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Abstract
We propose a definition for computable functions on hereditarily

definable sets. Such sets are possibly infinite data structures that

can be defined using a fixed underlying logical structure, such as

(N,=). We show that, under suitable assumptions on the underlying

structure, a programming language called definable while programs
captures exactly the computable functions. Next, we introduce a

complexity class called fixed-dimension polynomial time, which
intuitively speaking describes polynomial computation on heredi-

tarily definable sets. We show that this complexity class contains

all functions computed by definable while programs with suitably

defined resource bounds. Proving the converse inclusion would

prove that Choiceless Polynomial Time with Counting captures

order-invariant polynomial time on finite graphs.

1 Introduction
The goal of this paper is to identify the notion of computability, in-

cluding “polynomial-time computability”, for hereditarily definable

sets. Such sets are a generalisation of hereditarily finite sets. They

are possibly infinite, but can be defined using set builder notation

in terms of some underlying logical structure A, called the atoms
of the hereditarily definable set. We begin with some examples.

Suppose that the underlying structure of atoms is the natural num-

bers with equality (N,=). One possible hereditarily definable set

consists of all unordered pairs of atoms:

{{x ,y} : for x ,y ∈ A such that x , y}.

We can use parameters from the atoms, e.g. as in the following

hereditarily definable set:

{x : for x ∈ A such that x , 5}.

Another example is the set A2
of all ordered pairs, encoded via

Kuratowski pairing:

{{x , {x ,y}} : for x ,y ∈ A such that true}

If the atoms have more structure, then this structure can be used

in the hereditarily definable sets, e.g. if the atoms are the ordered

rational numbers (Q, ≤) then an example of a hereditarily definable

set is the set of all closed intervals with right endpoint ≤ 7:

{{y : for y ∈ A such that x ≤ y ∧ y ≤ z} : for x ,y ∈ A

such that x ≤ y ∧ y ≤ 7}

As mentioned above, we can use Kuratowski pairing, and therefore

pairs and tuples are allowed in hereditarily definable sets, which

allows us to talk about structures such as graphs, e.g. the directed

clique on all atoms (A,A2). A formal definition of hereditarily de-

finable sets is given in Section 2. Hereditarily definable sets are a
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flexible and easy to use formalism for representing some possibly

infinite data structures. The goal of this paper is to define what it

means for an operation on hereditarily definable sets to be com-

putable. A second goal, and the main original contribution of this

paper, is to propose a definition of “polynomial time” computation.
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Background. This paper is part of the research programme on com-

putation in sets with atoms, whose original motivation was the

observation [4, 6] that various automata models over infinite alpha-

bets can be viewed as “finite” automata under a suitable relaxation

of finiteness (called orbit finiteness, which is essentially the same

thing as hereditary definability) and that standard algorithms over

finite objects (such as graph reachability, automaton emptiness, or

automaton minimisation) extend transparently to the setting of

hereditarily definable sets. An extended description of this topic

can be found in the lecture notes [3].

We would like to underline that our main focus is on hereditarily

definable sets over atoms such as (N,=) or maybe (Q, <), which are
the central examples in the theory of sets with atoms. Sometimes,

we can prove results with fewer assumptions, e.g. oligomorphism,

or a decidable first-order theory. Nevertheless, the number of as-

sumptions grows toward the end of the paper, and the final results

are only given for (N,=).

Computability. The first contribution of this paper is a discussion

of computability over hereditarily definable sets. This is not the

first approach to this question. There are, in fact, already two pro-

gramming languages that manipulate hereditarily definable sets: a

functional programming language [5] and an imperative program-

ming language [7, 15]. Furthemore, these programming languages

have been implemented: the functional programming language

as an extension of Haskell [14], and the imperative programming

language as a C++ library [15]. In fact, [15] provides more than

just a description of an implementation; it also shows how the

programming language works for arbitrary logical structures with

a decidable first-order theory, e.g. Presburger Arithmetic, and not

just homogeneous ones as assumed in [7].

Our point of departure is the programming language from [7], ex-

tended to logical structures that are not necessarily homogeneous,

which we call here definable while programs. In such a program,

there is only one data type for the variables, namely hereditarily de-

finable sets. There are the standard instructions of while programs

like if andwhile, and there is a nonstandard for x ∈ X instruction

which executes a block of code in parallel ranging over possibly

infinitely many elements x of a hereditarily definable set X . These

instructions can be nested arbitrarily. Our first contribution is a

simplified model, equivalent to definable while programs, which

we call definable state machines, which operate by performing a

sequence of simple operations.
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In [7, 15] it was shown – including an implementation – that de-

finable while programs can be executed on a “normal computer”, i.e.,

a Turing machine. The next question we ask in this paper is: are de-

finable while programs computationally complete? Could one add

features, in a way which would allow new computable functions,

but so that the programs could still be executed on a normal com-

puter? The second contribution of this paper is Theorem 3.8 which

shows that definable while programs are computationally com-

plete in the following sense: if a function on hereditarily definable

sets can be computed on a normal computer and it is equivariant

(i.e. invariant under automorphisms of the atoms), then it can be

computed by a definable while program.

Polynomial-time computation. The last and principal contribution

of this paper is a study of what it means to compute a function

on hereditarily definable sets in polynomial time. One natural idea

would be to have a polynomial-time algorithm, in the usual sense,

which inputs an expression such as

α = {{x } : for x ∈ A such that true} (1)

and then produces the output (either a new expression, in case

of functions from hereditarily definable sets to hereditarily defin-

able sets, or a yes/no value for Boolean questions). An important

difficulty is that such a function should not depend on the rep-

resentation of the input. For example, the set defined by α can

alternatively be represented by the expression

β = {{x ,y} : for x ,y ∈ A such that x = y}. (2)

Since these are the same sets, then the outputs should be the same

sets. Unfortunately, deciding if two expressions represent the same

hereditarily definable set is a pspace-complete problem, which

shows that polynomial-time algorithms manipulating such expres-

sions have very limited capabilities, andwould only allowmodelling

the most basic functions like the identity function or constant func-

tions. Even when this problem with ambiguity is eliminated by

requiring the inputs to be of a very restricted form, e.g. unnested

sets of tuples, guarded by quantifier-free formulas, certain basic

problems, such as reachability in graphs, remains pspace-hard. It

would be disappointing to have a polynomial-time complexity class

that would not contain graph reachability. To work around the

pspace-hardness, we use parametrised complexity. We identify a

parameter for hereditarily definable sets, which we call dimension.

Roughly speaking, the dimension of an expression is the number of

variables that it uses. For example, the expression α defined above

in (1) has dimension 1, even though suboptimal expressions, such

as β , might need more variables. Our proposal for polynomial time

is that the running time is bounded by a function f (d,n) where d
is the dimension of the input representation and n is the size of the

input representation (the representation might have larger than

necessary dimension and size); subject to the restriction that for ev-

ery fixed d the function f (d, _) is polynomial, although the degree

of the polynomial is allowed to depend on d . For this complexity

class (of functions on hereditarily definable sets) we introduce the

name fixed-dimension polynomial. In Section 4 we describe this

complexity class, and show that it is robust and captures natu-

ral problems like graph reachability, automaton minimisation or

emptiness for context free languages. We also rule out alternative

definitions, including one where the degree of the polynomial is

fixed independently of d .

Connection to finite model theory. A special case of a hereditarily

definable set is one which is hereditarily finite, possibly using the

atoms. For example, if the atoms are (N,=), then the undirected

clique on vertices {1, 2, 7} is an example of a hereditarily definable

set which is also hereditarily finite. If an algorithm inputs a rep-

resentation of a set as an expression, then the representation will

necessarily have some ordering on the vertices, e.g. {1, 2, 7} and

{2, 1, 7} are two different representations of the same set. This leads

us to the central question in finite model theory [11]: is there some

logic which captures order-invariant polynomial time, i.e. exactly

those properties of finite structures (e.g. graphs) that can be com-

puted in polynomial time in a way that is invariant under possible

representations. This question can be viewed as part of our setting

in the following way. In Fact 1 we show that a class L of finite

graphs is in order-invariant polynomial time (in the sense of finite

model theory) if and only if membership of a hereditarily definable

set in L is in our complexity class of fixed-dimension polynomial

time. The reason is that all finite graphs can be represented by ex-

pressions of dimension zero; and over fixed-dimension there is no

difference between the two complexity classes. The message is that

the setting of finite model theory can be viewed as the dimension

zero case of our setting.

Resource bounded definable while programs. The main technical

contribution of this paper is a study of resource bounded definable

while programs. We show that if our definable while programs

are restricted to hereditarily finite sets and equipped with poly-

nomial bounds on the memory and time used, then they have the

same expressive power as Choiceless Polynomial Time (c̃pt), an

important logic that is contained in order-invariant polynomial

time [2]. Adding counting to the while programs leads to equiva-

lence with the counting version of c̃pt. What is more, the definition

of polynomial resource bounds can be extended to possibly infinite

hereditarily definable sets, and we show that while programs with

such polynomial bounds are contained in the complexity class of

fixed-dimension polynomial time. We do not know if they cap-

ture the entire complexity class, and we dare not make any such

conjectures. Proving such a capture result would prove that c̃pt

with counting captures order-invariant polynomial time on finite

structures, thus solving a central open problem in finite model

theory.

2 Basic definitions
Suppose that A is a logical structure, whose elements will be called

atoms. Call A effective if its universe is a decidable subset of 2
∗

and there is an algorithm which inputs a first-order formula φ,
and a valuation of its free variables in A, and decides whether the

valuation satisfies φ in A. Call a structure effectively presentable if
it is isomorphic to some effective structure. Examples of effectively

presentable structures include (N,=), the rational numbers with

order, (Q, ≤), the random graph, Presburger arithmetic (N,+) and
Skolem arithmetic (N,×).

Set builder expressions and hereditarily definable sets. Fix a

logical structure A for the atoms. Fix some countably infinite set of

variables, which are meant to range over atoms. Define set builder
expressions over A as follows by structural induction:

Atom. Every atom a ∈ A is a set builder expression, called an atom
expression.
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Variable. Every variable is a set builder expression, called a variable
expression.
Set expression. Let x1, . . . ,xn ,y1, . . . ,ym be distinct variables,

which contain the free variables in a first-order formula φ and an

already defined set builder expression α . The formula φ is over the

vocabulary of A which may use parameters from the atoms. Then

{α (x1, . . . ,xn ,y1, . . . ,ym ) : for y1, . . . ,ym ∈ A

such that φ (x1, . . . ,xn ,y1, . . . ,ym )} (3)

is a set builder expression, called a set expression. The free variables
are x1, . . . ,xn and the variables y1, . . . ,ym are called bound. The

formula φ is called the guard of the expression. A special case of a

set expression is when there are zero bound variables, i.e.m = 0, in

which case we write it as a singleton {α (x1, . . . ,xn )}.
Union expression. If α1, . . . ,αn are set expressions, then α1 ∪

· · · ∪ αn is a set builder expression. Such an expression is called a

union expression.

For a set builder expression α with free variables x1, . . . ,xn , the
semantics of α is a function which takes n arguments a1, . . . ,an
and produces the corresponding set α (a1, . . . ,an ), defined in the

natural way, which is either an atom, a set of atoms, a set of sets

of atoms, etc. If α has no free variables, then this function takes

no arguments, and we say that α defines the set α (). Note that the
same set can be defined by different set builder expressions.

Definition 2.1 (Hereditarily definable sets). A hereditarily defin-
able set over a logical structure A is any atom or set defined by a

set builder expression without free variables. We write hdefA for

the hereditarily definable sets over A, and setbA for the set builder

expressions over A without free variables.

An atom a ∈ A can appear in a set builder expression in two

ways: either as a subexpression of type “atom”, or as a parameter

in a guard in some subexpression of type “set expression”. In either

case the atom is called a parameter of the expression. Recall that set
expressions can be singletons, which allows us to create hereditarily

finite sets (a set is called hereditarily finite if it is finite, its elements

are finite, and so on), e.g. {{5} ∪ {6}} ∪ {5} is a hereditarily definable

set with zero free or bound variables and parameters 5, 6. This

set is the same as {{5, 6}, 5}, which is the same as the Kuratowski

pair (5, 6). In future examples we will use the more convenient

expressions (5, 6) or {{5, 6}, 5}, but these should be seen as syntactic

sugar. Using this syntactic sugar, we can write directed graphs as

hereditarily definable sets, e.g. ({1, 2, 3, 7}, {(1, 2), (2, 3), (3, 7)}) is a
hereditarily definable set which describes a directed path of length

3. In this example, the parameters are 1, 2, 3, 7 and there are no free

or bound variables.

The guards in a set builder expression are allowed to use quan-

tifiers. For example if the atoms are Presburger arithmetic (N,+)
then

{x : for x ∈ A such that ∃y y + y = x ∧ y + y , y}

defines the set of nonzero even numbers. The quantified variables

are also counted as bound variables, e.g. in the above set builder

expression both variables x and y are bound. Another example

of a hereditarily definable set over Presburger arithmetic is the

configuration graph of any vector addition system (vas), or of a

Minsky machine.

3 Computable functions on hereditarily
definable sets

We define two notions of computability of functions on hereditarily

definable sets: by means of Turing machines, and by means of a

programming language called definable while programs.

3.1 Computable functions
A set builder expression can be written down so that it can be input

and output by algorithms; assuming that there is some way to

represent the parameters. In particular, ifA is an effective structure,

then we can represent set builder expressions as bit strings and

it makes sense to talk about algorithms that input or output set

builder expressions.

Definition 3.1 (Computatable function on hereditarily definable

sets). Let A be an effective structure. A function F : hdefA →
hdefA is called computable if there is a function F ′ : setbA→ setbA
which is computable in the normal sense (i.e. a Turing machine)

such that for every α ∈ setbA representing a hereditarily definable

set x , F ′(α ) is a set builder expression which defines the hereditarily
definable set F (x ).

