ALGEBRAIC K-THEORY OF PARAMETERIZED
ENDOMORPHISMS

STANISLAW BETLEY

1. INTRODUCTION

Let R be a ring and M an R-bimodule. Let T'M denote the tensor
algebra spanned on M. Denote by End(R, M) the category whose objects
are pairs (P, f), where P is a finitely generated projective right R-module
and f: P — P® M. Let Nil denote the full subcategory of End(R, M)
consisting of nilpotent objects. Our ultimate goal (which is still far ahead)
is to understand the inclusion functor Nil — End(R, M) on K-theoretical
level in terms of K-theories of rings. The difference between K (End(R, M))
and K (Nil) should be described in terms of the K-theory of a suitable, non-
commutative localization of the ring T'M.

It is worth underlining here that the category End(R, M) and its K-
theory appears naturally in K-theoretical investigations. For example it
played a crucial role in comparing stable K-theory and topological Hochschild
homology in [DM]. Recently, it was used by McCarthy in his studies on the
de Rham-Witt complex. It looks like the meaning of this theory will grow
in the K-theoretical investigations in the nearest future.

Let us give here some historical motivation for our investigations. When
M = R it is known that reduced K(Nil) is the same as reduced K(R][z])
with a shift of gradation while K (End(R, M)) is equal to QK (A) where A is
equal to R[X] localized in (1+zR[z]) ( see [G]) and QK (A) denotes the loop
space of the reduced K(A) . Hence the effect on K-theory of our inclusion
functor can be viewed as a part of the localization sequence for localizing
polynomial algebra. The observation comparing K (/Nil) and K (R[z]) has its
generalization to ”larger” M’s : Waldhausen in [W2, see Theorem 3, page
137] proved that for a projective M, the reduced K(Nil) is the same as
the reduced QK (T M). We are looking for the appropriate generalization of
the second observation. Our investigations were stimulated by McCarthy,
who after [DM] conjectured that K(End(R,M)) should be described via
appropriate localization of T'M.

Our final results only partially fulfill our expectations. There are two
reasons for that. First of all our model of the cofiber of the map K (Nil) —
K(End(R, M)), which we construct in sections two and three following the
work of Schlichting ([Sch]) , is very special. To make it work we have to
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assume that our ground ring is of the semi-simple type. The other problem
comes from the fact that as a main tool to work with the localized tensor
algebra we use the localization sequence of Neeman and Ranicki from [NR].
To use it we have to assume that the localized tensor algebra is stably-flat
over T'M. While writing this note we discovered that algebraic properties
of localizations of T'M are largely unknown when only one assumes that the
ground ring is not a field. Hence to get our final result (Theorem 3.3) we
have to assume that R is a field. We suggest [S] as a good place to learn
something about non-commutative localizations and its properties and also
as a reference book on this subject.

2. CATEGORY OF PARAMETERIZED ENDOMORPHISMS

Let R be a commutative ring with unit and M a finitely generated R-
bimodule. We will assume that M is (bi)-projective of rank bigger than 1
and R satisfies the condition that every submodule of a finitely generated
projective module P is itself finitely generated projective and splits as a
direct summand in P . In other words we assume that our ring is semi-
simple. In such case the category of finitely generated projective R-modules
is abelian. As one sees, we eventually assume that our ground ring R is com-
mutative. The assumption that R is commutative can be obviously removed,
but having it we do not have to write about right and left structures over
R, which play no role in our investigations. The real "noncommutativity”
here comes from the tensor algebra.

Let TM denote the full tensor algebra on M:

TM = @ M®
0<s

Denote by End(R, M) the category whose objects are pairs (P, f), where
P is a finitely generated projective right R-module and f : P — P® M.
Morphisms @ : (P, f) — (Q, g) are given by maps ¢ : P — ) which satisfy

gop=(¢p®id)o f

We will address End(R, M) as a category of parameterized endomorphisms.
It has an obvious structure of an exact category coming from the exact
category of projective modules over R (we forget about f). The following
definition is taken from [W2]:

Definition 2.1. An object (P, f) of End(R, M) is called nilpotent if P =
U, P" where P? is defined inductively by the formula P’ = f~1(P"~1 @ M)
with P? = 0.

