language Eϕ. The idea is that H will keep
track of the possible elements of S that can be obtained by
evaluating ρ on some maximal path in the forest.
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• Elements of the the horizontal semigroup H are the
nonempty subsets of S, i.e. P (S) \ {∅} . The semi-
group operation is union.

• The vertical semigroup V is P (S)×S. The second co-
ordinate describes the transformation on the path from
the root to the hole, while the first coordinate keeps
track of the results on all the other maximal paths
(which may not exist). The operation is defined by:

(x,m) ◦ (y, n) = (x ∪my,m · n) .

In the above, my is an abbreviation for {mn : n ∈ y}.
The action of V on H is defined as follows for x, y ∈
P (S) and m ∈ S:

(x,m)(y) = x ∪my .

This is indeed an action:

((x,m)(y, n))z = (x ∪my,mn)z =
x ∪my ∪ (mn)z = x ∪m(y ∪ nz) =

x ∪m((y, n)z) = (x,m)((y, n)z) .

• The left insertion is defined by:

inl(x, (y,m)) = (y ∪mx,m) .

The right insertion is the same as the left, since the
trees are unordered. The insertion condition is satis-
fied:

inl(x, (y,m))z = (y ∪mx,m)z =
y ∪mx ∪mz = y ∪m(xz) = (y,m)(xz) .

To complete the proof, we will now show that B is a tree
algebra in X′ and that Eϕ is recognized by B ◦ A.

Lemma 4.5 B is a tree algebra in X′.

Proof
Since H clearly is idempotent and commutative, it remains
to show that B is distributive. Let (x,m) belong to V and
let y, z be two elements of H:

(x,m)(yz) = x ∪m(yz) = x ∪my ∪mz =
x ∪my ∪ x ∪mz = (x,m)y(x,m)z .

�

Lemma 4.6 B ◦ A recognizes Eϕ.

Proof
Recall that the language L ⊆ P (Γ)+ is such that a tree t
satisfies Eϕ if and only if it contains a leaf v with πt(v) in
L. Recall moreover, that ρ : P (Γ)+ → S is a morphism
recognizing L. We now proceed to define a tree algebra
morphism (α′′, β′′) from the standard tree algebra over Σ
into B ◦ A that recognizes Eϕ. The morphism will satisfy
the following invariant for every Σ-tree t:

if α′′(t) = (h, g) then h = {ρ(πt(v)) : v is a leaf in t}
(3)

In particular, the tree t satisfies Eϕ if and only if the first
coordinate of α′′(t) contains an element from ρ(L). There-
fore in order to prove the lemma it suffices to define the
morphism so that (3) is satisfied.

Such a morphism can be specified by just saying what
elements are assigned to the generators. Recall that we have
already a morphism (α, β) from the standard tree algebra
to A satisfying (2) and we can use it in our definition of
(α′′, β′′). There are two types of generators. First there
are the leaf generators consisting just of a leaf labelled by
a letter a To such a leaf generator α′′ simply assigns the
unique pair (h, g) such that h satisfies the invariant (3) and
g = α(a). Second, there are the context generators Ca

which are contexts with one node labelled a. For each such
context we need to defined an element

(fa, wa) ∈ V G ×W

of the vertical semigroup in B ◦ A. On the second coordi-
nate, β′′ behaves like β, so we set wa = β(Ca). To de-
fine the first coordinate fa, we need to say what element
fa(g) ∈ V is assigned to an element g of G. Observe that
by (2) the value g determines which formulas from Γ hold
in a tree t such that α(t) = g. Let I(g) denote this set of
formulas. We put.

fa(g) = (∅, ρ(I(g))) ∈ P (S)× S = V .

This completes the definition of the tree algebra morphism
(α′′, β′′).