The above definition talks about total functions; the extension

to partial functions (where the Turing machine does not terminate

on inputs with undefined values) is defined in the natural way.

Note that the notion above depends on a particular presentation

of an effectively presentable structure A. In particular, given two

effective structures A,A′ and an isomorphism α between them, the

functions computable in A may not correspond to the functions

computable in A′ via the isomorphism α , if the isomorphism is not

computable.

Since hereditarily definable sets are closed under taking tuples,

one can talk about computable functions that go from tuples of

hereditarily definable sets to hereditarily definable sets. For exam-

ple, the functions x ∩ y, x − y and

⋃
x are computable, as is easy

to see, and also follows from Theorem 3.5 below. Natural numbers

can be viewed as special cases of hereditarily definable sets, e.g. by

using von Neumann numerals ∅, {∅}, {∅, {∅}}, etc. (those should not

be confused with natural numbers which may appear in atoms,

e.g. if the atoms are (N,=)). Using such an encoding, we say that a

subset L ⊆ hdefA is computable if its characteristic function (which

is total) into the booleans {0, 1} is computable.

3.2 Definable while programs
A disadvantage of Definition 3.1 is that that it requires computing

on representations (i.e. set builder expressions); in particular each

algorithm needs to explicitly implement parsing of the inputs, and

operations like computing x ∩ y or testing x = y on the level of

set builder expressions. To avoid this, we will use definable while
programs as proposed in [7, 15]. The idea is to add a layer of abstrac-

tion on top of set builder expressions which allows the programmer

to work directly with hereditarily definable sets. Before describing

the programming language, consider two examples.

Example 3.2. The code below uses the atoms (Q, <). After exe-
cuting it, the variable X will store the hereditarily definable set of

all intervals of the form (−∞;a), for a ∈ Q. This example illustrates

the two key properties of the programming language: variables

store hereditarily definable sets, and the for loop may range across

an infinite set.
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A := A;
X := ∅;
for a in A do

I := ∅;
for b in A do

if b < a then
I := I ∪ {b};

X := X ∪ {I}

Example 3.3. For the code below, the choice ofA is not important.

The program inputs a graph stored in variables V and E as well as
a set of source vertices S, and computes in variable R the vertices
reachable from the sources. The program terminates if and only if

there is some n such that every vertex is connected to S by a path

of length n, or by no path at all.

R := S;
Old := ∅;
while R != Old do

Old := R;
for v in R do

for w in V do
if {v,w} ∈ E then

R := R∪{w}

Syntax. We now present the syntax of definable while programs.

We now present the syntax of definable while programs. Fix a log-

ical structure A of atoms. We assume that there is a countably

infinite set of names for program variables. Program variables are

untyped, i.e. every program variable stores a hereditarily definable

set. Although cumbersome, one can encode other data structures

using hereditarily definable sets, e.g. the natural numbers can be

encoded by von Neumann numerals. A reasonable implementation,

such as [15], has more features, such as booleans or integer arith-

metic. Below we describe the possible instructions in a minimalistic

version of the language.

Expressions. We consider expressions of two types: terms and
conditions. A term e may be a variable, a constant ∅ or A, inter-
preted as the hereditarily definable set that contains all elements in

the universe of A. Terms can be built up using Boolean operations

and singleton, e1 ∪ e2, e1 ∩ e2, e1 − e2, {e1}, with the expected se-

mantics. Additionally, for each function symbol f of arity n in the

signature of A, there is a term f (e1, . . . , en ), which has the follow-

ing semantics: if at least one ei does not represent an atom, then

f (e1, . . . , en ) evaluates to ∅; otherwise, if all expressions e1, . . . , en
evaluate to atoms, then f (e1, . . . , en ) evaluates to the value of f
on the corresponding atom tuple.

A condition is a boolean combination using ∧,∨,¬ of statements

of the form e1 = e2, e1 ∈ e2, or R (e1, . . . , en ), where e1, e2 are terms

and R is a relation symbol in the vocabulary of A of arity n, and
R (x1, . . . ,xn ) denotes that the tuple (x1, . . . ,xn ) belongs to the

interpretation of the symbol R in A. (We adopt the convention that

R is false when at least one of its arguments is not an atom.)

Assignment. If x is a program variable and e a term, then x :=e
is an instruction, which loads the value of the expression e into the

variable x .
Sequential composition. If I and J are already defined programs,

then also I;J is a program which first executes I and then J.

Control flow. Suppose that c is a condition, I and J are already

defined programs. Then the following are programs:

if c then I else J while e do I

The for loop. The nonstandard construct in the programming

language is the following for loop. Suppose that x is a variable, e
a term, and I is an already defined program. Then the following is

also a program:

for x in e do I

The idea behind this program is that it executes I in parallel for all

elements of the set represented by e , with the results of the parallel

executions being aggregated using set union.

We remark that our list of operations allowed in the expressions

is redundant – a smaller, equivalent set of operations would al-

low only A, x ∪ y, f (x1, . . . ,xn ) and {x } as terms and x = y and

R (x1, . . . ,xn ) as conditionals, where x ,y,x1, . . . ,xn are variables,

and not expressions. However, we allow a more verbose syntax for

convenience.

Semantics. We now present the formal semantics of definable

while programs. A program state is a function which assigns hered-

itarily definable sets to the program variables appearing in the

program. If γ is a program state and e is a term or a condition, then

the semantics [[e]]γ is defined in the natural way, by evaluating

the expression e with values γ (x ) substituted for the variables x .
Intuitively, the for loop splits a single program state into many

parallel threads. This can be formalized by introducing superstates,
which keep track of many threads simultaneously. A superstate S is

an indexed family (Sτ )τ ∈T of states; the elements of the indexing

set T are called the threads of S . Intuitively speaking, the index τ is

going to be a stack of hereditarily definable sets, corresponding to

the values that are bound in successive nestings of the for loops.
The operational semantics of definable while programs is given

by the rules listed in Figure 1 on page 5. The relation S ›−[[ I ]]→ S ′

denotes that performing the instruction I in superstate S results in

superstate S ′. This is a partial function from the first two arguments

S and I to the third argument S ′; it is partial because while loops
might not terminate. The functions Split and Aggregate used in

Figure 1 are explained below.

The intuition behind the operation Split(S,x , e ) is that it de-
scribes what will happen if all threads in a superstate S execute

an a loop of the form for x ∈ e . Let S be a superstate, let x be a

program variable and let e be an expression. Let Split(S,x , e ) be the
superstate T defined as follows. The threads of T are pairs (τ ,v )
where τ is a thread of the superstate S and v is an element of the

set represented by expression e in the program state corresponding

to thread τ , i.e. v ∈ [[e]]Sτ . The program state corresponding to

thread (τ ,v ) in the superstateT is the following map from program

variables to hereditarily definable sets:

y 7→



Sτ (y) if y , x

v otherwise

The operation Aggregate(S ′) performs an inverse operation to

split; intuitively speaking it says what happens after finishing the

execution of a for loop. The operation is only defined if S ′ is a
superstate where every thread is of the form (τ ,v ), for some τ and

v . The result of the operation Aggregate(S ′) is a new superstate S
defined as follows. The threads of S are threads τ such that (τ ,v ) is
a thread of S ′ for some v . The value of a variable x in the program

4
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∅ ›−[[ I ]]→ ∅
(no-threads)

S ›−[[ I1 ]]→ S ′ S ′ ›−[[ I2 ]]→ S ′′

S ›−[[ I1; I2 ]]→ S ′′
(sequencing)

S ›−[[ skip ]]→ S
(skip)

S ›−[[ x:=e ]]→ S[x/e]

(assignment)
S[c] ›−[[ I ]]→ S+ S[¬c] ›−[[ J ]]→ S−

S ›−[[ if c then I else J ]]→ S+ ∪ S−
(if-then-else)

S[c] ›−[[ I ]]→ S ′ S ′ ›−[[ while c do I ]]→ S ′′

S ›−[[ while c do I ]]→ S ′′ ∪ S[¬c]

(while)
Split(S,x , e ) ›−[[ I ]]→ S ′

S ›−[[ for x in e do I ]]→ Aggregate(S ′)
(for)

Figure 1. Structural operational semantics of definable while programs. The notation used in the specific rules above is defined below.

(no-threads): ∅ denotes the superstate with empty set of threads. (assignment): if e is a term and x is a variable, then by S[x/e] we denote

the superstate S ′ such that for every thread τ of S , S ′τ (x ) = [[e]]Sτ and S ′τ (y) = Sτ (y) for y , x . (if-then-else) and (while): if S is a superstate

and c is a condition, then by S[c] we denote the superstate obtained from S by restricting to those threads τ for which [[c]]Sτ evaluates

to true.

state corresponding to thread τ in S is defined as follows. Consider

the possible values of variable x in threads of S ′ that begin with τ ,
i.e.

{S ′(τ ,v ) (x ) : v is such that (τ ,v ) is a thread of S ′}. (4)

If the set above contains one element, i.e. all threads beginning

with τ agree on variable x , and this element is furthermore an atom

a, then we define the value of variable x in thread τ of T to be a.
Otherwise (i.e. either some thread beginning with τ stores a non-

atom in variable x , or threads beginning with τ disagree on their

contents) then the value of variable x in thread τ of T is defined to

be the union of the set in (4), i.e. the set of elements that belong to

at least one set from (4).

Example 3.4. Suppose that S ′ is a superstate where the threads
are all pairs of atoms (a,b). Let S be the superstate Aggregate(S ′).
The threads of S are individual atoms a.

• Assume that for program variable x , the program state in-

dexed by (a,b) in S ′ stores the set {b}. Then the program

state indexed by a in S stores the following set in variable x :

A =
⋃
b ∈A

{b}

• Assume that for program variable y, the program state in-

dexed by (a,b) in S ′ stores the atom b. Then the program

state indexed by a in S stores the following set in variable y:

∅ =
⋃
b ∈A

b .

This set is empty because an atom has no elements.

• Assume that for program variable y, the program state in-

dexed by (a,b) in S ′ stores the atom a. Then the program

state indexed by a in S also stores a in variable z, because all
threads beginning with a have the same value in variable z.

3.3 Functions computed by definable while programs
A definable while program P is an instruction Iwith a distinguished
tuple of input variables x1, . . . ,xn and a distinguished tuple of out-
put variables y1, . . . ,ym . Such a program defines a partial function

which maps n-tuples of sets tom-tuples of sets, as expected. For-

mally, for a given tuple u1, . . . ,um of sets, let Sū be the superstate

with one thread denoted ε , such that Sūε is the program state which

assigns ui to the variable xi , and ∅ to all remaining variables. If

Sū ›−[[ P ]]→ S , then S also has only one thread ε , and we say that

the result of the definable while program P on input u1, . . . ,un
is the tuple of values v1, . . . ,vm , where vi = Sε (yi ). We also say

that the program P computes the partial function mapping a tuple

u1, . . . ,un to the result v1, . . . ,vm . We will usually restrict to the

case n =m = 1 for simplicity.

Note that according to the above definition, it makes sense to

run definable while programs on any input sets, not necessarily

hereditarily definable ones. It is not difficult to show that if the input

sets are hereditarily definable, then the result (if defined) is a tuple

of sets which are again hereditarily definable. Therefore, a definable

while program with one input variable and one output variable

induces a partial function f : hdefA→ hdefA. The following result
shows that definable while programs compute functions which are

computable in the sense of Definition 3.1.

Theorem3.5. Assume thatA is effective. Then every partial function
f : hdefA→ hdefAwhich is computed by a definable while program
over A is computable.

Theorem 3.5 was shown in [7] under a stronger assumption

that A is homogeneous and effective, and for arbitrary effective

atoms in [15], although for a slightly different semantics of while

programs. We will show a partial converse to the above theorem in

Theorem 3.8.
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3.4 Resource consumption
One of the principal goals of this paper is to define polynomial

time computation for hereditarily definable sets, and therefore we

need some way of bounding the resources of while programs. In

this section, we begin by defining the resource consumption for a

definable while programs as a hereditarily definable set. Later in

Section 4 we discuss how to measure the resource consumption

numerically, in the special case when A is (N,=).
Let A be an arbitrary logical structure. Suppose that P is a while

program, which uses program variables x1, . . . ,xn and no others.

Define a new program P’ as follows. It has the same program vari-

ables as P, plus two fresh program variables (initially storing empty

sets) called time and space. The code of P’ is the same as P, except
that after each instruction we append the following code:

time := time ∪ {time};

space := space ∪ {x1, . . . ,xn }

The idea is that the time variable stores an instruction counter

represented as a von Neumann integer; and this counter is incre-

mented after each instruction. The space variable stores all sets

that ever appeared during the computation. The input variables of

P’ are the same as of P, whereas the output variables are the vari-
ables time and space. For a while program Pwith n input variables

and an n-tuple x̄ of hereditarily definable sets x1, . . . ,xn ∈ hdefA,
define the time consumption and the space consumption of P over
x̄ to be the pair of values produced by the program P’ on input

x1, . . . ,xn . The resource consumption of P over x̄ is the union of

the time consumption and the space consumption. We denote the

time, space and resource consumption by time(P, x̄ ), space(P, x̄ ),
and resource(P, x̄ ), respectively. These values are undefined if the

program does not terminate on x1, . . . ,xn . Note that the time con-

sumption is a von Neumann encoding of a natural number, but

space consumption has no immediate numerical meaning so far.