Lemma 2.2. An object (P, f) is nilpotent if and only if the map P ®
TM — P ®TM induced by id — f is an isomorphism.



ALGEBRAIC K-THEORY OF PARAMETERIZED ENDOMORPHISMS 3

Proof. This lemma is fully proved in [W2, page 160]. Shortly speaking
the formula

id+f+f2+f+..:PQTM - PRTM
makes sense for nilpotent objects, where
fif=(fRid®..®id)o..o(fQid)of:P—P® M

and describes well the inverse to the map induced by id — f. For the impli-
cation in the opposite direction one can use 2.3 below.

2.3.Lemma. Let (P, f) be an object of End(R,M). Then there is a
unique submodule P’ of P, such that (P’ f|ps) is nilpotent and f : P/P’ —
P/P"® M is a monomorphism. Moreover any ¢ : (P, f) — (Q,g) induces

¢ (P flp) = (@ gle)
Proof of 2.3. Define
P=JP
where P?’s are defined in 2.1. Then f|ps has its image in P'® M by definition
and hence f defines the map P/P" — P/P’® M. Then it is straightforward

to check that all required properties are satisfied. The map ¢’ = ¢|p:. It is
also easy to check that ¢’ is well defined.

In the future the quotient P/P’ as above will be denoted P” and the
induced map P”" = P/P' — P/P'® M = P" ® M will be called f”.

Observe that the subcategory Nil of nilpotent objects inherits the struc-
ture of an exact category from End(R,M). Recall from [Sch, 1.3 | the
definition of a filtering cubcategory of an exact category. WARNING: in an
exact category we will follow notation from [Sch] and will call an admissible
epimorphism as deflation, an admissible monomorphism as inflation and an
exact sequence as conflation.

2.4. Definition: Let U be an exact category and let A C U be an
extension closed full subcategory . Then the inclusion A C U is called right
filtering if
(1) A is closed under taking admissible subobjects and admissible quotients
in Y and
(2) every map U — A from an object U of U to an object A of A factors
through an object B of A such that the arrow U — B is a deflation:

U—>4

N

B
The inclusion A C U is called left filtering if AP is right filtering in U/°P.
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2.5. Proposition: Under our assumptions on R and M the category
Nil is a full, extension closed subcategory of End(R, M) which is right and
left filtering.

Proof. By the definition Nil is a full subcategory of End(R, M). Every
subobject and every quotient of a nilpotent object is again nilpotent. More-
over, 2.2 implies that when (P, f) is an object of End(R, M) and it has a
nilpotent subobject with nilpotent quotient then (P, f) is nilpotent. Every
arrow ¢ : (P, f) — (Q, g) has its image (ime, glimg) in End(R, M) which is
an admissible subobject of (@, g) and an admissible quotient of (P, f). This
implies both filtering properties.

O

We will follow the path described in [Sch]. We will call a map ¢ : (P, f) —
(Q,9) in End(R, M) a weak isomorphism when it is a finite composition of
inflations with cokernels in Vil and deflations with kernels in N+¢l. Following
[Sch,1.16] we have a well defined quotient category H = End(R, M)/Nil
obtained from End(R,M) by formally inverting the weak isomorphisms.
Moreover H has a natural exact structure in which a sequence X — Y — Z
is a conflation if it is isomorphic to the image of a conflation in End(R, M)
under localization functor End(R,M) — H. Obviously this localization
functor is an exact functor of exact categories and we have ([Sch, 2.1]):

2.6.Theorem: The sequence of exact categories Nil — End(R, M) — H
induces a homotopy fibration of K-theory spaces

K(Nil) — K(End(R, M)) — K(H)

2.7.Remark: As Schlichting noticed in 1.13 the set of weak isomorphisms
admits a calculus of fractions. Hence in H every morphism can be written
as a map in End(R, M) followed by an inverse of a weak isomorphism.

2.8. Remark: Theorem 2.6 can also be obtained from Quillen’s localiza-
tion theorem ([Q, Theorem 5]), by observing that Nil is a Serre subcategory
of End(R, M) and H is equivalent to the associated quotient.

