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Lifting functors from F to P

Stanis law Betley

1. Introduction.

Let p be a prime number. Let F denote the category of functors from finite dimen-
sional vector spaces over Fp to vector spaces over Fp. We write deg(F ) for the degree of
F ∈ F in the sense of Eilenberg and Mac Lane. A functor F ∈ F is called finite if it takes
finite dimensional values and deg(F ) < ∞. Let ι : P → F denote the forgetful functor
from the category of strict polynomial functors in the sense of Suslin-Friedlander to the
category F . As usual Pd denotes the subcategory of P of functors of homogeneous degree
d. We have a decomposition

P =
⊕
d

Pd.

If P ∈ Pd then the number d is called the weight of P and it is denoted w(P ). Observe
that an inequality

deg(ι(P )) ≤ w(P )

holds for any P ∈ P, where for a nonhomogeneous P , w(P ) denotes the highest weight
of its homogeneous pieces. We say that F ∈ F lifts to P if there exists P ∈ P such that
ι(P ) = F . Our goal is to find some necessary and sufficient cohomological conditions which
characterize these functors in F which can be lifted to P. The definition of P and the
inequality relating w(P ) and deg(ι(P )) imply that we restrict our considerations to finite
functors in F .

The category P is more accessible for cohomological calculations than F . Most of
the known results on the Ext-calculations in F were achieved for functors which are in
the image of ι by using the results which compare ExtF (ι(P ), ι(Q)) and ExtP(P,Q), see
[FFSS] for the strongest results in this direction. Section 5 of the present paper contains
two examples of cohomological problems in F which were important for the author by
other reasons. The solution of them is presented but only for functors which can be lifted
to P. The general answer in F is still not known to the author.

The paper is organized as follows. Section 2 contains very basic observations, which
show only than one should not expect the simple solution for the problem od lifting functors
from F to P. This section ends which two examples and one of them presents a functor
which cannot be lifted. Looking for the solution to our main problem we want to use
as a tool extension groups and Ext-algebras in our categories. It is known that they do
not determine directly the structure of an abelian category. For this the stronger, A∞
structure is needed. We present the important results on this structure in Section 3. In
Section 4 we prove our main theorem (Theorem 4.3) which summarizes to the statement
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that a functor F ∈ F can be lifted to P iff certain classes in Ext1F (., .) can be lifted. The
content of Section 5 was described above.

2. Preliminary observations.

As usual, we write F (1) for the precomposition of a functor F in F or P with the
Frobenius twist. This operation is equal to identity in F but in P rises the weight of a
functor p times. We write F (i) for the i-fold precomposition with the Frobenius twist.

Lemma 2.1. Let F ∈ F be a simple functor. Then F lifts to P and all its lifts are
of the form P = F (i) for some natural i.

Proof. The functor ι is exact and if ι(P ) = 0 then P = 0. Hence any lift of a simple
object in F must be simple in P. The result then follows from the Kuhn’s description of
simple objects in F and P as it is written in [K3, Section 7].

Let lC(X) denote the length of the composition series of an object X in the category
C. We have the obvious lemma:

Lemma 2.2. For any P ∈ P, lP(P ) ≤ lF (ι(P )).

Proof. The composition series of P maps to the series of subobjects of F . The lemma
follows then from the fact that ι takes proper inclusions to proper inclusions.

Lemma 2.3. Assume that the sequence 0 → F1 → F2 → F3 → 0 is exact in F , F2 is
not decomposable and finite. Moreover assume that F1 and F3 are simple. Then F2 lifts
to P if and only if deg(F1) = pkdeg(F3) for some integer k.

Proof. Assume first that F2 lifts to P and choose P2 ∈ P such that ι(P2) = F2. We
have two possibilities:

1. The functor P2 is not simple. Then by exactness of ι and lemma 2 we know that
it fits in P into an exact sequence

0 → P1 → P2 → P3 → 0

with simple P1 and P3. By the uniqueness of the composition series we know that Pi is a

lift of Fi for i = 1, 3. Hence P1 = F
(i1)
1 and P3 = F

(i3)
3 by Lemma 1. The functor P2 has

to be indecomposable by exactness of ι and hence w(P1) = w(P3). From the description
of simple objects in F we know that

pi1 · deg(F1) = w(P1) = w(P3) = pi3 · deg(F3).