We now proceed to show that the invariant (3) is satisfied.
The proof is by induction on the depth of the tree. Consider
a tree t with letter a labeling the root and with t1, . . . , tk
being the subtrees in its successors. For i = 1, . . . , k, let
(hi, gi) be α′′(ti). Using the induction assumption for the
invariant, we have

hi = {ρ(πti
(v)) : v is a leaf in ti} . (4)

By definition of α′′, β′′ and the action in the wreath product,
we have

α′′(t) = (fa(g1 · · · gn)(h1 · · ·hn), wa(g1 · · · gn)) ∈ H×G
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Let h ∈ H = P (S) be the first coordinate of α′′(t); in order
to show the invariant we need to prove that

h = {ρ(πt(v)) : v is a leaf in t} .

By definition of the function fa, we have

h = (∅, ρ(I(t)))(h1 · · ·hn) .

By definition of the action of V = P (S)×S onH = P (S),
we have:

h = ∅ ∪ ρ(I(t))(h1 · · ·hn) =
⋃

i=1,...,k

ρ(I(t))hi .

Finally, by using (4), this becomes

h =
⋃

i=1,...,k

ρ(I(t)){ρ(πti(v)) : v is a leaf in ti} =

=
⋃

i=1,...,k

{ρ(I(t)πti(v)) : v is a leaf in ti} =

= {ρ(πt(v)) : v is a leaf in t} ,

which shows the invariant (3). �

The other logics

Here we comment on how the proof must be adapted for
the other logics. Consider first the case of chain logic, or
more conveniently, UETL. We have to deal with the more
general operator Ekφ. The solution is to use multisets (up
to threshold k) in (H,V ) instead of sets of elements of S.
The semigroup of multisets (up to threshold k) is aperiodic
commutative.

For first-order logic and CTL* we proceed the same way,
but with the additional assumption that the semigroup S rec-
ognizing the maximal paths is aperiodic. This can be done
by Schützenberger’s Theorem.

4.4 Logics describe tree algebras

We refer the reader to the appendix for proofs of the right
to left implications in Theorem 4.4. Here we sketch out
the essential ideas. The first idea is that wreath product of
tree algebras can be captured by composition of logic for-
mulas: a formula consults its subformulas, just as the top-
level tree algebra consults the lower level tree algebra in the
wreath product. Therefore, the only difficulty is showing
that the base classes can be captured in the appropriate log-
ics. The key idea here is that in a distributive tree algebra
(all our base classes are distributive), the value of a tree de-
pends only on the paths in the tree (our logics can talk about
paths).

5 Further work
ja
tez
troche
pozmienialem

We have presented an algebraic characterization of reg-
ular languages of finite trees. We have shown pertinence
of this approach by characterizating several known logics.
Unquestionably, there remains a number of basic questions
to be answered.

This work is motivated by decidability problems for tree
logics. As mentioned in the introduction, surprisingly little
is known about them. We hope that this paper represents
an advance, if only by making more explicit the algebraic
questions that are behind these problems. The characteriza-
tions we have presented make it clear that a theory of wreath
product decompositions of tree algebras would be very use-
ful. Recently, a flaw has been uncovered in a characteriza-
tion [2] of tree languages definable in first-order logic with
the successor but without the order. Maybe tree algebras
could give means to correct the construction presented in
that paper.

Wherever there is an algebraic structure for recognizing
languages, there is an Eilenberg theorem. It would be in-
teresting to study varieties of tree algebras. A related topic
concerns C-varieties [14]. This is a notion from semigroup
theory, which — among others — does away with the te-
dious distinction between semigroup and monoid varieties.
Is there a C-variety of tree algebras?

What classes of tree algebras can be defined using equa-
tions? What are the appropriate symbols that can be used in
the equations (is the ω power enough)?

There are of course classes of tree languages — perhaps
even more so in trees than words — that are not closed un-
der boolean operations like, for instance, languages defined
by deterministic top down automata. In the case of words,
ordered semigroups extend the algebraic approach to such
classes. It would be interesting to develop a similar concept
of ordered tree algebras.