Constant time operations. We distinguish a special class of func-

tions which can be defined by a while programwithoutwhile loops.
Say that a function f which maps n-tuples of hereditarily definable

sets to m-tuples of hereditarily definable sets is a constant time
operation if there is a definable while program Pwhich does not use

while loops and defines f , i.e., f (u1,u2, . . . ,un ) = (v1, . . . ,vm ) if
and only if P outputs v1, . . . ,vm given input u1, . . . ,un . Note that
the time consumption of a constant time operation is bounded by a

constant, as the name suggests.

Example 3.6. The following functions are constant time opera-

tions:

• The function pair which maps a pair of inputs x ,y to the

Kuratowski encoding of (x ,y), that is {x , {x ,y}}.
• The reverse operation, unpair which returns a pair x ,y if

the argument is the Kuratowski encoding of (x ,y), and the

empty set otherwise,

• The Cartesian product x ,y 7→ x × y, as well as boolean
operations x ,y 7→ x ∪ y, x ,y 7→ x ∩ y, x ,y 7→ x − y, and
x 7→

⋃
x .

3.5 Definable state machines
We introduce a sequential model of computation equivalent to

definable while programs, but more in the spirit of Turing machines

and similar to abstract state machines introduced by Gurevich (see

Section 4.2 for a discussion). A definable state machineM consists of

four constant time operations Input, Output, Step, and Halt, where

each takes one input and one output. For a hereditarily definable

set x given on input, define the nth state qn of the run of M on

input x inductively: q0 = Input(x ) and, for n ≥ 0, if qn is defined

and Halt(qn ) = ∅, then qn+1 = Step(qn ). The machine halts on
input x if the run is finite, in which case we define the output as
Output(qn ), where qn is the last state of the run.

Definable statemachines can be seen as a special case of definable

while programs with one input variable, one output variable and

with only one while loop, of the form

I ; while (x , ∅) do J ; K ,

where I , J ,K are constant time operations. Conversely, we show

that definable while programs can be simulated by definable state

machines, preserving the used resources.

Theorem 3.7. Fix a logical structure A. For every definable while
program P there is a definable state machineM such that for every
hereditarily definable set x ,M halts on x if and only if P halts on x .
Moreover, ifM halts on x , then the following properties hold:

• The output ofM on x is equal to the output of P on x ,
• The number of steps performed byM on input x is polynomial
in time(P,x ),
• Each state is a subset of L(space(P,x )), where L is a constant
time operation depending only on P.

3.6 While programs are computationally complete
In this section, we restrict our attention to oligomorphic atoms,

which we now define. An automorphism of A is defined to be any

bijection of its universe with itself which preserves and reflects all

relations and preserves the functions; these automorphisms form a

group. If this group acts on a set X , then we say that two elements

x ,y ∈ X are in the same orbit of the action if there is an atom

automorphism π such that π · x = y. This defines an equivalence

relation on X , whose equivalence classes are called orbits of X . The

orbit containing an element x ∈ X is called the orbit of x in X .

For every number n, the automorphisms of A act on An compo-

nentwise. We say that A is oligomorphic if for every dimension n,
there are finitely many orbits of An under this action. A theorem

independently proved by Engeler, Ryll-Nardzewski and Svenonius

(cf. Theorem 7.3.1 in [13]) says that for a countable structure, being

oligomorphic is equivalent to having an ω-categorical theory (a

theory is ω-categorical if any two countable models of the theory

are isomorphic). Moreover, if A is oligomorphic, then every orbit

of An is defined by a first-order formula with n free variables. For

example, (N,=) and (Q, ≤) are oligomorphic, and (N, ≤) is not.
If x is a hereditarily definable set defined by a set builder expres-

sion α and π is an atom automorphism, then π can be applied to

the atoms in x , to the atoms in the elements of x , etc. recursively,
yielding another hereditarily definable set π · x , which can be de-

fined by the set builder expression α in which the parameters are

mapped via π . Therefore, the group of atom automorphisms acts on

hereditarily definable sets. We say that a finite set of atoms S sup-
ports a hereditarily definable set x if π · x = x holds for every atom

permutation which fixes S pointwise. In particular, the parameters

appearing in a set builder expression α support the hereditarily

definable set defined by α .

6
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A (possibly partial) function f from hereditarily definable sets to

hereditarily definable sets is called equivariant if π · f (x ) = f (π ·x )
holds for every hereditarily definable x and atom automorphism π .
The semantics of definable while programs is invariant under atom

automorphisms, and hence we see that every f computed by such a

program is equivariant. Theorem 3.8 below shows that f will also be
computable in the sense of Definition 3.1, and furthermore, under

suitable assumptions on the atoms, all equivariant computable

functions are of this form.

Theorem 3.8 (Computational completeness of definable while pro-

grams). Assume that A is effective, oligomorphic and that, given
n ∈ N, one can compute a first-order formula with 2n free vari-
ables which defines the “same orbit” relation on An × An . Then
the following conditions are equivalent for every partial function
f : hdefA→ hdefA.

1. f is computed by a while program over A.
2. f is equivariant and computable.

Recall that Theorem 3.5 shows the implication 1→2 when A is

only assumed to be effective. The original contribution is the im-

plication 2→1. Roughly speaking, the assumptions of the theorem

(being oligomorphic and computing formulas for the “same orbit”

relation) are used to give a while program which inputs a hered-

itarily definable set x and reverse engineers it to obtain a binary

string describing a set builder expression for x . Nevertheless, we
do not know if we really need the assumptions. The proof of the

theorem is in the appendix.

4 Fixed-dimension polynomial functions on
hereditarily definable sets

In the previous sectionwe discussed computable functions on hered-

itarily definable sets, without bounding the resources used by the

computation. We now turn to the main contribution of this paper:

a proposal for “polynomial time” computation.

The first idea that comes to mind is to consider to take Defi-

nition 3.1 and simply add the requirement that F ′ is computable

in polynomial time. This is not a good idea, as long as the atom

structure is nontrivial. The reason is that when A has at least two

elements, then even emptiness is hard: it is pspace-hard to check if

a given set builder expression describes the empty set. This lower

bound follows from a straightforward reduction from qbf. For this

reason, all but the most trivial transformations on hereditarily de-

finable sets are going to be pspace-hard if we measure running

time in the traditional way. Our approach to this problem is to use

the setting of parametrised complexity, where the running time of

the algorithm is measured only when the value of a certain param-

eter is fixed. The parameter used is the dimension of a set builder

expression, as defined below.

Definition 4.1 (Dimension and size of set builder expressions).
Define the dimension dimα of a set builder expression α to be the

number of distinct variables that it uses. This includes both the

variables used in set expressions, as well as the quantified variables

used in guards. Define the size ||α || of a set builder expression α to

be the number of distinct subexpressions in it plus the number of

distinct subformulas of the formulas used in the guards.

In the above definition it is important that we count distinct

variables, i.e., if the same variable is reused by binding it several

times, then it only gets counted once. It is also important that di-

mension does not count parameters. In the appendix, we explain

why parameters are not counted; the idea is that counting parame-

ters would break the connections to finite model theory as stated

in Fact 1 and Theorem 2. Note also how in the definition of ||α || we
count the number of distinct subexpressions and subformulas, as

opposed to simply counting the number of symbols needed to write

the expression down. The latter method can yield exponentially

larger sizes, as witnessed by von Neumann numerals. By analogy,

our method of counting the size is similar to circuit size as opposed

to formula size.

Example 4.2. All of these examples are for A being the ordered

rational numbers. The set builder expression

{1, 2, {2, 4}, {1, 2, {5}}}

has dimension zero, because it uses no variables. The following set

builder expression has dimension 2, because it uses variables x ,y,
even though variable x gets bound a second time:

{{x } ∪ {x : for x ∈ A such that x , y} : for x ,y ∈ A

such that x , y ∧ x , 5}.

The following expression has dimension 4 because of the variables

used in the guards:

{x : for x ∈ A such that ∃y ∃z ∃u 5 < y < z < u < x }.

In the example above, the guard could be replaced by the quantifier-

free formula 5 < x , reducing the dimension to 1.

Definition 4.3 (Fixed-dimension polynomial algorithm). Let A be

an effective structure. An algorithm which inputs and outputs set

builder expressions is called fixed-dimension polynomial if there
exist functions

f : N2 → N д : N→ N

with the following properties:

1. the function f is polynomial once the first argument is fixed.

2. if the input is α ∈ setbA then:

• the running time of the algorithm is at most f (dimα , |α |);
• the dimension of output expression is at most д(dimα ).

A total function F : hdefA→ hdefA is called fixed-dimension poly-
nomial if there is a fixed-dimension polynomial algorithm which

inputs a set builder expression α and outputs a set builder expres-

sion representing the value of F on the set defined by α .

A typical example of f would be (k,n) 7→ nk . It is not hard to

see that fixed-dimension polynomial functions are closed under

compositions.

An algorithm which always returns 0 or 1 (encoded as ∅ and {∅})

can be seen as a language recognizer. Note that a language of set

builder expressions is recognized by a fixed-dimension polynomial

algorithm if it belongs to the class xp from parametrised complexity,

with the parameter being dimension. An alternative solution would

be to use fixed-dimension tractability, i.e. algorithms with running

time at most f (dimα ) · |α |c for some computable f : N→ N and

some c ∈ N. The following lemma shows that the alternate solution

is a bad idea. For the definition of the W hierarchy and background

on parametrised complexity, see [8].

7
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Lemma 4.4. If theW hierarchy does not collapse and A is infinite,
then no fixed-dimension tractable algorithm can decide if a set builder
expression defines the empty set.

From now on we do not consider fixed-parameter tractable algo-

rithms, and study only fixed-dimension polynomial ones.

Example 4.5. Assume that the atoms are (N,=). Then the fol-

lowing operations on pairs of hereditarily definable sets x ,y are

fixed-dimension polynomial: testing x = y, x ∈ y and x ⊆ y, as
well as computing x ∩ y,x ∪ y,x − y. These are special cases of
Lemma 4.10 below, which states that every constant time operation

is fixed-dimension polynomial. It is very important that we use the

atoms (N,=). For some oligomorphic structures such as the random

graph, set emptiness is np-hard even for dimension 1 inputs (the

proof is in the appendix).

When the atoms are (N,=), the following problems are also fixed-

dimension polynomial for inputs consisting of hereditarily defin-

able objects: graph reachability, automata emptiness, context-free

grammar emptiness, automata minimisation. This follows from 4.11

below, as all these problems can be implemented by the usual fix-

point algorithms. Note that all these problems become undecidable

when the atoms are Presburger arithmetic, or even N with the

successor relation.

Connection to finite model theory. The central question in fi-

nite model theory is understanding which properties of structures

(typically, graphs are considered without loss of generality) can be

decided in polynomial time. More precisely, a class of graphs is said

to be in order-invariant polynomial time if there is a polynomial-time

algorithm (say, Turing machine), which decides membership given

an incidence matrix of the graph, such that the algorithm gives the

same answer for incidence matrices describing isomorphic graphs.

The following observation relates order-invariant polynomial-time

to our setting.

Fact 1. Assume that the atomsA are (N,=). A class L of finite graphs
is in order-invariant polynomial-time if and only if there is a fixed-
dimension polynomial (equivalently, fixed-dimension tractable) algo-
rithm deciding membership in {G ∈ L : all vertices are from A}

The reason for the above fact is that, when all vertices are from

A, then a graph has dimension zero; and for such inputs fixed-

dimension polynomial (and tractable) collapses to polynomial.

4.1 Tractable while programs
In the previous section, we defined what it meant for a function

hdefA→ hdefA to be computable in fixed-dimension polynomial

time. In this section we define a resource bounded version of while

programs which can only compute fixed-dimension polynomial

time functions. Such programs are easier to write because they

directly talk about hereditarily definable sets and not their repre-

sentations.

The results we present in this section assume that the atoms

A are (N,=). One important property of these particular atoms is

the existence of least supports, in the following sense: for every

x ∈ hdefA there is a finite set of atoms, called its least support, which
is contained in every support of x . Existence of least supports for
(N,=) is shown in [16].

Dimension and size of hereditarily definable sets. In Section 3.4
we have defined the resource consumption of a definable while

program, which is a hereditarily definable set. When defining re-

source bounded while programs, we will want to say that, on input

x ∈ hdefA, the resource consumption of a program is bounded by

a polynomial in the size of x , whose degree is allowed to depend

on the dimension of x . For this to make sense, we need to be able

to talk about the dimension of x , as well as the size of x and its

memory consumption, seen as natural numbers. In other words,

we need notions of dimension and size for hereditarily definable

sets themselves, and not for the set builder expressions defining

them (as we have done before). One approach would be to use the

dimension and size of expressions that are optimal in some sense.

The following definition proposes a different approach; albeit one

that strongly depends on the fact that the atoms (N,=) admit least

supports.

Definition 4.6 (Dimension and size of hereditarily definable sets).
Let A be (N,=) and let x ∈ hdefA. Let x∗ be the transitive closure
of x , i.e. the set which contains all elements of x , all elements of all

elements of x , and so on recursively. Define the dimension of x to

be

dimx
def

= max

y∈x∗
| sup(y) − sup(x ) |,

where sup(·) denotes the least support. Define the orbit size of x ,
denoted by ||x ||, to be the number of elements y ∈ x∗ with respect

to the group of those atom automorphisms which are the identity

on the least support of x .

The following lemma is the key technical result used in the

proof of our main result, Theorem 4.9 below. It shows that the

size and dimension of a hereditarily definable set, as given above,

is approximately the same as the optimal size and dimension of

a set builder expression that defines it. Furthermore, the optimal

expression can be computed in fixed-dimension polynomial time.

Therefore, up to fixed-dimension polynomial corrections, there is a

robust notion of “size” for hereditarily definable sets; in particular

the alternative approach discussed before Definition 4.6 would be

essentially equivalent.

Lemma 4.7. There exists a function f : N2 → N which is polyno-
mial when the first coordinate is fixed with the following properties.