This implies the desired relation between deg(F1) and deg(F3).
2. The functor P2 is simple. Let T j denote the jth tensor product functor. Then by

[K3, Section 7]
P2 = T j1a1 ⊗ T j2(1)a2 ⊗ T j3(2)a3 ⊗ ...⊗ T js(s−1)as
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where aj ∈ Fp[Σj ] and s is a certain natural number. Let

P ′
2 = T j1(s−1)a1 ⊗ T j2(s−1)a2 ⊗ T j3(s−1)a3 ⊗ ...⊗ T js(s−1)as

Then P ′
2 lifts F . Now P ′

2 is not simple and we proceed as in the previous case.

Assume now that deg(F1) = pk · deg(F3) for some integer k. For the argument in this
case we will use deep results from [FFSS, Sections 1-3]. Assume that k is non negative,

for negative k the proof goes similarly. Let G3 = F
(k)
3 . Then G3 is a lift of F3 and let

d = w(F1) = w(G3). Let K be an extension of Fp of degree q ≥ d. For F ∈ F or P we
write F (K) for the functor in F(K) or P(K) obtained from F by scalar extension. We
have the following commutative diagram of Ext1 groups for any field K and any natural
number m:

K ⊗ Ext1P(G3, F1) ≃ Ext1P(K)(G3(K), F1(K)) → Ext1P(K)(G3(K)(m), F1(K)(m))
↓ ↓ ↓

K ⊗ Ext1F (G3, F1) ≃ Ext1F(K)(G3(K), F1(K)) → Ext1F(K)(G3(K)(m), F1(K)(m))

In the upper row the first map is an isomorphism by [FFSS, Proposition 1.1]. The
second map is an isomorphism for any m by the solution to the collapsing conjecture given
by M.Chalupnik in [C] from which it follows immediately that Frobenius twist induces
an isomorphism on Ext1P(K) for any K. The vertical maps are induced by ι (the first by

idK ⊗ ι).
In the lower row the first map is an isomorphism for large K by [FFSS, Theorem 3.9].

The second map is always an isomorphism by the fact that Frobenius twist is invertible
in F . Moreover for large K and m the right vertical map is an isomorphism by [FFSS,
Theorem 3.10]. Choosing large enough K and m we get that the first vertical map idK ⊗ ι
is an isomorphism so

ι : Ext1P(G3, F1) → Ext1F (G3, F1)

must be an isomorphism also.
Observe that in F , F3 = G3. Hence an element α ∈ Ext1F (F3, F1) corresponding to the

extension 0 → F1 → F2 → F3 → 0 lifts to Ext1F (G3, F1). By our previous considerations
it lifts to Ext1P(G3, F1) and hence describes certain functor P2 ∈ P which fits into the
exact sequence in P:

0 → F1 → P2 → G3 → 0

By the exactness of ι we know that P2 is a lift of F2.

We can generalize 2.3 straightforward and try to prove the following statement. Let
F ∈ F be finite and indecomposable. Let F1, ..., Fk denote the full list of simple objects
obtained as quotients in the composition series for F . Then F lifts to P iff for any pair
(i, j), deg(Fi) = pki,jdeg(Fj) for some integers ki,j . Unfortunately the situation is not that
simple.
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Example 2.4. Let p = 2. Then Ext1F (I ⊗ I(1),Λ3) = F2 by exponential property
of the exterior product. The same formula holds in P and Ext1P(I ⊗ I(1),Λ3) = F2 =
Ext1F (I ⊗ I(1),Λ3). Hence there is a functor F ∈ F fitting into an exact sequence

0 → Λ3 → F → I ⊗ I(1) → 0

which does not split. By the equality of Ext1 groups the functor F lifts to P. On the
other hand its composition series consists of functors of degree 2 and 3.

The next example presents a functor in F which does not lift to P.

Example 2.5. Let p = 2 and F4 denotes the degree 2 field extension of F2. By
[FFSS, Theorem 3.4] we know that

F4 ⊗ Ext1F (Λ
2,Λ3) = Ext1F(F4)

(Λ2(I ⊕ I(1)),Λ3).

The functor I⊗I(1) is a direct summand in Λ2(I⊕I(1)) so the nontrivial group Ext1F(F4)
(I⊗

I(1),Λ3) embeds in Ext1F(F4)
(Λ2(I⊕I(1)),Λ3). This shows that Ext1F (Λ

2,Λ3) is nontrivial.