The logics considered in this paper do not permit to talk
about the order on siblings in a tree. It would be worth to
find the correct equations for logics with the order relation
on siblings.

Finally, it is of course interesting to look at other kinds of
trees. One can ask what is the right concept of tree algebras
for languages of infinite trees. It is also not clear how to
cope with trees of bounded branching.
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A Wreath product of tree algebras

In this appendix we prove Lemma 2.5, which says that
the wreath product of two tree algebras is a tree algebra.

The wreath product of two transformation semigroups is
a transformation semigroup, therefore the wreath product
of two tree algebras is a tree prealgebra. We need to verify
that the inserting conditions are satisfied. By symmetry we
will only verify the left inserting condition. We keep the
notation from the definition above.

Let (f, w) belong to U and let (h, g) belong to I . We
need to verify that for all (h′, g′) ∈ H ×G:

inl
C((h, g), (f, w))(h′, g′) = (f, w)((h, g) ·I (h′, g′)) (5)

By definition

inl
C((h, g), (f, w)) = (f ′, inl

A(g, w))
where f ′(g) = inl

B(h, f(gg′))

We get

inl((h, g), (f, w))(h′, g′) = (f ′, inl
A(g, w))(h′, g′) =

(inl
B(h, f(gg′)h′, inl

A(g, w)g′) =
(f(gg′)(hh′), w(gg′)) = (f, w)(hh′, gg′) =

(f, w)((h, g)(h′, g′))

where the second and fourth equations come from the defi-
nition of action in C. In a similar manner we can verify the
right inserting condition.

10



B Logics recognize tree algebras

In this appendix we show the right to left implications
in Theorem 4.4, i.e. we show that a language recognized
by 〈Y〉 (resp. the other classes) can be defined in first-order
logic (resp. the other logics). We first do the proof for first-
order logic and then only comment how the other cases dif-
fer from this one.

B.0.1 First-order logic

We will show that if a tree language L is recognized by a
morphism (α, β) into (H,V, act , inl , inr ) ∈ Yn, then for
every h ∈ H there is a formula ϕh of first-order logic that
is true in exactly those forests t such that α(t) = h. Recall
that Y are the distributive tree algebras where the horizontal
semigroup is commutative aperiodic and the vertical semi-
group is aperiodic.

The proof is by induction on n. The case of n = 0 is
trivial, since Y0 contains only the tree algebra ({ε}, {ε}),
which can only recognize the formulas false and true.

Case of n = 1

Before we proceed to the general case, we do these case of
n = 1. For an a-labeled node x in a tree t, let It(x) ∈ V
be the value β(Ca). Here, Ca is the context with a in the
root and a hole below (one of the generators of the standard
vertical semigroup). Given a leaf x = a1 . . . ak of t, let

πt(x) = It(ε) ◦ It(a1) ◦ · · · ◦ It(a1 · · · ak−1) ∈ V

be the result of multiplying all the values It(y) for nodes
y < x. Since V is aperiodic, by Schützenberger’s Theorem
says that for every v ∈ V there is a first order formula ψv(x)
that holds in a leaf x iff πt(x) = v. Let Jt(x) be the result
of applying πt(x) to the value of α on the forest containing
just one leaf labeled with the same letter as the label of x.
Again, for every h ∈ H there is a first-order formula φh(x)
that holds in a leaf x if and only if Jt(x) = h.

Given a set X and function f : X → H , we write
Πx∈Xf(x) for the multiplication in H of the values f(x)
for all elements x ∈ X . This notation makes sense, since
H is commutative and therefore no order is needed over X .
Let leaves(t) be the set of leaves of the tree t.

We claim that the value α(t) can be obtained by multi-
plying in H the values Jt(x) for all the leaves v in t, i.e.