1. For every x ∈ hdefA and α ∈ setbA defining x , dimx ≤
dimα and ||x || ≤ f (dimα , ||α ||).

2. For every x ∈ hdefA there exists some α ∈ setbA which de-
fines it such that dimα ≤ 2 dimx and ||α || ≤ f (dimx , ||x ||).
Furthermore, α can be computed in fixed-dimension polyno-
mial time based on a set builder expression representing x .

Resource bounded while programs. Having defined the resource
consumption of a while program, as a hereditarily definable set, and

knowing how to measure the size and dimension of a hereditarily

definable set, we can introduce our proposal for resource bounded

while programs.

Definition 4.8. Assume that A is (N,=). We say that a while pro-

gram P with a single input variable is fixed-dimension polynomial if
there is a function f : N2 → N, which is polynomial once the first

argument is fixed, and a computable function д : N→ N, such that

dim(resource(P,x )) ≤ д(dimx ) and

||resource(P,x ) || ≤ f (dimx , ||x ||) for x ∈ hdefA.
8
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We can extend while programs with a counting expression,

which is a term of the form |x |, whose semantics is the von Neu-

mann numeral representing the size of x when x is a finite set, and

the empty set if x is an infinite set. This operation can be simulated

by a definable while program, but it would take exponential re-

sources to do it, even for x of dimension zero. If such an operation

is allowed, then we talk about definable while programs with count-
ing. Theorem 3.7 remains valid for while programs with counting,

where the definable state machines can use counting expressions

in the operations Input,Output, Step,Halt. Definition 4.8 is easily

extended to programs with counting.

The following theorem is our main result. Its proof is given in

the appendix.

Theorem 4.9. Assume that the atoms are (N,=). For every while
program with counting which is fixed-dimension polynomial (in the
sense of Definition 4.8), the function it computes is fixed-dimension
polynomial (in the sense of Definition 4.3).

We make no conjectures about the converse implication, when

it comes to decision problems (for general computational problem,

a negative result follows from Rossmann’s result, see below). The-

orem 4.9 follows rather easily from Theorem 3.7, Lemma 4.7, and

Lemma 4.10 below. The proofs are in the appendix.

Lemma 4.10. Assume that the atoms are (N,=). Every constant
time operation is fixed-dimension polynomial.

Fixpoint operations. As an example of a class of fixed-dimension

polynomial computable functionswe consider bounded least fixpoint
operations, defined below.

Let Input, Bound, Step, Output be constant time operations. De-

fine the function f which, given inputx , proceeds in steps as follows.
Let q0 = Input(x ), and inductively define qn+1 as qn ∪ Step(qn ).
If qn ⊈ Bound(x ) for some n, then f (x ) is undefined. Otherwise,
q0 ⊆ q1 ⊆ q2 ⊆ . . . ⊆ Bound(x ). As the atoms are oligomorphic, it

is easy to see that the sequence q0,q1, . . .must stabilize, i.e., there is

an n such that qn = qn+1. Define f (x ) as Output(qn ). This finishes
the definition of the bounded fixpoint operation f defined by Input,

Bound, Step and Output.

As an example, the program in Example 3.3 implementing graph

reachability computes a function which is bounded fixpoint op-

eration. Other examples include emptiness of context-free gram-

mars and the reachability problem for tree automata. Clearly, every

bounded fixpoint operation f is computable by a definable while

program.

Lemma 4.11. Assume that the atoms are (N,=). Every bounded
least fixpoint operation is fixed-dimension polynomial.

Proof. Let f be a least fixpoint operation given by the constant

time operations Input, Bound, Step, Output. Let P be the natural

implementation of f as a definable while program, obtained from

implementations of the four operations.

We need to bound the time and space consumption of P on

a given input x . To bound the time, it is sufficient to bound the

number n for which stabilization occurs, i.e., qn = qn+1, since the

output f (x ) is computed by a composition of n + 2 constant time

operations. Let S0 be the set of atoms which occur as parameters

in the definitions of the operations Input, Bound, Step, Output. It is

easy to show by induction that if S is the least support of x , then
for each i , the set qi is again supported by S ∪ S0. Also, the set

Bound(x ) is supported by S ∪ S0. As qi ⊆ Bound(x ), it follows that
qi is a union of orbits of Bound(x ) under the action of the group

G = {π : π is a permutation of A fixes all atoms from S ∪ S0}

As the sets qi form an increasing chain, it follows that the moment

of stabilization n is bounded by the number of orbits of Bound(x )
under the action of G. We will show that this number of orbits is

fixed dimension polynomial.

Consider the operation д which maps an input x to the triple

(x ,Bound(x ), S0). This is clearly a constant time operation, com-

putable by a definable while program B obtained from the while

program defining Bound. By Lemma 4.11, the operation д is fixed-

dimension polynomial, so ||resource(B,x ) || ≤ p (dimx , ||x ||) for some

function p : N2 → N which is polynomial whenever the first

coordinate is fixed. As д(x ) ⊆ resource(B,x ) and S ∪ S0 is the

least support of д(x ), it follows that the number of orbits of д(x )
under the action of G is equal to ||д(x ) ||, which is bounded by

||resource(B,x ) || ≤ p (dimx , ||x ||). Therefore, the number of steps

performed by the least fixpoint computation of f (x ) is bounded
by p (dimx , ||x ||). As each step is computed by a constant time op-

eration, it follows from Lemma 4.11 that the running time of P
on x is bounded by p′(dimx , ||x ||), for some function p′ which is

polynomial in the second component.

As for the space consumption, from the above discussions it

follows that space(P,x ) ⊆ space(B,x ) and the least support of

space(P,x ) is contained in the least support of space(B,x ). In par-

ticular, ||space(P,x ) || ≤ ||space(B,x ) || ≤ p (dimx , ||x ||).
The existence of a computable bound on dim(resource(P,x )) is

immediately obtained from the corresponding computable bounds

for the operations Step, Bound, Input, and Output. □

4.2 Choiceless Polynomial Time and Abstract State
Machines

In this section, we review connections to Choiceless Polynomial

Time and Abstract State Machines.

Connection to Choiceless Polynomial Time. Recall that heredi-
tarily definable sets of dimension zero are the same as hereditarily

finite sets. Over hereditarily finite sets, we already have a proposal

for polynomial time computation, namely c̃pt, or more accurately

c̃pt+c. Let A = (N,=). Below, we consider finite relational struc-
tures are over a fixed signature, and assume that their elements

are elements of A. In particular, they are hereditarily finite sets

over A. In this way, c̃pt and c̃pt+c take as their inputs finite rela-

tional structures, and output hereditarily finite sets. We omit the

definitions here, and refer to [17] for a compact definition. We now

briefly discuss the relationship to definable while programs. The

definitions of c̃pt and c̃pt+c are based on the notion of comprehen-
sion terms. It is clear that constant time operations not using the

constant A are equivalent in expressive power to comprehension

terms. A c̃pt program is specified by by three comprehension terms,
Step, Halt, and Out, and, given on input x , proceeds by applying

to the current value the term Step until Halt produces true, and
the produced output is obtained the term Out to the current value.

Moreover, it is required that both the running time and the space

consumption (defined in the same way as in our paper) are bounded

by a polynomial in terms of the number of elements of the input

structure. Note that if a finite relational structure K has n elements,

9



LICS 2018, July 9–12, 2018, Oxford, Great Britain Mikołaj Bojańczyk and Szymon Toruńczyk

then ||K|| is bounded by poly (n) for a polynomial depending only

on the signature of K.
The following fact therefore summarizes the correspondence

between c̃pt and definable while programs.

Fact 2. A partial function mapping finite structures over a fixed
relational signature to hereditarily finite sets is in c̃pt if and only if
it is computed by a definable while program P not using the constant
A, such that

||resource(P,x ) || ≤ poly ( ||x ||).

The equivalence also holds if both formalisms are enriched with count-
ing.

Proof sketch. By Theorem 3.7, we may replace definable while pro-

grams by definable state machines in the formulation. The state-

ment then follows, as comprehension terms are equivalent to con-

stant time operations, and the resource bounds are calculated in

the same way, up to a polynomial. □

The above fact shows that c̃pt+c can be seen as the dimension

zero case of resource-bounded definable while programs, as all the

values occurring in the computation are zero-dimensional sets, i.e.,

hereditarily finite sets. Another use of the theorem is that it pro-

vides an alternative presentation of c̃pt+c, which we believe is more

programmer-friendly. Furthermore, it provides a new angle at at-

tacking the open problem whether c̃pt+c captures order-invariant

polynomial time: although Rossman [17] proved that c̃pt+c cannot

define all functions which are polynomial-time computable and

order-invariant, for decision problems, the analogous question re-

mains open (cf. Problem 3 in [11]). By Fact 2 and Fact 1, proving a

converse implication in Theorem 4.9 for decision problems would

provide a positive answer to the problem. Although probably prov-

ing this is not more feasible than resolving the open problem, it

might be the case that refuting the converse implication is easier

than separating c̃pt+c from order-invariant polynomial time.

Connection to Abstract State Machines Note that the syntax

and semantics of definable while programs make sense even when

we allow the inputs to be arbitrary sets, not just hereditarily de-

finable ones. Call such unrestricted while programs abstract while
programs over A, where A is a fixed background logical structure.

Unless specified otherwise, we assume A = ∅, and then simply talk

about abstract while programs. Similarly, allowing definable state

machines to input arbitrary sets yields a model which we shall call

abstract state machines (over A). Note that Theorem 3.7 remains

valid in this setting, so abstract while programs are equivalent to

abstract state machines, and the equivalence preserves time and

space resources.

Abstract state machines as defined above are very similar to the

ASM’s of Gurevich. Note that there are many variants of ASM’s,

aimed at modeling sequential computation [12], parallel computa-

tion [1], distributed computation [9], quantum computation [10],

etc. Furthermore, many of those models are equipped with various

features which are meant to make them useful in practice (such

as interaction). Our abstract state machines are very closely con-

nected to the parallel ASM’s defined by Blass and Gurevich [1].

Our for operation corresponds to the operation do-forall of par-
allel ASM’s. We omit the definitions here. We only remark that

one difference is that in ASM’s, states are required to be logical

(first-order) structures, whereas in our machines, states are sets. As

everything in mathematics, logical structures can be seen as sets.

Conversely, a set x can be viewed as a relational structure (x∗, ∈,x ),
as follows. The universe is the transitive closure x∗ of x , consisting
of all elements of x , elements of elements of x , etc. The relation
∈ is the binary membership relation among elements of x∗. The
relation x is a unary predicate selecting those elements of x∗ which
are elements of x .

Another difference is that in parallel ASM’s, the semantics of

aggregation is based on multisets, rather than on sets.
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The following sections are appendices containing the proofs

omitted from the paper.

A While programs
A.1 Representing states and superstates.
We make several simple but fundamental observations concerning

the semantics of while programs, in particular, that states can be

represented using hereditarily definable sets, as follow.

A hereditarily definable function f : X → Y between hereditar-

ily definable sets X ,Y is a hereditarily definable subset of X × Y
which is (the graph of) a function. In particular, we may consider a

hereditarily definable set of hereditarily definable functions, etc. We

assume that program variables are identified with natural numbers,

encoded as hereditarily definable sets via von Neumann’s encoding

representing n as vN(n) = {vN(0), . . . , vN(n−1)}. We suppose that

the program uses n variables, and the set of its variables is equal

to vN(n). In particular, all program states are hereditarily defin-

able functions, as they map (finitely many) variables to hereditarily

definable states.

We represent a superstate S = (Sτ )τ ∈T as a function from S :

T → {Sτ : τ ∈ T }, where S (τ ) = Sτ . Let the initial thread ε be
represented by ∅. In particular, the initial superstate S x̄ (with one

thread and program state assigning x̄ to the input variables and ∅ to

the remaining variables) is a hereditarily definable set. By induction

on the structure of the instruction I we easily obtain the following.

Lemma A.1. Let I be an instruction and S, S ′, S ′′ superstates. Then
S ›−[[ I ]]→ S ′ and S ›−[[ I ]]→ S ′′ implies S ′ = S ′′. Moreover, S and
S ′ have the same sets of threads, i.e., dom S = dom S ′. Furthermore,
if S is hereditarily definable, then S ′ is hereditarily definable, too.

In particular, since S x̄ is hereditarily definable when x̄ is a tu-

ple of hereditarily definable sets, we may always assume that all

superstates are hereditarily definable.

A.2 Proof of Theorem 3.7
We start by observing that the operations used in the rules of the

semantics of while programs (cf. Fig 1) are constant time operations.

LemmaA.2. Fix a finite, hereditarily definable set of variablesV . Let
c be a condition, e an expression, and x a variable. Then the following
operations, defined in Figure 1, are constant time operations:

• S 7→ S[c],
• S 7→ S[x/e],
• S 7→ Split(S,x , e ),
• S 7→ Aggregate(S ).

Proof. By writing while programs without while loops. □

A derivation is a finite, ordered, rooted tree whose nodes are

labeled by assertions of the form S ›−[[ I ]]→ S ′ where S, S ′ are
superstates and I is an instruction, with the property that if a node

is labeled by an assertion c then the sequence c1, . . . , cn of labels of

its children (from left to right) is such that
c1 c2 ... cn

c is a rule of the

semantics of while programs. We say that the derivation is a deriva-
tion of the assertion labeling the root. By definition, S ›−[[ I ]]→ S ′

if and only if there is a derivation of S ›−[[ I ]]→ S ′. Note that our
semantics is such that for any superstate S and instruction I, there
is at most one derivation of an assertion of the form S ›−[[ I ]]→ S ′.
We say that a derivation uses superstates satisfying a property P if

all superstates occurring in the labels of the nodes of the derivation

satisfy property P.