Let F ∈ F be a functor defined by a nontrivial element in Ext1F (Λ
2,Λ3). The functors

Λ2 and Λ3 are simple and all their lifts are given by Frobenius twists. This implies that
Ext1P(A,B) = 0 for A being a lift of Λ2 and B being a lift of Λ3 because w(A) ̸= w(B).
In conclusion, F does not lift to P.

3. A∞ structures.

Before we start to describe which functors from F can be lifted to P we have to
compare A∞-structures related to objects of both categories. We are not going to recall
definitions and basic properties of A∞-structures on DG-algebras and their cohomology
algebras, sending readers to [Ka] or [Ke]. Assume that P ∈ P and ι(P ) = F ∈ F . Choose
an injective resolution I∗ of P in P. Then the cochain algebra C∗ = HomP(I

∗, I∗) is a
DG-algebra whose cohomology algebra is equal to Ext∗P(P, P ). We can treat it also as an
A∞-algebra with trivial higher operations (above degree 2). In our case C∗ is a DG-algebra
with free finite dimensional cohomology over Fp . We can apply the main theorem from
[Ka, Theorem 1] which implies directly:

Theorem 3.1: There is an A∞-structure (Ext∗P(P, P ), {Xi}) on cohomology of C∗

and a morphism of A∞-algebras {fi} : (Ext∗P(P, P ), {Xi}) → C∗ which induces an iso-
morphism of cohomology algebras.

Let now J∗,∗ be a Cartan-Eilenberg injective resolution of ι(I∗) in F . J∗,∗ is a
bicomplex and we use notation J∗ for the cochain complex obtained from J∗,∗ in a standard
way. ThenD∗ = HomF (J

∗, J∗) is a DG-algebra whose cohomology calculates Ext∗F (F, F ).
Similarly to 3.1 we have:
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Theorem 3.2: There is an A∞-structure (Ext∗F (F, F ), {Yi}) on cohomology of D∗

and a morphism of A∞-algebras {gi} : (Ext∗F (F, F ), {Yi}) → D∗ which induces an isomor-
phism of cohomology algebras.

As we read in [Ka] the structures of A∞-algebras on cohomology of DG-algebras are
not unique, there are many of them and all of them give isomorphic A∞-algebras. In our
case the functor ι is exact and induces an embedding

Ext∗P(P, P ) ↪→ Ext∗F (F, F )

Because of this embedding we will denote cohomology classes in Ext∗P(P, P ) and their
images in Ext∗F (F, F ) by the same letters. Our goal in this section is to show the following
theorem:

Theorem 3.3: With the notation from theorems 3.1 and 3.2 we can choose operations
{Xi} and {Yi} in such a way that for any i and any b1, b2, ..., bi ∈ Ext∗P(P, P ) we have

Xi(b1 ⊗ ...⊗ bi) = Yi(b1 ⊗ ...⊗ bi)

.

Proof: This theorem requires some arguments because the Kadeishvili’s construction
is not unique and consists of series of choices. We have to justify that we can make these
choices coherently in P and F . We will show that performing the inductive construction
from [Ka] we can make it in such a way that classes which we choose in D∗ are liftings to
the resolution of the classes already chosen in C∗. For this we need the following lemma:

Lemma 3.3.1: Let P ∗ be a cochain complex in an abelian category C and let Q∗,∗

be a C-E resolution of P ∗. Assume that α is a cocycle in HomC(P
∗, P ∗) and ᾱ is a lift of

α to Hom(Q∗,∗, Q∗,∗). Assume that the class of ᾱ is trivial in cohomology, ᾱ = ∂β̄. Then
there is β ∈ HomC(P

∗, P ∗) such that β̄ is a lift of β and α = ∂β.

Proof of the lemma. Assume that α rises the degree by k, αi : P
i → P i+k. Assume

that for every i, Qi,∗ is a resolution of P i. Then P i embeds into Qi,0 and we can directly
check that in order to obtain β we have to restrict β̄i,0 : Qi,0 → Qi+k−1,0 to P i. The result
then follows from the fact that ᾱ lifts α.