α(t) =
∏

x∈leaves(t)

Jt(x) (6)

Before we show this claim, we remark how it yields the
desired result. Indeed, by commutativity of H , the value
α(t) depends only on the number of occurrences of φh(x)

for different h ∈ H . Moreover, by aperiodicity of H , the
occurrences are counted only up to a certain finite threshold,
which is the number m such that hm+1 = hm holds for
all h ∈ H . Counting the number of nodes up to a finite
threshold can be done by a first-order formula.

We now proceed to demonstrate (6). The proof is by
induction on the depth of t. Let t be a tree with a in the root
and successor forest t1 · · · tk.

α(t) = β(Ca)(α(t1 · · · tk)) = β(Ca)
∏

i=1...k

α(ti) .

By using β(Ca) = It(ε), the induction assumption and dis-
tributivity this becomes

It(ε)
k∏

i=1

∏
x∈leaves(ti)

Jti(x) =
k∏

i=1

∏
x∈leaves(ti)

It(ε)Jti(x) .

This yields the desired result, since for a leaf y of t of the
form k · x we have

Jt(x) = It(ε)Jtk
(x) .

Case of n > 1

Let then L be a language recognized by a morphism (α, β)
into C = B ◦ A where

C = (I, U, act ′′, inl
′′, inr

′′),
B = (H,V, act ′, inl

′, inr
′), A = (G,W, act , inl , inr ),

with B ∈ Y and A ∈ Yn−1 .

We want to show that L is definable in first-order logic. We
will reduce this case to the case of n = 1. Recall that by the
definition of wreath product

I = H ×G, U = V G ×W

therefore (α, β) may be decomposed into two pairs (α1, β1)
and (α2, β2) into (H,V G) and (G,W ) respectively. More-
over, the pair (α2, β2) is a tree algebra morphism. By in-
duction assumption, for every g ∈ G there is a formula ϕg

of first order logic that is true in exactly those trees t where
α2(t) = g.

For a letter a ∈ Σ, let va be the value β1(Ca) ∈ V G of
the context Ca under β1. For an a-labeled inner node x in a
tree t we define

It(x) = va(α2(s1 · · · sm)) ∈ V .

where s1 · · · sm is the successor forest of x in t. One
can show that wreath product preserves aperiodicity and
commutativity of the horizontal semigroup. In particu-
lar, the value α2(s1 · · · sm) depends on the possible values
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α2(s1), . . . , α2(sm) and the number of times they occur (up
to some given threshold). Therefore we can use the induc-
tion assumption to calculate the value α2(s1 · · · sm) — and
consequently It(x) — with a first-order formula.

Let I be the function which to a Σ-tree t assigns a tree
I(t) of the same domain but over the alphabet H ∪ V such
that every inner node x of I(t) is labeled by It(x), while ev-
ery a-labeled leaf is labeled by α1(a). This is a tree whose
inner nodes are labeled by V and whose leaves are labeled
by H . Finally, let (γ, δ) be the unique morphism which to
such a tree assigns an element of (H,V ) and satisfies

δ(Cv) = v γ(th) = h .

Here th is a tree with a single node with label h. This is the
morphism that simply evaluates the tree.

Let t be a Σ-tree. One can show by induction on the
depth of t that

α(t) = (γ(I(t)), α2(t)) .

It is therefore enough to show that we can calculate the
value γ(I(t)) using a first-order formula. Since the labeling
in the tree I(t) can be calculated using a first-order formula,
we have thus reduced our problem to calculating the value
of the morphism (γ, δ) into (H,V ) ∈ Y, i.e. the case of
n = 1.

The other logics

Finally, we comment on how the proof needs to be modified
for the other logics. For CTL*, the only difference is that
the logic cannot count the number of leaves satisfying some
formula (which is done in the paragraph after equation (6)).
However, we never need to do this, since the base class Y′

is idempotent, hence it is only necessary to verify if there
exists a node.

For the chain logic and PDL, the argument is analogous,
except that we cannot use the assumption on aperiodicity of
V (in the first paragraph of the case n = 1). However, since
the path component of these logics can evaluate arbitrary
regular expressions, this is not a problem.
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