3. THE CATEGORY OF T'M-MODULES.

Let Ap denote the right T'M-module which fits into an exact sequence
0—-PRTM - PQTM — Ap — 0

where (P, f) is an object of End(R, M) and the map PQTM — PRTM is
induced by id — f. Obviously Ap is generated over T M by the image of the
0-grade of P ® T'M which is isomorphic to P as an R-module. Hence Ap is
always finitely generated. Warning: for simplicity we do not include f into
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the notation for Ap assuming that it will be always clear (or not necessary to
know) which map we have to take into account. Moreover, for a given T'M-
module Ap as above the R-module P is obviously not uniquely determined.
Nevertheless we will use this notation to indicate that our module fits into
the exact sequence as above. We will write Ap = Ag when P is a submodule
of @ and the natural embedding Ap — Ag is an isomorphism. We will use
the same convention for the quotient map P — () with the property that
the natural quotient map Ap — Ag is an isomorphism.

Denote H(TM, E) the full subcategory of the category of right T'M-
modules consisting of objects isomorphic to Ap’s as above. We can endow
the category H(T'M, E) with an exact structure by saying that a short se-
quence in it is a conflation when it comes from a conflation in End(R, M).
In order to be sure that this way we do get an exact category structure we
show that H(T'M, F) is equivalent as an exact category to the category of
right T'M-modules of projective dimension 1 which have resolutions of the
type described above. Later we will show that H(T'M, E) is equivalent to
‘H as an exact category. But before proving all these results we need first to
show some technical lemmas.

Lemma 3.1: Assume that (P, f) and (Q, g) are objects of End(R, M)
and F': Ap — Ag is a morphism of T'M-modules. Assume that there is a
homomorphism ¢ : P @ TM — @ ® T'M which covers F' and is induced by
a homomorphism ® : P — (). Moreover assume that g is a monomorphism.
Then ® is unique.

Proof. Assume that ® : P — (@ is another homomorphism satisfying the
same conditions as ®. Then for every p € P the element ®(p) — ®'(p) goes
to 0 in Ag. Assume that there is p € P such that ®(p) — ®'(p) # 0. But
then ®(p) — ®'(p) € im(id — g). On the other hand this is possible only if g
has nontrivial kernel.

Lemma 3.2: Let (P, f) and (Q, g) be objects of End(R, M). Assume
that we have a commutative diagram of T'M-modules

id—

o e I
QOTM —— QaTM —— Aq

where ¢ is induced by an R-homomorphism ® : P — ). Moreover assume
that ¢ is a monomorphism. Then ¢ = ¢'.

Proof. The homomorphism ¢’ is uniquely determined by its values on P
or in other words by its values on the 0-grade part of P ® TM. Write ¢’
restricted to P as a sum ¢’ = ¢j + ¢} + ... + ¢}, where indices correspond
to the gradation in Q ® TM. Then from the commutativity of the left-
hand square in the diagram above we easily check that ¢ = ¢ because two
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elements in a graded object are the same when they are the same in every
gradation. Let for a given p € P, s be the largest index such that ¢/, (p) # 0.
Then (id — g)(¢'(p)) has a nontrivial part in the grading s+ 1 because g is a
monomorphism. On the other hand ¢((id— f)(p)) is trivial above gradation
1. Hence s = 0 and the lemma is proved.

Lemma 3.3: Let (P, f) and (Q,g) be objects of End(R,M). Assume
that we have given a commutative square in the category of T'M-modules:

P®TM —— Ap

| ¥
Q®TM —— Ag
where horizontally we have our standard projection maps. Then there exists

an object (S, h) of End(R, M) such that Ag = Ag, h is a monomorphism
and we have a commutative diagram

PTM —— Ap

l«:b’ lF
SQTM —— Ag
where ¢’ is induced by an R-homomorphism &' : P — S.

Proof. Let us start from some simple technical observation. Assume that
(T,7) is an object in End(R,M). Let T' =T®TQM &...0 T @ M®* for a
certain k. Observe that T” is a finitely generated projective R-module. Let
H:T' — T'® M be a map defined in the described above decomposition of
T’ by the matrix

jid 0 .. 0
0 0 id 0

0 . .. 0 4d
0 v e i O

Then it is easy to check that Ar is the same as A7 as right T'M-modules.
The identification comes from the embedding T < T” on the first summand.