Back to the proof of 3.3. We have to recall the Kadeishvili’s construction. Let C be a
DG-algebra with free cohomology over some field. Kadeishvili constructs the sequence of
operations {Xi : ⊗iH(C) → H(C)} and the sequence of homomorphisms {fi : ⊗iH(C) →
C satisfying certain relations, which show that {Xi}s give an A∞-structure on H(C) and
{fi}s give an A∞-homomorphism H(C) → C. First he chooses elements of cohomology
which present the additive basis of it. Then he defines the structures using only the tensor
products of basic vectors and extending definitions by additivity.

The homomorphism f1 is just a choice of cocycles for cohomology classes and X1 = 0.
When we have defined fis and Xis for i < n then Xn(a1⊗ ...⊗an) is defined as cohomology
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class of a certain directly given cocycle Un(a1⊗ ...⊗an). The formula for Un(a1⊗ ...⊗ an)
involves fis and Xis only for i < n. The cohomology class of Un(a1⊗ ...⊗an)−f1(Xn(a1⊗
...⊗an)) is trivial and we define fn(a1⊗ ...⊗an) to be the cocycle such that Un−f1(Xn) =
∂fn.

We will follow Kadeishvili’s construction. We choose first the additive basis a1, ..., am
of Ext∗P(P, P ) and we define f1 as the choice of cocycles in C∗ for the basic vectors extended
to all cohomology classes by additivity. We define g1 as the lifting of f1 to D∗. Of course,
as Kadeishvili suggests, we define X1 = 0 = Y1. Now assume that we have defined Xi,
fi, Yi and gi for i < n such that Xi = Yi and gi is a lifting of fi to D∗. Then we see
that for any cohomology classes a1, ..., an in Ext∗P(P, P ), Ūn(a1 ⊗ ... ⊗ an) is a lifting of
Un(a1 ⊗ ... ⊗ an) where Ūn denotes the Kadeishvili’s cocycle in D∗. Now we can define
fn and gn such that gn is a lifting of fn using lemma 3.3.1. The described choices give us
A∞-structures as required.

4. Lifting.

Let k be a field and C be a k-linear abelian category which has enough injective and
projective objects. We will always assume in the future that our abelian categories satisfy
these conditions without writing this down. Assume that M is an object of C which has
finite filtration with quotients M1, ...,Mn. Our plan is to show that M is described by the
data consisting of elements αi,j ∈ Ext1C(Mi,Mj) which are trivial for j ≤ i and satisfy
certain relation in Ext2C(X,X), where X = M1⊕ ...⊕Mn and the relation comes from the
A∞-structure on Ext∗C(X,X). For this we will use Keller’s approach from [Ke] and [Ke1].

One can find in [Ke] and [Ke1] the method of describing a module over an associative
algebra via the cohomological data of its quotients. Moreover one can learn there how one
can reconstruct various categories of modules from the cohomological information. But
Keller’s approach is also useful for any small abelian category which can be treated as a
full subcategory in the category of modules by the Freyd’s theorem. We want to apply
Keller’s results in the case of categories F and P which are Fp-linear and we can treat
them as subcategories of the categories of modules over certain Fp-algebras.

Let D(C) denote the derived category of C and for a finite set of objects M1, ...,Mn

of C let tria(M1, ...,Mn) denote the smallest full triangulated subcategory of D(C) which
contains all of Mis. Following Keller we denote filt(M1, ...,Mn) the full subcategory of
C which is the closure under extensions of M1, ...,Mn. We can treat filt(M1, ...,Mn) as
a subcategory of tria(M1, ...,Mn) in the obvious way. We need the next lemma which is
essentially taken from [Ke1] (we send reader to [Ke1] for the definition and properties of
derived categories in the context of A∞-algebras and A∞-categories).

Lemma 4.1: Let M be an object of an abelian category C with M1, ...,Mk the
quotients of a certain filtration of M . Let X = M1 ⊕ ... ⊕ Mn. Then M is defined in
the category tria(M1, ...,Mn) by the sequence of elements βij ∈ Ext1C(Mi,Mj) which are
trivial for j ≤ i and satisfy certain condition in Ext2C(X,X) described by the A∞-structure
on Ext∗C(X,X)

Proof. STEP 1. Let E = Ext∗C(X,X) be an A∞-algebra where the A∞-structure
on the Ext-algebra was described (after Kadeishvili) in the previous section. Let Ei =
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Ext∗C(Mi,Mi). Section 6 of [Ke1] is devoted to showing that tria(M1, ...,Mn) is equivalent
to tria(E1, ..., En) where this latter category is the smallest triangulated subcategory of the
derived category D∞(E) of the A∞-algebra E which contains E1, ..., En. This equivalence
takes filt(M1, ...,Mn) to filt(E1, ..., En).