For a superstate S , let mem(S ) denote the set of all values of

all program variables in all program states of the superstate S , i.e.,
mem(S ) =

⋃
x {γ (x ) : γ ∈ rng S }, where the union ranges over all

program variables x .

Lemma A.3. Let P be a while program and x an input such that
P terminates on input x . Then the derivation Sx ›−[[ P ]]→ S ′ uses
superstates S with mem(S ) ⊆ space(P,x ). Moreover, the number of
nodes of the derivation is bounded by poly(time(P,x )).

Lemma A.4. Fix a while program P. There is a constant time opera-
tion K such that for every input x for which P terminates, the deriva-
tion of Sx ›−[[ P ]]→ S ′ uses superstates with S ⊆ K (space(P,x )).

Proof. We show that there is a constant time operation D such that

dom S ⊆ D (space(P,x )), and a constant time operation R such

that rng S ⊆ R (space(P,x )). This will imply S ⊆ D (space(P,x )) ×
R (space(P,x )), yielding the lemma.

Assume that the program P uses n program variables, corre-

sponding to the elements of vN(n). For a hereditarily definable set

X , let R (X ) be the set of all valuations from vN(n) to X . Note that R
is a constant time operation. By definition of mem(S ) and of R we

immediately get that for every superstate S , rng S ⊆ R (mem(S )).
In particular, since by Lemma A.3, mem(S ) ⊆ space(P,x ) for every
superstate S in the derivation of Sx ›−[[ P ]]→ S ′, we get that every
such superstate S satisfies rng S ⊆ R (space(P,x )).

We now proceed to proving that dom S ⊆ D (space(P,x )) for
every superstate S appearing in the derivation, where D is some

constant time operation.

Observe that by the semantics of while programs (Fig. 1), partic-

ularly, the definition of the Split operation, for every superstate S
appearing in the derivation, every thread τ ∈ domS is a pair (τ ′,v ),
which consists of a thread τ ′ from some other superstate, and some

value v . Define the length of a thread inductively as follows: the

length of the initial thread ε is 0; the length of a thread of the form

(τ ′,v ) is one plus the length of the thread τ .
Define the for-depth of an instruction I as the maximal nesting

of for loops in I. Formally, this is defined by induction on the

structure of I, as expected.

Let Yd denote the set of all tuples of elements of Y of length d ,
where a tuple of length d is encoded as a pair (t ,y), for t a tuple
of length d − 1 and y ∈ Y , and ε is the unique tuple of length 0.

By Y ≤d we denote the set of all tuples of length at most d . Note

that for every fixed d , the function Y 7→ Y ≤d is a constant time

operation.

The following lemma follows by an easy induction on the size

of the derivation, and the only non-trivial case to check in the

inductive step is the for rule.

Lemma A.5. If I is an instruction of for-depth d , dom S ⊆ Y ≤l

and every superstate T in the derivation of S ›−[[ I ]]→ S ′ satisfies
mem(T ) ⊆ Y , then it also satisfies dom (T ) ⊆ Y ≤l+d .

Let dP denote the for-depth of the program P; this is a fixed

constant. In particular, taking l = 0 and d = dP, by Lemma A.3 we

get that any derivation of Sx ›−[[ P ]]→ S ′ uses superstates S such

that dom S ⊆ D (space(P,x )), where D (Y ) = Y ≤dP . This ends the
proof of Lemma A.4. □
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Proof of Theorem 3.7. To prove Theorem 3.7, we first consider the

usual recursive procedure sem(S, I) which inputs a superstate S and
an instruction I and returns the superstate S ′ such that S ›−[[ P ]]→ S ′.
The procedure recursively applies the rules of the semantics in a

left-most fashion: when applying a rule with two premises, first

compute the derivation of the left premise, and then of the right

premise. Assuming that P terminates on x , when executing the pro-

cedure sem on the superstate Sx and P, the procedure sem is invoked
(by recursive calls) a number of times polynomial in time(P,x ), by
Lemma A.3. In each recursive call, the algorithm needs to compute

a bounded number of constant time operations listed in Lemma A.2,

or to test whether the current superstate is empty (to determine

whether the no-threads rule should be applied). Moreover, in each re-

cursive call, the current superstate S is contained in K (space(P,x )),
by Lemma A.4.

To minimize the use of the call stack, we optimize the recursion

in the case of the while rule. To evaluate

sem(S,while c do I),

the procedure executes the following pseudocode which accumu-

lates in a variable T the threads which have already terminated

the while loop (the pseudocode describes a usual while program

operating on expressions representing hereditarily definable sets,

and not a definable while program):

T:=S[¬c];
while (S[c], ∅) do

S:=sem(S[c], I);
T:=T∪S[¬c];

return T;

With this adaptation, we see that when evaluating sem(S, I) for
any instruction I, each recursive call invokes sem(S ′, I′) with an

instruction I′ which is strictly contained in I. Therefore, the depth
of the recursion remains bounded by a constant c depending only

on the program P.
To finish the proof of Theorem 3.7, we convert the recursive algo-

rithm to a sequential computation on a hereditarily definable state

machine, by implementing a stack for storing the local variables for

each recursive call. Recall that we only use stacks of length bounded

by c , for some constant c . A stack storing values x1, . . . ,xℓ ∈ X ,
where ℓ ≤ c , is represented as a relation σ ⊆ X × {1, . . . , c}, namely

σ = {(xi , i ) : 1 ≤ i ≤ ℓ} (where 1, . . . , c are represented as von

Neumann numerals).

Lemma A.6. Let T begin a constant time operation with k input
variables and m output variables. For a stack σ with at most c , at
least k elements, let applyT (σ ) denote the stack obtained from σ by
popping the top k elements x̄ and pushing the l elements of the result
T (x̄ ), and applyT (σ ) = ∅ if σ has less than k elements. Then applyT
is a constant time operation.

Proof. By writing a while program without while loops. □

When simulating the recursive algorithm, the stack stores either

superstates S or symbols from a finite alphabet Σ depending only on

P (which consists of subinstructions I of P, encoded as hereditarily

definable sets). Let L(X ) = (K (X ) ∪ Σ) × {1, . . . , c}, where K is the

constant time operation from Lemma A.4. Since the height of the

control stack is bounded by a constant c , at each moment of the

computation, the stack is a subset of L(space(P,x )). Moreover, the

operation L is a constant time operation. This proves Theorem 3.7.

□

B Oligomorphic atoms
B.1 Orbits and types
We recall some basic facts concerning orbits and logical types.

See [13] for an extensive overview, and [3] in the specific context

of sets with atoms.

Let S be a finite set or tuple of atoms. An S-automorphism is an

atom automorphism which fixes S pointwise. Recall that S supports
x if π · x = x for every S automorphism π .

If the structure A is oligomorphic, then one can show that for

every hereditarily definable set x and its support S , the set of S-
automorphisms acts on the set x , inducing finitely many orbits.

Each of these orbits is called an S-orbits contained in x . On the

other hand, if y ∈ x , then the S-orbit of y is the S-orbit contained in
x to which y belongs to.

A countable relational structureA is homogeneous if every partial
isomorphism f : A→ A between finite substructures of A extends

to an automorphism π : A→ A.
If ā is a tuple of elements of A, then the atomic type of ā is

the conjunction of all literals formed by (possibly negated) atomic

relations in the vocabulary of A, which hold of the elements of ā.
More generally, if ū ∈ A is a tuple of parameters, then the ū-atomic

type of ā is defined as above, but in the structure A extended by

constant symbols for the elements of ū.
It follows from the definition of homogeneity that two tuples ā

and
¯b are in the same orbit of the action of A if, and only if, the

atomic type of ā is equal to the atomic type of
¯b, up to syntactic

equivalence.

It follows that every homogeneous structure over a finite signa-

ture is oligomorphic.

If S is a finite set or tuple of elements of A, then we say that

two tuples of atoms ā and
¯b are in the same S-orbit if there is

an atom permutation π which maps ā to
¯b and fixes S pointwise.

Generalizing the above observation, assuming A is homogeneous,

ā and
¯b are in the same S-orbit if and only if they have the same

S-atomic types.

B.2 Proof of Theorem 3.8
The proof of the implication from 1 to 2 in Theorem 3.8 is omitted

here, and can be found e.g. in [15]. We only mention that another

approach would be to use Theorem 3.7, and prove the following.

Lemma B.1. Assume that A is effective. Then every constant time
operation is computable.

The rest of Section B.2 is devoted to proving the implication

from 2 to 1 of Theorem 3.8. Let f be as in the assumptions of the

theorem, and let r : setbA → setbA be a representation of f . We

need to show that if f is computable under representation r then it

can be computed by a while program. The key observation is the

following lemma, which says that a while program can reverse the

representation function r , at least up to automorphisms.

LemmaB.2. Assume that the atoms are effectively oligomorphic. Let
ā be a tuple of atoms. There is a definable while program which inputs
a hereditarily definable set x and outputs a set builder expression α
and a tuple of natural numbers n̄ such that

π (x ) = α (r (n̄)) for some ā-automorphism π .

12



On computability and tractability for infinite sets LICS 2018, July 9–12, 2018, Oxford, Great Britain

Proof. Suppose that the input set is x . The program enumerates

through all possible set builder expressions α . For each set builder

expression α , say with free variables ȳ, it does a for loop across all

ȳ-tuples of atoms to compute the set

Bα = { ¯b :
¯b is a ȳ-tuple of atoms such that x = α ( ¯b)}.

To compute Bα , we need to show that a while program can compute

α ( ¯b) given α and
¯b; this is not difficult to do by structural induction

on the set builder expression α . If the set Bα is empty, then the

program proceeds to the next set builder expression α . By definition
of hereditarily definable sets, eventually a set builder expression α
will be found so that Bα is nonempty. Suppose then that α is such

that Bα is nonempty, and let n be the number of free variables in α ,
which means that Bα ⊆ A

n
.

Let k be the dimension of the tuple ā. By the assumption that

the atoms are effectively oligomorphic, one can compute first-order

formulas φ1, . . . ,φm in k + n free variables which define all orbits

of Ak+n . Every ¯b ∈ Bα is in some ā-orbit, which means that there

must be some i such that φi (ā ¯b) holds. Therefore, in particular

there must be some i such that some tuple
¯b ∈ Bα satisfies φi (ā ¯b),

and this i can be computed. (First-order formulas can be evaluated

in the program, by using for loops to simulate quantifiers; this

observation was already used in evaluating set-builder expressions.)

A tuple of atoms
¯b satisfies φi (ā ¯b) if and only if

π (x ) = α ( ¯b) for some ā-automorphism π .

The program uses decidability of the first-order theory of A to

enumerate all possible tuples of natural numbers until it finds one

which maps under r to an atom tuple
¯b which makes φi (ā ¯b) true,

and this is the output tuple n̄. □

We now complete the proof of the implication from 2 to 1 in The-

orem 3.8. Suppose that f is a function from hereditarily definable

sets to hereditarily definable sets which is supported by a tuple of

atoms ā, and assume that f is computable under representation r .
We present below a while program which computes f . Assume that

on input we have a hereditarily definable set x . Use Lemma B.2 to

compute α and n̄. By condition 2 in the theorem, we can compute a

set builder expression β and a tuple of natural numbers m̄ such that

f (α (r (n̄))) = β (r (m̄)) (5)

Using the same ideas as in Lemma B.2, a while program can compute

the ā-orbit of the tuple r (m̄n̄), call it y. Compute the set

z = {β (c̄ ) :
¯bc̄ ∈ y are such that α ( ¯b) = x }

We claim that z has only one element, namely f (x ). By definition

β (c̄ ) ∈ z if and only if π ( ¯bc̄ ) = r (n̄m̄) for some ā-automorphism

π and
¯b such that x = α ( ¯b). From (5) and invariance of f under

ā-automorphisms, we conclude that

f (α ( ¯b)) = β (c̄ ).

Because the left side is equal to f (x ), it follows that z = { f (x )}.
To extract f (x ) from the set z, we use a simple while program

without while loops. This completes the implication from 2 to 1 in

Theorem 3.8.

C Tractability – basics
In this section, A is (N,=), unless stated otherwise.

C.1 Basic tests
We prove the following.

Proposition 1. The membership, inclusion and equality problems
for hereditarily definable sets are fixed-dimension polynomial.

The proposition is a consequence of the following results.

Lemma C.1. Let α , β be set builder expressions with free variables
contained in x̄ . The set of x̄-tuples of atoms which satisfy the inclusion
α ⊆ β is definable by a formula of first-order logic which can be
computed based on α and β in polynomial time. Likewise for ∈ or =
instead of ⊆. The formulas use the same parameters and the same
variables as the expressions α , β .

Proof. We construct first-order formulas by induction on the size of

the set builder expressions. The constructed formulas will have the

property that the bound variables are exactly those which appear

in α and β .
Consider first ⊆. The interesting case is when the left side is a

set expression, i.e. axiomatising those x̄-tuples which satisfy the

inclusion

{α (x̄ȳ) : for ȳ such that φ (x̄ȳ)} ⊆ β

The inclusion is true if and only if for every ȳ which makes φ (x̄ȳ)
true, we have

α (x̄ȳ) ∈ β (x̄ ).

This can be formalised in first-order logic, using the induction

assumption to get a constraint on the variables x̄ȳ which makes

the membership true.

For membership ∈ the interesting case is when the right side is

a set expression:

α ∈ {β (x̄ȳ) : for ȳ such that φ (x̄ȳ)}

This membership is true if and only if there is some ȳ which satisfies
φ (x̄ȳ) and

α (x̄ ) = β (x̄ȳ).

If α and β are atom expressions, then the constraint for α = β
is that the corresponding variables are equal. If α and β are not

atom expressions, then equality is the same as inclusion both ways,

which can be described using the induction assumption. □

In particular, applying the above lemma to two set builder expres-

sions α , β without free variables, we obtain a first-order sentence

φ which holds if and only if α ⊆ β (or α ∈ β). To prove Proposi-

tion 1, it remains to test whether φ holds in A, i.e., decide the model

checking problem for first-order logic in A.