The image of the 0 grade of P ® T'M is contained in Q ® Q @ M & ... ®
Q@ M®* for a certain k. Put S=Q QM@ .. QR M® and h = H
as above with g instead of j. Then we can easily define ¢’ : P — S which
induces a T'M-homomorphism covering F'. Observe that ¢ restricted to P
treated as the 0-grade of P ® T'M induces an R homomorphism ¢ : P — S.
Take ¢/ = ¢.

The obvious question which arises here is why ¢’ covers F. Obviously ¢
composed with the embedding i of @ into S at the first summand is not
equal to ¢/. But for any p € P the classes in Ag of i o ¢(p) and ¢'(p) are
equal. This is easily seen from the way we identify Ag and Ag. The main
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point in the construction of S is to allow us to see elements from the first
k-grades of Q ® TM as elements of the first grade of S ® T M.

At this stage we cannot guarantee that h is a monomorphism (usually it
is not !). So in order to get our object (S,h) we have to follow the lines of
2.3 and put S = S” with the map h induced from h.

Lemma 3.4: Assume that A and B are objects of H(T'M, E) and F :
A — B is a T'M-homomorphism. Then there exist objects (P, f) and (S, h)
in End(R, M) and a map ® : P — S in End(R, M) such that Ap is isomor-
phic to A, Ag is isomorphic to B and under this identification the map of
T M-modules induced by ® covers F'. Moreover when F' is a monomorphism
(epimorphism) we can get ® of the same type.

Proof. Both A and B are objects of H(T'M, E) hence the existence of
(P, f) and (Q,g) such that Ap = A and Ag = B is obvious from the
definition. T'M-modules P ® TM and (Q ® T M are projective over T'M so
by general properties of projective objects we have a commutative diagram

POTM —— POTM —— Ap
e

I e ¥
QOTM —— QaTM —— Aq

with exact rows. Now we can apply 3.3 to the right square of this diagram
and get the required (S, h) for the first part of the lemma. In order to get
mono- and epi- properties we have to work a little more.

Assume that F' is a monomorphism. By 2.3 we can assume that f is a
monomorphism either. When we know that f is mono then the quotient
map P® TM — Ap is mono after restriction to the 0-grade. This forces ®
to be a monomorphism.

Now assume that F' is an epimorphism. If obtained ® is not an epimor-
phism then call (S, k) the object of End(R, M) given by (im®, h|e). Then

one checks easily that Ag = Ag and ® : P — S is an epimorphism.

Notation: In the notation of 3.4, instead of saying that the map of T'M-
modules induced by ® covers F' we will say in the future that ”® covers
7.

Lemma 3.5: Assume that f: S = PO M OPRM®?* @ ...0 P M®F
is an R-homomorphism for some natural number k. Let o : S — P be an
isomorphism. Then coker(a — f) belongs to H(T M, E), when we treat here
(= f)asamap S®TM — P ®TM (the obvious extension via tensoring
with IdTM) .

Proof of 3.5. We will proceed similarly to the proofs of previous lemmas.
Assume first that P = S. Let then f; : P — P@M ®? denote the composition
of f with the projection on P® M®*. It is easy to observe that the cokernel
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of 1 — f is isomorphic as a T'M-module to the cokernel of 1 — F : QT M —
Q ® TM where Q is an R-vector space isomorphic to P®@ M & P ® M®? ¢
. ®P®M®% and F : Q — Q ® M in the sum decomposition of Q as above
is given by the matrix:

fi did 0 .. 0
fo 0 did 0

feel1 O .. 0 id
fi 0 .o .. 0

Hence coker(1 — f) belongs to H(T'M, E). Because f was here arbitrary we
can write & — f = (1 — foa ') o and get the general statement of 3.5.

Theorem 3.6: The category H(T M, E) with conflations coming from
End(R, M) (or equivalently from 7'M-modules) is an exact category.