STEP 2. This step is contained in Section 7 of [Ke1]. Following [Ke1, Section 7.7] let
A be an A∞-category with objects 1, ..., n and A(i, j) = Ext∗C(Mi,Mj) with composition
of morphisms defined via A∞-operations on Ext∗C(X,X). Then, by its construction, the
category A is the A∞-Ext-category of the objects M1, ...,Mn. Let Y : A → C∞A be the
Yoneda functor. Then, as was shown in step 1, we have an equivalence

tria(Y (1), ..., Y (n)) ≃ tria(M1, ...,Mn)

which identifies filt(Y (1), ..., Y (n)) with filt(M1, ...,Mn). The Yoneda functor factorizes
through the category twA of twisted objects over A, see [Ke1, section 7.5]. Hence every
element in filt(Y (1), ..., Y (n)) has a description as required by the definition of twA.

Warning: The reader can complain that our category A does not satisfy the as-
sumptions of 7.5 and 7.7 because, perhaps, it is not strictly unital. But the results of [Ke1,
section 6] do not require this assumption. The factorization of the Yoneda functor into
Y = Y2 ◦ Y1, as described in [Ke1, 7.5], also works in full generality. Strict unitality is
necessary for the conclusion that H0(twA) is equivalent to filt(Y (1), ..., Y (n)). But we
do not need such a strong statement. Of course we have to pay a price for this. Our final
result tells only that a functor F ∈ F satisfying certain conditions can be lifted from F
to P. For a given F ∈ F , which is not simple, the number of lifts is still not known and
cannot be calculated by our methods.

Lemma 4.2: Let M1, ...,Mk be objects of an abelian category C and let βi,j ∈
Ext1C(Mi,Mj) for 1 ≤ i, j ≤ k. Assume that:

- βi,j = 0 for j ≤ i.
- the elements βi,j , 1 ≤ i, j ≤ k, satisfy the condition defining a twisted object ([Ke,

Section 7.6, formulae 7.1]).
Then there exists M ∈ C for which this is the defining data in tria(M1, ...,Mk) in the

sense of lemma 4.1.

Proof. Let A be as in Step 2 above and let Z be a twisted object in twA defined by the
elements βi,j , 1 ≤ i, j ≤ k and non shifted copies of objects 1, ..., n. Following [Ke1, Section
7.5] let C∞A be the category of A-modules and Y2 : twA → C∞A be a factorization of
the Yoneda functor through twA. Then we can easily check that the object Y2(Z) belongs
to filt((Y (1), ..., Y (n)) and hence defines an object M in filt(M1, ...,Mn). The defining
data for M in the sense of 4.1 is as required.

Now we come back to functor categories. Let F be an indecomposable finite object in
F . We can restrict our attention to indecomposable objects by obvious reasons. Assume
that F has in F a filtration with quotients F1, ..., Fk satisfying for any i, Fi = ι(Pi) for a
certain simple object in P. Then, accordingly to 4.1, F is described by the set of elements
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βi,j ∈ Ext1F (Fi, Fj), which are trivial for j ≤ i and satisfy certain relation in Ext2F (., .).
We have the following theorem:

Theorem 4.3: The functor F lifts to P iff all elements βi,j lift to αi,j ∈ Ext1P(Pi, Pj).

Proof. The functor ι is exact, it induces a monomorphism on Ext-groups. The results
of Section 3 tell us that it induces well defined functor between the categories of twisted
objects in P and F . If F = ι(P ) for some P ∈ P then it has the desired filtration with
quotients coming from the composition series of P . The existence of elements βi,j follows
from Lemma 4.1. They lift to themselves after identification of classes from Ext1P(Pi, Pj)
with classes in Ext1F (Fi, Fj) as in Section 3.