Lemma C.2. Let n,k ∈ N be numbers, and let ā be an n-tuple of A.
The set of ā-atomic types of k-tuples of atoms can be enumerated in
time poly (n)k .

Proof. The atomic ā-atomic types of single elements can be enumer-

ated in time poly (n): those types are simply x = a1,x = a2, . . . ,x =
an and x , a1 ∧ · · · ∧x , an . The lemma then follows by induction

on k . □

Lemma C.3. There is an algorithm which, given a first-order for-
mula φ using d variables and p parameters, produces in time poly (φ) ·
poly (p)poly (d ) a quantifier-free formula equivalent in A to φ.

13
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Proof. The idea is to perform quantifier elimination, in a bottom

up fashion, and in each step replace the computed quantifier-free

subformula by an equivalent formula of small size, to avoid blowup.

We use two kinds of transformations of subformulas: elimination

of quantifiers and reduction of size. The details follow.

Observe that a formula of the form

ψ = ∃x .α (xȳ)

is equivalent in A to the formula

ψ ′ =
∨
τ
ατ (ȳ),

where:

• τ ranges over the set of all atomic types of xȳ tuples of atoms

over the parameters of the formula α ,
• for a fixed atomic type τ ,ατ is the formula τ ′(ȳ) → α ′, where
τ ′ is the projection of the atomic type τ of xȳ tuples to an

atomic type of ȳ tuples, and the formula α ′ is obtained from

α by replacing every predicate involving x by its boolean

value, as specified by the atomic type τ .

That the above formula is equivalent toψ follows from homo-

geneity of A. We now analyse the time required for computingψ ′

fromψ . By Lemma C.2, the set of all atomic types of xȳ tuples of

atoms over the parameters of α can be enumerated in time poly (p)d .
Therefore, the above translation of the formula ψ into ψ ′ can be

done in time |ψ | · poly (p)d .
Next, observe that any quantifier-free formula γ with free vari-

ables ȳ is equivalent to a disjunction of atomic types of ȳ-tuples. As

there are at most poly (p)d such types, the formula γ is equivalent

to a formula γ ′ of size at most poly (p)d . Moreover, the formula γ ′

can be computed from γ in time poly (γ ) · poly (p)d , by taking the

disjunction over all atomic types τ of ȳ-tuples such that τ |= γ . As
mentioned above, enumerating types can be done in the required

time, and checking that τ |= γ is done in time poly (γ ).
Let φ be a formula using at most d variables, and which uses only

existential quantifiers and no universal quantifiers (by de Morgan’s

law we can assume this). We process the subformulas of φ in a

bottom-up fashion, by replacing each subformula by an equivalent

one of size at most poly (p)d , as follows. In case of a subformula of

the formψ as above, we replaceψ by the formulaψ ′ as described
above in the first conversion. In case of a subformulas γ of the

form α ∨ β , α ∧ β or ¬α , we compute the equivalent formula γ ′

as described above in the second conversion. The invariant is thus

maintained.

The overall running time of the algorithm is poly (φ)·poly (p)poly (d ) .
□

Corollary C.4. There is an algorithm which, given a first-order
sentence φ with p parameters and d variables, decides whether it
holds in A in time poly (φ) · poly (p)poly (d ) .

The following result allows us, among others, to determine

whether a given expression describes a Kuratowski encoding of a

pair, and, if so, extract its components.

LemmaC.5. There is an algorithm running in time poly (α )·poly (p)poly (d )

which, given a set builder expression α usingp parameters does the fol-
lowing. If α defines a finite set, then the algorithm outputs a list of its
elements (without repetitions), represented by expressions; otherwise,
it outputs∞.

Proof. The algorithm is as follows. If α is an atom or a variable,

then it does not define a set; the case when it is a union expression

reduces to the case of testing each of its components. Hence, it

suffices to consider the case when α is a set expression without

free variables (otherwise, it does not define a set). Let α be of

the form {β (x̄ ) : x̄ ∈ A,φ (x̄ )}. Then α defines an infinite set if

and only if there is some assignment of the variables x̄ in atoms

which satisfies φ and which involves some atom different from

all the parameters. To check this, it suffices to model-check the

formulaψ = ∃x̄ .
∨
x ∈x̄
∧
a∈ā (x , a).φ (x̄ ), where ā is the tuple of

parameters. The sentenceψ has size polynomial in φ and quantifier

depth bounded by dimα , so by Corollary C.4, can be verified in

time poly(φ)poly(d ) .
If α defines a finite set, then its elements can be enumerated by

listing all expressions β (v̄ ), where v̄ ranges over all valuations v̄
for x̄ satisfying φ and involving just parameters (there is a constant

number of those). Repetitions can be removed, since testing equality

of sets defined by expressions can be performed in the specified

time by Lemma C.1 and Corollary C.4. □

Corollary C.6. In the time specified in Lemma C.5, one can decide
whether a given set builder expression defines a Kuratowski encoding
of some pair, and, if it does, outputs the corresponding pair of elements.

C.2 Proof of Lemma 4.4
Proof. Let A be an infinite structure. Consider the following model
checking problem over finite graphs: given a finite (simple, undi-

rected) graph G and first-order sentence φ, decide whether G satis-

fies φ. When parametrized by the size of the formula φ, it is known
that this problem is not fixed-parameter tractable (fpt), unless the

W hierarchy collapses [8].

The following defines an fpt reduction from the model checking

problem to the emptiness problem of hereditarily definable sets.

Given a formula φ in the language of graphs and a finite graphG of

size n we construct a set builder expression α such that α evaluates

to ∅ iff G satisfies φ.
Let a1, . . . ,an be n distinct atoms, and convert the formula φ

to a formulaψ using equality only, by recursively replacing each

subformula ∀x .γ by ∀x .((x = a1) ∨ (x = a2) ∨ . . .∨ (x = an )) → γ ,
and dually, each subformula ∃x .γ by ∃x .((x = a1) ∨ (x = a2) ∨
. . . ∨ (x = an )) ∧ γ , and finally, each atomic formula E (x ,y) by a

disjunction

∨
i j ∈E (G ) (x = ai ∧ y = aj ).

Let α be the set builder expression {∅ : ¬ψ }, with parameters

a1, . . . ,an . The size of α is f (φ) ·poly(G ), and its dimension is д(φ),
for some computable functions f ,д. Clearly, [[α]] = ∅ if G satisfies

φ, and [[α]] = {∅} otherwise.

Therefore, this defines an fpt reduction from model checking to

emptiness. In other words, given an fpt algorithm for the emptiness

problem, composing it with the above reduction would yield an fpt

algorithm for the model checking problem, implying the collapse

of the W hierarchy. □

C.3 Proof of Fact 1
Proof. To prove the right-to-left implication, we observe is that if

G is a graph where all vertices are atoms, then it can be defined by

a set-builder expression whose dimension is 0, like any hereditarily

finite set.

To prove the left-to-right implication, we observe that there is

a fixed-dimension polynomial-time algorithm which transforms
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a set builder expression which represents a hereditarily finite set

into another expression which represents the same set, but which

has dimension 0. This follows from Lemma C.5. □

C.4 Another definition of dimension
Call the all-dimension of an expression to be its dimension plus the

number of parameters appearing in it. The following lemma shows

that such a definition is not a good idea.

LemmaC.7. LetL be an isomorphism closed class of finite undirected
graphs and let A be an infinite effective structure. Then L is decidable
if and only if the following family of hereditarily definable sets is
fixed all-dimension tractable:

{G : G is a graph in L where all vertices are from A} ⊆ hdefA.

Proof. Clearly, if the above class is recognized by any Turing ma-

chine M (not necessarily satisfying any time bounds), then L is

decidable: given an encoding of a graph G with n vertices in bi-

nary, choose arbitrary atoms a1, . . . ,an to represent its vertices,

and build an expression α describing a graph isomorphic toG with

vertices a1, . . . ,an . By definitionnG ∈ L if and only ifM accepts α .
For the other implication, assume that L is decidable. We first

note that, by Corollary C.4, the model checking problem of first-

order sentences in A is fixed-parameter tractable, where the pa-

rameter is the number of variables plus the number of parameters

of the formula. Next, testing whether two expressions without

free variables define equal sets is fixed-parameter tractable, too:

by Lemma C.1, this question reduces in polynomial time to model-

checking sentences in A. The same holds for testing containment

or membership of sets. By Lemma C.5, there is an algorithm de-

ciding whether an input expression α defines a finite set, and if so,

enumerates its elements (without repetitions) in time polynomial

in the size of α (for fixed all-dimension); moreover, the resulting

set has bounded size (for fixed all-dimension).

Given an expression α , we wish to determine whether it defines

a finite graph. Using Corollary C.6 we first check that α is the

Kuratowski encoding of a pair (V ,E). Next, check that V is a finite

set, that each element of V is an atom, and that each element of

E is a pair (u,v ) where u,v belong to V . For each such pair, mark

that u and v are adjacent by placing a 1 on the (u,v ) position in

an V ×V matrix. In this way, if all the steps succeeded, we have

computed the adjacency matrix of a finite graph described by α , in
polynomial time (for fixed all-dimension). Moreover, the graph has

only at most a bounded number of vertices, and therefore, testing

whether it belongs to the class L can be performed in constant time,

given the adjacency matrix. □

D Proof of Lemma 4.7
Section D is devoted to the proof of Lemma 4.7. Throughout this

section, A is assumed to be (N,=).

Orbit dag. An orbit dag is a finite directed acyclic graph (dag) D,
with possibly parallel edges, which satisfies the following proper-

ties:

• there is one root vertex, i.e., vertex with no ingoing edges,

• each vertex v is labeled by a finite sets of atoms λv ,
• the label of a leaf (vertex with no outgoing edges) contains

at most one atom,

• every edge e from v tow is labeled by a mapping λe : λw →
A.

For an edge e from v to w we call the atoms in rng λe ∩ λv free
parameters for the edge e , and the atoms in rng λe − λw are called

bound parameters. See Figure 2 for an example orbit dag.

Definable set to orbit dag. Given a set x , we define an orbit dag

associated to x , as follows. Recall that x∗ denotes the transitive

closure of x .
Choose a set V of representatives of the equivalence relation on

x∗ of being in the same ∅-orbit (i.e., u,v ∈ x∗ are equivalent if there
is an atom permutation π such that π (u) = v). The vertex set of the
constructed dag isV ∪{x }. Letv be a vertex which is a nonempty set

with least support S , and let o1, . . . ,ok be the S-orbits of v . Define
the label λv of the vertex v to be the least support of v , and create

outgoing edges o1, . . . ,ok , where the edge oi leads to the unique

element w ∈ V whose ∅-orbit contains oi , and is labeled by the

restriction of π to λw , where π is an arbitrarily chosen permutation

such that π (w ) ∈ oi .
This ends the description of the orbit dag associated to x . The

construction depends on the choice of representatives V and the

choices of the edge labels. However, this dependence is inessential

for our purposes, so we allow ourselves to speak of the orbit dag
associated to x . Note that it has finitely many vertices and edges,

and that x is the unique vertex with no incoming edge.

Example D.1. Let x = {{a,b} : a,b ∈ A,a = 1 ∨ a = 2}. The

orbit dag D associated to x is depicted in Figure 2. The expressions

Figure 2. The edges are the thick lines, directed from top to bot-

tom. The root vertex is the set x , its left child is the set {3} and its

right child is the set {4, 5}. The leaf is the atom 6. The underlined

parameters are the bound parameters. The thin edges ending with

an arrowhead indicate that a parameter is mapped to a free param-

eter; those edges can be thought of as variable substitution. The

remaining edges indicate that a parameter is mapped to a bound

parameter; those edges will substituted by bound variables.

constructed as in the proof of Lemma D.2 to the vertices and edges
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of the orbit dag D depicted in Figure 2 are, from bottom to top:

α6 = 6,

αe3
= {3},

α{3} = {3},

αe1
= { {1} },

αe2
= { {2} },

αe7
= { {x7 } : x7 ∈ A, (x7 , 1) ∧ (x7 , 2) },

αe4
= {4},

αe5
= {5},

α{4,5} = {4} ∪ {5},

αe2,5 = { {2} ∪ {x5 } : x5 ∈ A, (x5 , 1) ∧ (x5 , 2) },

αe1,5 = { {1} ∪ {x5 : x ∈ A} : x5 ∈ A, (x5 , 1) ∧ (x5 , 2) },

αe1,2 = { {1} ∪ {2} },

αe4,5 = { {x4 } ∪ {x5 } : x4, x5 ∈ A, (x4 , 1) ∧ (x4 , 2)

∧ (x5 , 1) ∧ (x5 , 2) ∧ (x4 , x5) },

αx = αe1
∪ αe2

∪ αe7
∪ αe2,5 ∪ αe1,5 ∪ αe1,5 ∪ αe4,5 .

Note that the set builder expression αx describes the set x .

Orbit dag to expression. For each vertex v of an orbit dag D we

define an expression αv inductively, as follows. The invariant is

that αv uses as parameters those atoms which are in the label of v .
If v is a leaf then its label contains at most one atom. If λv = {a},

let αv = a; otherwise, let αv = ∅. Suppose that v is a vertex

such that the expression αw has been already defined for each

successor w of v . Fix an edge e with source v and target w . Let

α ′w (x̄ ) be the expression obtained from αw as follows. First, rename

the parameters in the label ofw via the mapping f . Next, replace
the tuple ā of parameters which are bound with respect to e by a

tuple of fresh variables x̄ . Define αe as the set expression {α ′w (x̄ ) :

x̄ ∈ A,τ (x̄ )}, where τ (x̄ ) is the λ(v )-atomic type of the tuple ā,
i.e., the conjunction of all equalities and inequalities between the

elements of ā and of λ(v ). Finally, define αv as the union of the

expressions αe , for e ranging over the edges leaving v . This ends
the inductive definition.