Proof: Because H(T'M, E) is a full subcategory of the category of T'M-
modules it is enough to show that the former is extension closed in the
latter. Let (P,h) and (Q,g) be two objects of End(R, M). Assume that a
T M-module X fits into an exact sequence

0—=Ap =X — A9 —0

To get our statement we have only to show that X isin H(T'M, E'). When we
apply standard method for constructing a projective resolution of a module
from projective resolutions a submodule and a quotient we immediately get
that X fits into an exact sequence of T'M-modules

0—>Yi>Y—>X—>O

Moreover we know that Y is a projective T'M-module and hence, under
our assumptions on a ground ring, ¥ = S ® T'M for a certain S abstractly
isomorphic to P & @) as R-modules. Easy diagram chase tells us that ¢ =
a — f where v and f are as in the previous lemma.

There is an exact functor © : End(R, M) — H(TM, E) taking (P, f) to
Ap. It obviously factors through the localization functor End(R, M) — H.
We will denote by 0 the induced functor H — H(T'M, E). Our main result
in this section is

Theorem 3.7: The functor 6 is an equivalence of exact categories.

Proof. We will construct an exact functor ¢ : H(TM,E) — H. On
objects we put £(Ap) = (P”, f"), where the image was described in 2.3. In
other words we choose (P, f) which maps to Ap and kill its nilpotent part.

The morphisms part of £ is a little more tricky, because here is the point
where we really have to use H, and not End(R,M). Let F': Ap — Ag be
a T M-homomorphism. Using 3.3 we can rise it to a map ® : P” — Q such
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that there is a map a : Q” — @ with nilpotent cokernel covering identity
on Ag. Hence o' o @ is a well defined map in ‘H. This map defines {(F).
But, defining {(F') we have made several choices so we have to show that
our map &(F') does not depend on them.

Assume that ¥ : P” — Q" is map in H which covers F. By the calculus
of fractions we can assume that ¢ = 37! o ® where ® : P” — S and
B:Q" — S is a composition of weak isomorphisms. We have to show that

alod=p"1od

Proceeding as previously we can rise id : Ag — Ag to a map 7! o4,
where § : S — S and v : Q — S and moreover both § and ~ are weak
isomorphisms. We can, of course assume that S contains no nilpotent part.
If that was not the case then we could quotient nilpotents out, as in 2.3.
Notice that , accordingly to 3.1, we have equalities

yoa=2dof

and

Jod' =yo0®
From this we easily calculate
al=p"106"lon
and eventually
atod=081losloyoylodod® =p"10d

as we wanted. It is obvious from its definition that & maps identities to
identities and compositions of morphisms to compositions. Similarly, it is
obvious that £ is exact because all conflations in H(T'M, E) are coming from
conflations in H. Hence we have proved that H(T'M, E) is equivalent via
an exact functor to the category obtained from H by choosing at least one
object from every isomorphism class in H. This finishes the proof of 3.7.

O

As an immediate corollary of 2.6 and 3.7 we get

Corollary 3.8: We have the following exact sequence of algebraicK-
theory groups:

.. = Ki1(H(TM, E)) — Ki(Nil) — K;(End(R,M)) — K;(H(TM,E)) — ...
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4. ENDOMORPHISMS AGAINST LOCALIZATION

Now we are in a position to access the noncommutative localizations of
rings. We are going to use the theorem of Neeman and Ranicki on the K-
theory of noncommutative localizations. But before stating it we need some
more notation. Let A be ring and ¢ be a collection of maps between finitely
generated projective right modules over A. In such a case there is a general
construction of a ring 0~ ' A which is called a noncommutative localization
of A with respect to 0. Let H(A, o) denote the exact category of o-torsion
A-modules of projective dimension one, i.e. the A-modules with a finitely
generated projective A-module resolution

0—)PL)Q—>T—)0
1

where 07 1s : 07'P — 07!Q is an isomorphism. We have the following
theorem ([NR]):

Theorem 4.1: Let 0~ 'A be stably flat over A and assume that each
s € o is a monomorphism. Then we have the long exact sequence of K-
theory groups (localization sequence):

.= Ky(A) = Ky(07tA) = K, 1 (H(A,0)) = K,_1(4) — ...