But we are really interested in the opposite implication. Let AP (AF ) be the A∞-
category as in in Step 2 of the proof of 4.1 for P1, ..., Pk (F1, ..., Fk). Assume that for any
i, j , βi,j lifts to αi,j ∈ Ext1Pd

(Pi, Pj). The functor ι defines an A∞-functor (identity on
objects) denoted by the same letter

ι : AP → AF

because by the results of Section 3 the A∞-structures can be chosen to be compatible. It
extends to a functor

ι : twAP → twAF

because the map induced by ι on Ext2 is a monomorphism. The data {αi,j} as above
defines an object ZP in twAP and ι takes it to the twisted object ZF in twAF defined by
{βi,j}. Let P be an object in P corresponding to Y2(ZP). By construction, the defining
data for for ι(P ) is given by the classes βi,j . Hence P is a lifting of F .

5. Final remarks.

In this section we want to present two problems concerning cohomological behavior
of finite functors in F which were studied before. We can easily prove them for functors
in the image of ι and they are open in general. Throughout the section we assume that
our functors F ∈ Ob(F) are finite what means that they are of finite degree in the sense
of Eilenberg and Mac Lane and take finite dimensional values.

Problem 5.1: Prove that for any finite F ∈ Ob(F) the vector space Ext∗F (I, F ) is
either trivial or infinite dimensional.

Theorem 5.2: If F can be lifted to P then 5.1 holds for F .

Proof. We can obviously assume that F is indecomposable by the additivity of the
Ext-groups. This implies that there is an integer t and a strict polynomial functor P ∈
Ob(Pt) of homogeneous degree t such that ι(P ) = F . The functor P has in Pt a finite
injective resolution P → Q0 → Q1 → ... in which every Qj is a sum of tensor products of
symmetric powers:

Qj =
⊕

Sj1 ⊗ ...⊗ Sjm
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where j1 + ... + jm = t. This resolution remains exact in F after applying ι. If m > 1
then Sj1 ⊗ ... ⊗ Sjm is obviously diagonalizable. If m = 1 and j1 is not a power of p
then Sj1 is a direct summand in a diagonalizable functor (see [FLS, Proposition 6.1]).
Hence by a hyper-cohomology spectral sequence argument and vanishing of Ext∗F (I, .) for
diagonalizable functors we know that Ext∗F (I, F ) can be non trivial only when t is a power
of p. We will assume that t = pi for the rest of the proof.

Let F# denotes the Kuhn’s dual of F and V • be the liner dual of the vector space V .
The crucial argument for the proof of 5.2 is taken from [C1] where Chalupnik proved the
following theorem ([C, Theorem 3.2]):

Theorem: Let P ∈ Pd be simple and projective, or let P = Id (the dth tensor power
functor). Then for any s ≥ 0 we have a natural in F isomorphism

ExtsP(k)pid
(P (i), F ) ≃ Ext

2(pi−1)d−s
P(k)pid

(P (i), F#)•.

Observe first that the Frobenius twist is equal to identity on F and hence for any
natural numbers j and m we have:

ExtjF (I, F ) = ExtjF (I
(i), F ) = ExtjF (I

(i+m), F (m))

Remembering that P is of homogeneous degree t assume that ᾱ ∈ ExtjF (I
(i), F ) is

nontrivial and comes from α ∈ ExtjP(I
(i), P ) by applying ι. By Chalupnik’s theorem we

detect class β ∈ Ext
2(pi−1)−j
P (I(i), P#) corresponding to α. The choice of β is obviously

not unique. Frobenius twist induces a monomorphism on ExtP by [FFSS, corollary 1.3].
It means that for any natural m, β defines nontrivial classes

βm ∈ Ext
2(pi−1)−j
P (I(i+m), P (m)#).

Using again the Chalupnik’s result and the fact that (P#)# = P we get classes αm ∈
Ext

2pi(pm−1)+j
P (I(i+m), P (m)). Because i and j are fixed and m is arbitrary, the number

2pi(pm − 1) + j can be arbitrarily large. Hence we know that classes αm define infinite
sequence of nontrivial cohomology classes which are contained in different degrees of Ext-
groups. By [FFSS, Corollary 3.7] we know that the map induced by ι:

Ext
2pi(pm−1)+j
P (I(i+m), P (m)) −→ Ext

2pi(pm−1)+j
F (I(i+m), F (m)) = Ext

2pi(pm−1)+j
F (I, F )

is injective. This implies our theorem under the assumption that every class ᾱ come from
α as above.