The set builder expression αD defined by the orbit dag D is the

expression αv , where v is the root of D. The following lemma is

immediate by construction.

Lemma D.2. The expression αD can be computed in polynomial
time from a given orbit dag D.

Lemma D.3. Let x be a hereditarily definable set and let v ∈ x∗.
Then dimv ≤ dimx .

Proof. Letu ∈ v∗ be such that the setC of atoms in the least support

of u which do not belong to the least support of v has cardinality

equal to dimv . Let π be an atom permutation which fixes the least

support of v pointwise and maps the setU to any set disjoint from

those atoms which are in the least support of x but not in the

least support of v . Then π (v ) = v , so π (u) ∈ v∗. Now we have

that π (u) ∈ x∗ and π (C ) is a set of atoms which are in the least

support of π (u) but not in the least support of x . It follows that
dimx ≥ |π (C ) | = |C | = dimv . □

Lemma D.4. Let x be a hereditarily definable set and D be the orbit
dag associated to x . Then the set builder expression αD corresponding
to D describes the hereditarily definable set x . Moreover,

1. ||αD || ≤ f (dimx , ||x ||) and ||x || ≤ f (dimx , |D |), where |D | is
the number of vertices and edges inD, and f (k,n) = poly (n)poly (k ) ;

2. Up to a renaming bound variables, dimαD ≤ 2 dimx .

Proof. Let D be the orbit dag associated to x . Recall that its vertices
are hereditarily definable sets. Inductively, we show that the set

builder expressionαv associated to a vertexv is such thatαv defines

the hereditarily definable set v , and that αv has at most dimx free

variables.

In the base case, if v is a leaf, then αv defines v and dimαv =
dimv . Assume that v is a vertex such that for every successor w
of v , the inductive assumption holds. Let e be an edge outgoing

from v to some successorw , with label π . Note that e is an S-orbit
of v , where S is the least support of v . By construction, the set

builder expression αe describes the set e . Suppose that dimv = k .
In particular, since π (w ) ∈ v , the least support of π (w ) has at most

k elements which are not in the least support of v , i.e., the edge
e has at most k free parameters. Therefore, the expression αe has

at most k = dimv free variables. Finally, by definition, αv is the

union of all expressions αe , for e ranging over all S-orbits of v . In
particular, the set builder expression αv describes the set v , and
has at most dimv ≤ dimx (by Lemma D.3) free variables, ending

the inductive proof.

In particular, the set builder expression associated to the root

vertex describes the set x , and every its subexpression has at most

dimx free variables. Therefore, up to a renaming of bound variables,

dimαD ≤ 2 dimx .
The size of the expression αD is polynomial in the size of the

description of the orbit dag D by Lemma D.2. The orbit dag D
associated to x has at most ||x || vertices and between a vertex v and

its successorw there are at most f ( |λw − λv |, |λv |) edges, where

f (k,n) = poly (n)poly (k ) is the bound from C.2 on the number of

ā-atomic types of k-tuples of variables and ā is a tuple of atoms

of length n. Since |λw − λv | is bounded by dimw ≤ dimx and

|λv | ≤ ||x ||, it follows that D has at most ||x || · f (dimx , ||x ||) edges.
A similar argument shows that ||x || ≤ f (dimx , |D |). This proves
the lemma. □

Fixed-dimension polynomial computability of orbit dags. We

show in Lemma D.8 that the orbit dag associated to x and the

corresponding set builder expression can be computed from a set

builder expression α defining x in fixed-dimension polynomial time.

For this we need the following three lemmas.

Lemma D.5. The function mapping a hereditarily definable set x to
its least support is fixed-dimension polynomial.

Proof. Suppose that a hereditarily definable set x is given, and

represented by a set builder expression α without free variables,

and using some set of parameters P . Since P is a support of x , it
follows that S ⊆ P .

Forb ∈ A, denote by α[a/b] the expression obtained by replacing

the parameter a by the parameter a in the definition.

Claim 1. Let a ∈ P and U = P − {a}. The following conditions are
equivalent.

1. a does not belong to the least support of x ;
2. every element b , a in theU -orbit of a ∈ A is such that α[a/b]

defines x ;
3. some element b , a in theU -orbit of a ∈ A is such that α[a/b]

defines x .
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We show the implications in a cyclic fashion.

(1)→(2). Take any b in the U -orbit of a, and let π be an auto-

morphism fixing U which maps a to b. Then π fixes x , since by
assumption,U supports x . On the other hand x is the element de-

fined by α and is therefore is mapped by π to the element x ′ defined
by the expression α ′ obtained from α by renaming the parameters

according to π . But α ′ is α[a/b]. This proves that x = x , as required.
For the implication (2)→(3), it suffices to observe that theU -orbit

of a ∈ A does not contain only a – otherwise, U would support

a, and hence a would have two disjoint supports, {a} and P − {a},
implying that the least support ofa is empty, i.e.,a is invariant under
all automorphisms, and no such element exists in A = (N,=).

(3)→(1). Suppose that b is as in condition (3). Since a and b are

in the same U -orbit of A, there is an automorphism π which is the

identity onU and maps a to b. In particular, π (x ) is the set defined
by the expression α with all parameters translated via π ; this set is
equal to x by assumption. Since π (x ) = x , it follows that π maps

the least support of x to the least support of x . Therefore, a cannot

belong to the least support of x , as b = π (a) does not even belong

to its superset P .
This proves the claim.

Using the second condition in the claim, we may compute the

least support of a set x represented by an expression α , as follows:
for each a ∈ P (where P are the parameters in α ), pick an arbitrary

b ∈ A − P (hence in the U -orbit of a, since A = (N,=)), and test

whether α[a/b] and α define the same sets. If so, a is not in the

least support of x . By the above claim, this allows to compute the

least support of x , proving LemmaD.5. □

LemmaD.6. 1) There is an algorithm which runs in fixed-dimension
polynomial time and inputs two expressions α (x̄ ), β (ȳ) and a tuple of
atoms s̄ , and returns a formula φ (x̄ , ȳ) using at most dimα + dim β
variables such that, for given valuations ā and ¯b, φ (ā, ¯b) holds if and
only if α (ā) and β ( ¯b) are in the same s̄-orbit.

2) There is a fixed-dimension polynomial function which, given
a hereditarily definable set v and a tuple of atoms s̄ , computes the
s̄-orbit of v .

3) The function which, given a hereditarily definable set X and
its support S , computes the set of S-orbits of X , is fixed-dimension
polynomial.

Proof. 1) Define

φ (x̄ , ȳ) = ∃z̄.τs̄ (z̄, x̄ ) ∧ φ= (z̄, ȳ),

where τs̄ (z̄, x̄ ) is the formula which says that x̄ and z̄ have the same

atomic types over s̄ , and φ= is the formula which says that α (z̄)
and β (ȳ) define the same elements, given by Lemma C.1.

2) Let v = α (ā) for some set builder expression α (x̄ ) without
parameters. Let τ (x̄ ) be the s̄-atomic type of ā. We claim that the

set U defined by the expression {α (x̄ ) : x̄ ∈ A,τ (x̄ )} is the s̄-orbit
of v . Clearly, v ∈ U . Furthermore, if π is an atom permutation

fixing s̄ , then π (ā) has the same s̄-atomic type as ā, and therefore,

α (π (ā)) = π (α (ā)) = π (v ) belongs to U . Hence, U contains the

s̄-orbit of v . Conversely, if u ∈ U , then u = α (ū) for some tuple

of atoms ū satisfying τ (ū), i.e., such that there is a permutation π
fixing s̄ which maps ā to ū. Then u = π (a), i.e., u belongs to the

s̄-orbit of a.
3) Let X be a nonempty hereditarily definable set. Let ∼ denote

the equivalence relation on X whose equivalence classes are the

S-orbits of X . In other words, x ∼ y if and only if there exists an

atom automorphism π such that π fixes S pointwise, and π (x ) = y.
We claim that, given X and S , the relation ∼ can be computed in

fixed-dimension polynomial time. Let α be the expression defining

X , and suppose α = α1 ∪ . . .∪αn , where each αi is a set expression
of the form

αi = {β (ȳ) : for ȳ such that φ (ȳ)}.

For the set defined by the above expression αi , compute its set

Ui of s̄-orbits, using the formula φ defined in the first part of the

lemma for the expressions β (x̄ ) and β (ȳ):

Ui = {{β (x̄ ) : x̄ ∈ A,φ (x̄ ) ∧ φβ (x̄ , ȳ)} : ȳ ∈ A,φ (ȳ)}.

The setU1 ∪ · · · ∪Un is the set of all s̄-orbits of X . It is finite, so,

by Lemma C.5, it can be effectively enumerated. □

LemmaD.7. There is an algorithm running in fixed-dimension poly-
nomial time which inputs a set builder expressionα and, ifα represents
a nonempty set x , outputs a set builder expression describing some
hereditarily definable set y which belongs to x .

Proof. If α is a union expression, then choose any nonempty compo-

nent of this union, using Proposition 1 to test emptiness. Therefore,

we may assume that α is a set expression, of the form {β (x̄ ) : x̄ ∈
A,φ (x̄ )}. Using quantifier elimination (Lemma C.3), replace φ by a

quantifier-free formula which is a disjoint union of atomic types.

Choose one of those types τ (x̄ ) arbitrarily, and produce a sequence
ā of atoms satisfying τ (ā). Then β (ā) defines a set which belongs

to the set x defined by α . □

Lemma D.8. There is an algorithm which inputs a set builder ex-
pression α and computes the orbit dag associated to the corresponding
set in fixed-dimension polynomial time.

Proof. Fix a set builder expression α . Let αd denote the union of ex-

pressions {β (x̄ ) : x̄ ∈ A}, where β (x̄ ) ranges over all subexpressions
of α of nesting depth d .

The algorithm computes an increasing sequence of dags D0 ⊆

D1 ⊆ . . . ⊆ Dh , where h is the nesting depth of α . The invariant
is that Dd is the orbit dag associated to the set defined by the

expression αd , with the root removed.

In the base case, α0 defines the set A and D0 consists of a sin-

gle vertex which is an arbitrarily chosen atom. The dag Dd+1
is

constructed by extending Dd as follows. Using the third part of

Lemma D.6, compute the set of all ∅-orbits of the set defined by the

expression αd+1
, and remove those orbits which already occurred

as orbits of αd . For each remaining orbit, using Lemma D.7 choose

a representative v , and add v as a vertex to Dd+1
. Compute the

least support S of v using Lemma D.5, and label v by a tuple āv
enumerating S . Compute the āv -orbits o1, . . . ,ok ofv using the last

part of Lemma D.6. For every oi , find the unique vertex w of Dd
whose ∅-orbit contains oi , by using the second part of Lemma D.6

and Proposition 1. Create a new edge fromv tow in Dd+1
. We label

the edge as follows. Compute the ∅-orbitU of the pair (w, āw ), and,

using Lemma D.7, pick any element (v, ē ) in (U ∩oi )×A
|āw |

. Label

the edge from v tow by the tuple ē . By construction, ē = π (āw ) for
some atom permutation π such that π (w ) ∈ oi .

Ifh is the nesting depth of α , then αh is the set builder expression

{α }, and Dh has a vertex v which is in the same orbit as the set

defined by α . Actually, when choosing the representative of this
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orbit, we could have chosen the set defined by α , so lets assume

that v is equal to the set defined by α .
It follows by construction that the dag consisting of those edges

and vertices, which can be reached in Dd from v by a directed path,

is the orbit dag associated to the set defined by α .
We analyse the running time of the algorithm. The algorithm

processes each subexpression of the expression α a polynomial

number of times, each time performing a constant number of fixed-

dimension polynomial operations. In effect, the algorithm runs in

fixed-dimension polynomial time. □

Corollary D.9. There is an algorithm running in fixed-dimension
polynomial time which inputs a set builder expression representing a
set x and computes the expression αx corresponding to the orbit dag
associated to x .

Proof of Lemma 4.7. Before proving Lemma 4.7, we prove the

following.

LemmaD.10. Let α be a set builder expression defining a set x . Then
x is supported by the set of parameters appearing in α . Moreover, α
can be converted to an expression β with dim β ≤ dimα , such that
β defines x and uses as parameters exactly the atoms in the least
support of x .

Proof. The first part of the lemma is clear, since the semantics of

set builder expressions is invariant under atom permutations, i.e.,

α (π · ā) = π (α (ā)). It follows that if π fixes ā then it must also fix

α (ā), hence α (ā) is supported by ā.
For the second part of the lemma, we proceed by induction on

the nesting depth of the expression α . The base case is when α is a

parameter; then there is nothing to do.

Let α = α1 ∪ . . . ∪ αn be an expression of nesting depth at

least one, defining a set x whose least support is S . We construct

an expression β defining x with dim β ≤ dimα , which only uses

parameters appearing in S .
Let P be the set of parameters occurring in the expression α and

not in S .