Now we can come back to our considerations. Let o denote the collection
of TM-maps 1 — f: PQTM — P®TM as in Section 2, where (P, f) is an
object of End(R, M). We have:

Lemma 4.2: Assume that R is a field. Then:
H(TM,E)~ H(TM,o)

as exact categories.

We postpone the proof of 4.2 for a while. Observe that all theories K (Nil)
, K(End(R, M) and K (o~'T M) have obvious split surjective maps to K (R)
. Moreover the middle map in the exact sequence of 3.8 is compatible with
these splitings. Let K (Nil), K(End(R,M)) and K, 1(c~'TM) denote the
corresponding reduced theories. Observe that 3.8 and 4.2 yield the following
theorem:

Theorem 4.3: Assume that R is a field. Then we have
K (End(R,M)) = K, 41(c 7T M)

Proof. Our ring R is a field so obviously it is regular coherent in the sense
of Waldhausen’s Theorem 4 [W2, p.138] and hence K(TM) = K(R) and
K(Nil) is trivial . Thus 3.8 tells us that K, (End(R, M)) = K,(H(TM, E)).
This latter group is the same as K,,(H(T M, o)) by 4.2. Again, assumptions

on R easily imply that o ~1TM is stably flat over TM because this latter
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ring is hereditary (see [B1] and the introduction to [NR]). Then we get our
statement by using localization sequence 4.1.

Proof of 4.2. We have to show that categories H(T M, E) and H(TM, o)
are equivalent. There is an obvious exact embedding functor H(TM, E) —
H(TM,oc). We have only to show that every object of H(T'M, o) is isomor-
phic to some object of H(T'M, E). Using lemma 3.5 we know that that if
f:S—>PIM®PRIM®?®...0 P® M®F is an R-homomorphism for some
natural number k£ and « : S — P be an isomorphism then o — f treated as
amap S TM — P ®TM gets inverted after localization with respect to
.

Knowing this , while talking about H(TM,o) we can enlarge o to ¥
which consists of all maps o — f where a : § — P is an isomorphism of
a finitely generated projective R-modules and f : S — P ® T'M,. The
notation T'M stands here for the tensor algebra without the 0-grade. We
will finish the proof of 4.2 if we show that any map between finitely generated
T M-modules, which is invertible after localization, belongs to 3.

With our assumption that R is a field we know that all projective objects
over T'M are free with the well defined rank (see for example [B1] and [B2]).
Let f : X — Y be a map invertible after localization with respect to o,
where X = R"®@ TM and Y = R™ ® TM. Let X; (Y;) denote the i-th
grade of X (Y). Let fo be equal to f|x, composed with the projection on
the O-grade of Y. To finish the proof we have only to show that fy is an
isomorphism.

First of all observe that fy = fQryidr : XQry R= X0 — Yo=Y 1y
R. Moreover, the natural ring map T'M — R factors through the localization
map [ : TM — o~ 'TM. This follows from the universal property satisfied
by [. But knowing this we can finish the proof by observing that we have
an equality

fo=f®rmidy17r Rp—17pr 1dR
as maps

Xo=XQ®rum o 'TM Q-1 B —=Y Q711 o 'TM Q-1 B =Y

and f ®pas idy-17, is an isomorphism.

Remark 4.5: We can give a better description of o ~'TM, more in the
spirit of the commutative case. Let ¢’ be the set of all elements of TM of
the form 1 —m; ® ... ® m,, for an arbitrary n. Then ¢~ 'TM is isomorphic
as a ring to o/ “'T'M. To see this it is enough to observe that any saturated
class of morphisms (in the sense of [S, page 58]) between projectives, which
contains ¢’ has to contain X. This is obvious because the multiplicative
closure of ¢’ has this property.

Remark 4.6: Observe that our proof of 4.2 works well in the case when
we can assume that resolutions describing elements of H(T'M, o) consist of
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finitely generated free T'M-modules. For example this is the case if every
finitely generated projective T'M-module is stably free. But here our poor
understanding of the ring 7'M comes into play and prevents us from getting
stronger results.
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