For our purposes it is enough to show that for any nontrivial ᾱ ∈ ExtjF (I
(i), F ) there

exists m such that ᾱ comes from α ∈ ExtjP(I
(i+m), P (m)). In order to show this we have

to use more results from [FFSS]. Let K be a finite extension of Fp. We will write F(K)
(P(K)) and FK (PK ) for the category o functors over the base field K and for the functor
obtained from F (P ) by the scalar extension. We list the needed results:
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1.
K ⊗ ExtjP(I

(i), P ) = ExtjP(K)(I
(i), PK)

Proof: [FFSS, Proposition 1.1].

2.
K ⊗ ExtjF (I

(i), F ) = ExtjF(K)(I
(i), FK)

Proof: By [FFSS, Remark 3.4.1] we know that

K ⊗ ExtjF (I
(i), F ) = ExtjF(K)(I

(i) ◦ (t ◦ τ), FK).

Here t is the scalar extension functor and τ is the forgetful functor, as studied in [FFSS,
Section 3]. Now using the scalar decomposition of the category F(K) described in [K,
Section 3.3] we get immediately that this latter group is equal to ExtjF(K)(I

(i), FK).

3. For given j there is a field extension K of Fp and a number m such that

K ⊗ ExtjP(K)(I
(i+m), P (m)) = ExtjF(K)(I

(i), FK)

Proof: [FFSS, Theorem 3.10].

Now we can consider the following commuting (see [FFSS, Theorem 3.5]) diagram:

K ⊗ ExtjF (I, F ) ≃ ExtjF(K)(I
(i), FK)

↑ ↑
K ⊗ ExtjP(I

(m+i), F (m)) ≃ ExtjP(K)(I
(i+m), F

(m)
K )

where the right-hand vertical arrow is an isomorphism. This implies our claim and the
proof of the theorem is finished.

Now we come to the second problem. Let QF denote the Mac Lane’s Q-construction
related to F , defined and developed in [J-M, Sections 6 and 7]. By definition QF is a
nonnegative chain complex in F whose homology functors are isomorphic to the left stable
derived functors of F . It has (QF )0 = F and hence it comes with the map of chain
complexes F → QF where, as usual, F is treated as a chain complex concentrated in
dimension 0. This map induces for any i a homomorphism of hyperext groups

5.3.1
ExtiF (QF, I) → ExtiF (F, I)

5.3.2
ExtiF (I, F ) → ExtiF (I,QF )

The map from 5.3.1 is easily seen to be an isomorphism by the spectral sequence argu-
ment for the hyperext groups. In [S] Stefan Schwede showed that 5.3.2 was an isomorphism
for symmetric powers and used that result for interesting applications in homotopy theory.
It is given in [S, 11.3] an example of a functor in F of infinite degree for which Ext0(I, F )
and Ext0(I,QF ) really differ.
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Problem 5.3: Show that the homomorphism 5.3.2 is an isomorphism for any finite
F ∈ Ob(F).

Theorem 5.4: Problem 5.3 has positive solution for any F which can be lifted to P.

Proof. The Q construction takes short exact sequences of functors to short exact
sequences of chain complexes. From this we see that if

0 → F1 → F2 → F3 → 0

is a short exact sequence in F than if the conclusion of the theorem holds for two of
{F1, F2, F3} then it holds also for the third by the long exact sequence argument. Assume
that F ∈ Ob(F) is finite and can be lifted to P, F = ι(P ) for a certain P ∈ Ob(P).
We can argue like in 5.2 and reduce ourselves to the case when F is indecomposable of
homogeneous degree t = pi. As previously, if this is the case then there exists in F a finite
exact sequence F → Q0 → Q1 → ... → Qk in which every Qj is a sum of tensor products
of symmetric powers:

Qj =
⊕

Sj1 ⊗ ...⊗ Sjm

where j1 + ...+ jm = t.

Observe that for all Qjs our theorem holds either by the results of Schwede or by
vanishing of both sides in 5.3.2. We will prove our theorem easily by induction on k.
Very briefly: let G denote the cokernel in F of the map F → Q0. Then G lifts to P,
more precisely G = ι(PG) where PG = coker(P → Q0). By construction PG has shorter
injective resolution in P than P . Hence by inductive hypothesis our theorem holds for G.
It holds for Q0 so it holds also for F .

11



Bibliography:

[C] - M. Chalupnik. Derived Kan extension for strict polynomial functors. Int. Math.
Res. Not. 20 (2015) 1001710040.
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