Consider an element x ∈ X . There is an atom permutation π
which fixes S pointwise and maps the least support of x to a set

disjoint from P . Denoting π (x ) by y, from S-invariance of X we

conclude that y ∈ X . In particular, y belongs to the set defined

by some expression αi = {β (x̄ ) : x̄ ∈ A,φ (x̄ )}, and there is some

tuple ā such that φ (ā) holds and y = β (ā). Let βā be the expression

obtained from β by replacing the variables x̄ by the corresponding

values from ā. Then βā defines the set y = β (ā) and has nesting

depth smaller than α . Since the least support of y is disjoint from

P and contained in the union of S and the tuple ā, by inductive

assumption applied to βā , there is an expression β ′ which defines y
and uses parameters from S and from ā, and with dim β ′ ≤ dim βā .
Let γ (x̄ ) be the expression obtained by replacing the parameters

from ā occurring in β ′ by corresponding variables in x̄ . More pre-

cisely, if x̄ is a tuple of variables x1, . . . ,xk and ā is a tuple of atoms

a1, . . . ,ak , and a parameter a appears in γ , then we replace a by

an arbitrary variable xi such that a = ai . Then γ (ā) = v , and γ (x̄ )
uses at most as many variables other than x̄ as β (x̄ ) does.

Let τ (x̄ ) denote the S-atomic type of ā. Consider the set builder
expression

ηx = {γ (x̄ ) : x̄ ∈ A,τ (x̄ )},

and let Ex be the set it defines.

By construction, ηx uses only parameters from S , and therefore,

by the first part of the lemma, the set Ex is S-invariant. Moreover,

since τ is an S-atomic type, Ex is the smallest S-invariant set con-
taining y (since y = γ (ā)). As y ∈ X and X is S-invariant, it follows
that Ex ⊆ X . Also, since Ex is S-invariant and π fixes S pointwise,

x ∈ Ex . Finally, note that the expression ηx has dimension at most

dimα . This is because ηx is obtained from αi by replacing β (x̄ ) by
γ (x̄ ), and γ uses as at most as many variables other than x̄ as β .

As the set X has finitely many S-orbits, the family of all sets Ex
constructed as above, ranging over all x ∈ X , is in fact finite. Hence,

there are finitely many expressions ηx defining all elements of this

family, and each of them uses only parameters from S . Moreover,

the union of these expression defines a set which contains X (by

construction, since x ∈ Ex for all x ∈ X ), and is contained in X (as

Ex ⊆ X ), hence is equal to X . This ends the inductive proof of the

second part of the lemma. □

Proof of Lemma 4.7. We start by showing that dimx ≤ dimα , for
every α ∈ setbA defining x . By the second part of Lemma D.10, we

may assume that α only uses as parameters those atoms which are

in the least support of x .
We proceed by induction on the depth of the set x , which is

defined as 0 if x is an atom or the empty set, and one plus the largest

depth of an element in x otherwise (this is always a finite number,

if x is a hereditarily definable set, as proved easiy by induction on

the nesting depth of an expression defining x ).
If x has depth 0, then dimx = 0 so there is nothing to prove.

Suppose that x had depth d + 1, and let α be an expression defining

x .
Let y be an element of x∗. Then, by the semantics of hereditarily

definable sets, y is of the form β (ā), for some subexpression β
of α , and some valuation ā of its free variables. By the first part

of Lemma D.10, the least support of y is contained in the set of

parameters appearing in ā and in α (as β is a subexpression of α ).
Therefore, the set difference of the least support of y and the least

support of x (which is equal to the parameters appearing in α by

assumption) is contained in ā. Hence, the size of this difference is
at most as large as the length of the tuple ā, which is at most dimα .
This ends the proof that dimx ≤ dimα .

We now prove that ||x || ≤ h(dimα , ||α ||) for some function h
which is polynomial in the second argument. Let D be the orbit dag

D associated to x , and let αD be the set builder expression defined

byD. By Lemma D.8,D can be computed from α in fixed-dimension

polynomial time, and by Lemma D.2, αD can be computed in poly-

nomial time from D. In particular, ||α ||D ≤ д(dimα , ||α ||), for some

function д which is polynomial in the second argument. Further-

more, ||β || ≤ poly ( |D |) by Lemma D.2, where |D | is the number

of vertices and edges of D. By Lemma D.4, ||x || ≤ f (dimx , |D |),
where f is polynomial in the second argument. Altogether, ||x || ≤
h(dimα , ||α ||) for some functionhwhich is polynomial in the second

argument, as required.

The second part of Lemma 4.7 follows by taking α = αD , which
satisfies the required conditions by Lemma D.4. □

E Proof of Lemma 4.10
Atoms are (N,=). We show that every constant time operation is

fixed-dimension polynomial. We start with the following observa-

tion.

18



On computability and tractability for infinite sets LICS 2018, July 9–12, 2018, Oxford, Great Britain

Fact 3. Every constant time operation is defined by a definable while
program which, apart from sequencing, uses only the following con-
structs:

• assignments of the form x := y or x := x ∪ {y}, x := A or
x := |y | (if counting is allowed),
• for loops of the form for x in y,
• conditionals of the form if (x = y) or if (R (x1, . . . ,xn )),

where x ,y,x1, . . . ,xn are variables.

Proof. By implementing constant time operations for the expres-

sions ∪,∩,− and conditionals by instructions which only use the

constructs listed above. □

In the rest of this section, all instructions are of the form specified

in the fact above, and A is (N,=).

Lemma E.1. Let x ,y be variables. Then the following operations are
fixed-dimension polynomial (cf. Figure 1):

0. S 7→ S if S is a hereditarily definable superstate and S 7→ ∅
otherwise; below we assume that S is a hereditarily definable
superstate;

1. S 7→ S[x = y];
2. S 7→ S[x/y];
3. S 7→ S[x/(x ∪ {y})];
4. S 7→ S[x/|y |];
5. S 7→ Split(S,x ,y);
6. S 7→ Aggregate(S );
7. x0, . . . ,xn−1 7→ S x̄ , where x0, . . . ,xn−1 is an n-tuple of vari-

ables and S x̄ is a superstate with one thread ε and program
state mapping the ith variable to xi ,

8. a reverse operation, which maps a program state of the form
S x̄ to the n-tuple of hereditarily definable sets x0, . . . ,xn−1.

Proof. Let α be an expression representing the superstate S . Com-

pute the orbit dag D associated to S by applying Lemma D.8. In

each case, we modify D to obtain an orbit dag such that the set

builder expression obtained using Lemma D.2 describes the result-

ing superstate.

Note that S is a superstate if and only if D has the following

structure:

• The elements of S are pairs (τ ,γ ), where τ is a thread and γ
is a program state;

• Each program stateγ is a finite set of pairs (n,x ), wheren is a

variable (encoded as a natural number via the von Neumann

encoding) and x is a hereditarily definable state.

A pair (a,b) is encoded via the Kuratowski encoding as {a, {a,b}}.
If a vertex v of the orbit dag D represents a pair (a,b), then v has

two successors in D, namely a and {a,b}, and a is a successor of

{a,b}.
Based on these observations, we see that one can determine

in polynomial time (with respect to D) whether S is a superstate,

and distinguish in polynomial time the vertices of D which are the

threads τ , as well as the vertices of D which are program states

γ (note that these sets need not be disjoint), and, given a vertex

which is a program state γ and a variable x , one can compute in

polynomial time the value γ (x ).
We now describe the operations listed in the lemma, performed

on the level of orbit dags.

1. The resulting orbit dag is obtained from D by removing those

edges which lead from the root of D (representing S) to a pair (τ ,γ ),
where γ is such that γ (x ) , γ (y).

2. The resulting orbit dag is obtained from D by performing the

following steps for every vertex v (τ ,γ ) which is a successor of the

root. First, create a duplicate v by creating a new vertex v ′ which
has the same successors as v , and only the root as a predecessor

(this is because v may be a successor of some nodes other than

the root, so we should not modify it). So far, v ′ still represents the
same set as v , i.e., αv = αv ′ , using the notation from Lemma D.2.

Remove the edge from the root to v , effectively disowning the pair

(τ ,γ ) (and its entire ā-orbit, where ā is the least support of S) from
S . Similarly, replace γ in the pair v ′ by its duplicate γ ′ constructed
as above. γ ′ has n successors (the same ones as γ ) where n is the

number of program variables. One of those successors is the pair

(x ,γ (x )), and another is the pair (y,γ (y)), where x and y are the

program variables considered in the instruction S[x/y]. Remove the

edge from γ ′ to the successor (x ,γ (x )) and instead, create an edge

to a new element which is the Kuratowski encoding of (x ,γ (y))
(more specifically, create a new successor (x ,γ (y)) of γ ′, whose
successors are x and a new vertex {x ,γ (y)}, which in turn has

successors x and γ (y)).
3. This case is very similar as the previous one.

4. This case is again similar to the previous ones, augmented by

the following modification. We need to determine the (von Neu-

mann encoding of) the cardinality of γ (y). To this end, we observe

that γ (y) is finite iff each of its successors has least support con-

tained in the least support of γ (y), and, in case it is finite, its cardi-

nality is equal to the number of successors (the argument is similar

to the argument in Lemma C.5). Once the cardinality n is computed,

we can create (in polynomial time) nodes representing the von

Neumann encoding of n.
5. The split operation is again quite similar to the previous ones.

This time, however, we need to create multiple duplicates of each

pair (τ ,γ ) which is a successor of the root. The duplicate of (τ ,γ )
is obtained by replacing the first coordinate τ by the pair (τ ,v ), for
every possible successor v of γ (y).

6. The aggregation operation is done in the reverse manner,

where all vertices of the form ((τ ,v ),γ ), which share the same τ
are replaced (as successors of S) by a single vertex (τ ,γ ′), where
γ ′ is a new vertex with successors (x ,γ ′(x )), for each variable x ,
and γ ′(x ) has as successors all the successors of all elements γ (x ),
for γ such that ((τ ,v ),γ ) is a successor of the root of D, unless all
the γ (x ) are the same leaf of D (i.e., represent the same atom), in

which case γ ′(x ) is this leaf.
7 and 8 are done by simple manipulations.

All these operations can be performed in polynomial time on

the given orbit dag D. □

We now prove Lemma 4.10.

Proof of Lemma 4.10. Let I be awhile programwithoutwhile loops
and using n variables. Without loss of generality, we may assume

that it is an instruction of the form described in Fact E.1. As in the

proof of Theorem 3.7, computing the result of I on ann-tuple of sets
x0, . . . ,xn−1 (represented by expressions) amounts to composing

several operations: first compute the superstate S x̄ , as in item 7

of Lemma E.1, and then perform a sequence of operations as in

items 1-6 of the lemma, or unions and emptiness tests, in the case
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of if-then-else instructions. Finally, perform an operation as in item

8 of the lemma. The total number of operations is bounded by a

constant depending on I only. Since fixed-dimension polynomial

functions are closed under composition, the lemma follows. □

Example E.2. We show that the emptiness problem for set builder

expressions is np-hard for some effective oligomorphic structures.

We recall the construction of the Rado graph. There are countably

many vertices. For each pair of distinct vertices v,w , randomly and

independently create an edge between them with probability
1

2
. It

is known that with probability 1, the resulting graph is isomorphic

to a single graph R, called the Rado graph. The Rado graph satisfies

the following extension property: for every two finite, disjoint sets

of vertices X ,Y , there exists a vertex x which is connected to all

vertices in X and to no vertex in Y . Moreover, R is oligomorphic.

We choose one of many known effective representations of R.
The vertices V of R are (binary encodings of) natural numbers

1, 2, 3, . . .. An edge connects i with j (where i < j) if the ith bit of

the binary representation of j is 0. The resulting graph (V ,E) is
isomorphic to the Rado graph.

Let A be the Rado graph R = (V ,E). We now show a reduction

from the boolean satisfiability problem to the emptiness problem

for hereditarily definable sets of dimension 1.

Let α be the a boolean formula with variables x1, . . . ,xn . Choose
n arbitrary distinct vertices of the random graph, say v1, . . . ,vn .
Define a formula φ over the signature of A by replacing each vari-

able xi by the atomic formula E (t ,xi ), where t is a variable free in φ.
Then the following set X is nonempty if and only if α is satisfiable:

X = {t for t ∈ A such that φ}.

Indeed, ifX is nonempty, then there is a vertex t such thatφ (t ) holds.
Then, by construction, setting the variable xi to 1 if and only if vi
is a neighbour of t yield a satisfying assignment to α . Conversely,
if given a satisfying assignment to α , by the extension property,

there exists a vertex t of the random graph which is connected

precisely to those vertices vi , for which the corresponding variable

xi is assigned the value true.
This shows that emptiness of expressions of dimension 1 is np-

hard when A is the Rado graph.

F Proof of Theorem 4.9
We prove Theorem 4.9. Let P be a definable while program (with

or without counting), and let M be the definable state machine

constructed in Theorem 3.7 (or its extension to while programs

with counting).

Recall that for a given input x , the machine M computes a se-

quence of states q0,q1, . . . ,qn of length polynomial in time(P,x ),
and that each state qi is a subset of L(space(P,x )), for some con-

stant time operation L. Let ā be the least support of the input x .
Observe that each state qi is supported by ā, since the semantics of

the definable state machine is invariant under atom automorphisms.

Therefore, qi is a ā-invariant subset of L(space(P,x )). In particular,

dimqi ≤ dimL(space(P,x )) and ||qi || ≤ ||L(space(P,x )) ||.
We now simulateM by a fixed-dimension polynomial algorithm

which inputs an expression α describing a hereditarily definable set

x . The algorithm mimics the computation ofM , by computing set

builder expressions representing the states q0,q1, . . . ,qn , and in

each step, optimizes the current expression using Lemma 4.7. In par-

ticular, by the above observations and by Lemma 4.7, we maintain

the invariant that in each step, the expression α describing the cur-

rent state satisfies dimα ≤ 2 dim r and ||α || ≤ f (dim r , ||r ||), where
r = space(P,x ). Therefore, the algorithm performes a polynomial

number of constant time operations on expressions satisfying the

above inequalities. Hence, its total runtime is poly (time(P,x )) ·
f (dim r , ||r ||) ≤ д(dim r , ||r ||), for some function д, as required.

Moreover, the output Output(qn ) also satisfies the required inequal-
ities.

This finishes the proof of Theorem 4.9.
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