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ABSTRACT: We study homological algebra in the abelian category Γ̃, whose objects
are functors from finite pointed sets to vector spaces over Fp. The full calculation of
TorΓ̃

∗ -groups between functors of degree not exceeding p is presented. We compare our
calculations with known results on homology of symmetric groups, Steenrod algebra and
functor homology computations in the abelian category F of functors from vector spaces
over Fp to itself.

0. Introduction.

In recent years we observe growing interest in homological algebra computations in
various categories of functors from small categories to vector spaces. Let Γ be the category
of finite pointed sets. By Γ-module we understand a functor from Γ to vector spaces over a
finite field Fp. The following paper is the first in a series devoted to studying homological
algebra in the category of Γ-modules, which will be denoted by Γ̃. The homological algebra
in the category Γ̃ is of crucial importance because of its close relations to Steenrod algebra
and algebraic topology in general. The subject is well documented in the literature, see
for example [BS], [B1], [B2], [P1], [Ri], [Ro] etc.

If we denote by Vp the category of finite dimensional vector spaces over Fp and by
F the category of functors from Vp to V ectFp then one can say that homological algebra
in F is well understood because of calculations and methods developed during the last
ten years with a culmination in [FFSS]. But some questions still remain open. Let L ∈ Γ̃
be a linearization functor which takes a pointed set X with a distinguished point 0 to
Fp[X]/F [0]. Categories Γ̃ and F are related by the functor l : F → Γ̃ via the formula
l(T ) = T ◦ L and hence their homological algebras are also related. This correspondence
was preliminary studied in [B2] where it was shown how to apply Γ̃-calculations to obtain
new interesting results in F . It seems to us that homological algebra in Γ̃ should be easier
than in F and the full knowledge on both should come from their interaction coming from
the functor l.

We will use the following convention: we will denote by the same letter a functor from
F and its precomposition with L. This should not cause any problem in the present paper
because the category F will not be used here in any systematic way. If we want to get from
T ∈ F a contravariant functor Γ → V ectFp we will precompose it with L∗ where ∗ denotes
the ordinary vector space dualization. In such notation we can say that our ultimate goal
is to get full understanding of the TorΓ̃ and ExtΓ̃ groups between functors of exterior (Λi),
symmetric (Si) and divided powers (Di), parallelly to the results of [FFSS]. Notice that
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[FFSS] is lacking calculations of ExtF groups from the functors of symmetric powers to
exterior or divided ones. The authors of [FFSS] do not see the systematic approach to
such calculations. In the present note we give in 5.6 the full computation of TorΓ̃

∗ (Sp, Λp)
(why Tor instead of Ext is explained at the end of Introduction).

The prime number p is fixed in the whole paper and we will assume that it is not equal
to 2. Our calculations can be done also for p = 2 but then some formulas are different.
On the other hand this case can be treated by the same methods, so we leave it for the
interested reader. The paper is organized as follows. In section 1 we will review known
definitions, results and methods for the homological calculations in Γ̃. One can find there
also some useful spectral sequences ant their applications. Some important calculations of
Tor-groups are also there. Section 2 contains a discussion on similarities and differences
between F and Γ̃ situation. Sections 3, 4 and 5 contain calculations of the homological
algebra in Γ̃ between functors of degrees not exceeding p. As a side effect we get here a
simple calculation of H∗(Σp, Fp), which we are going to extend to all Σn in the next paper.

For shortness, the paper contains only results about Tor-groups. The calculations are
very formal so translating them to the Ext-situation should not cause any problems. One
remark is here in order: in Tor(F, G) the first variable has to be contravariant and the
second covariant. Hence in the case of Tor-groups we have only one calculation. In the
Ext-case we have two situations which differ by variancy and which give different results.
But the ingredients for the calculations remain the same.

I. Preliminaries.

Let us start from recalling the basic notation which will be used throughout the
paper. Γ denotes the category of finite pointed sets. The typical object is given by the
set [n] = {0, 1, ..., n} where 0 is a base point. Of our primary interest is the category Γ̃ of
functors from Γ to V ectFp - vector spaces over the prime field Fp. All functors on vector
spaces over Fp will be viewed as objects in Γ̃ via the precomposition with the linearization
functor L or its dual L∗. The category Γ̃ contains enough projective objects. Among them
are projective generators of Γ̃

Γn = Fp[HomΓ([n],−)]

Similarly,
Γn = Fp[HomΓ(−, [n])]

are projective generators in Γ̃op, the category of contravariant functors from Γ to V ectFp .
By Yoneda’s lemma we have natural equivalences

F ⊗Γ Γn = F (n)

and

Γn ⊗Γ G = G(n)
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While studying homological algebra in Γ̃ we will use very often the beautiful theorem
of Pirashvili from [P2], which allows to do calculations in the much smaller category.
Let Ω denote the category of finite sets and surjections. The typical object here will be
denoted by < n >= {1, ..., n}. Let Ω̃ denote the category of Ω-modules over Fp. The
Dold-Kan theorem in Pirashvili’s version tells us that categories Γ̃ and Ω̃ are equivalent
and homological algebras in them are the same. The equivalence is given by the so-called
cross-effect functor cr : Γ̃ → Ω̃. Observe, that all functors in which we are interested are of
finite degree which means that cr takes them to a finite sequence of modules over Fp-group
rings of certain symmetric groups. Every such object in Ω̃ has a finite filtration (ascending
in Ω̃ and descending in Ω̃op) with quotients concentrated only on one object of Ω. We
shall call such objects atomic. Observe that an atomic object concentrated on k is given
by a Σk-module. By general homological algebra methods using spectral sequences we can
reduce calculations of

TorΩ̃
∗ (F, G)

to calculations of

TorΩ̃
∗ (M, N)

where M and N are atomic.
The Tor-groups between atomic functors in Ω̃ were calculated in [BS, formula 2.12]

and the answer is given in terms of homology of subgroups of products of symmetric groups.
So generally speaking all

TorΩ̃
∗ (F, G)

for finite degree F and G are calculable. But of course in practice this is not the case,
because usually we only get an answer encoded in a series of spectral sequences. One of
the reasons for writing this note was to develop ways of calculating TorΩ̃

∗ (F, G) without
using any knowledge from the (co)homology of symmetric groups.

Convention: We will denote F ∈ Γ̃ and its image in Ω̃ (via cr) with the same letter.
Hence it make sense for example to say that an object of Γ̃ is atomic. For example: Λi is
atomic for any i because cr(Λi) is concentrated on i and is equal to the sign permutation
of Σi.

Observe that all functors which we are really interested in come from the tensor
products of L or L∗ with itself by dividing (or taking fixed points) by some action of
symmetric group. Hence first step is to understand well the Tor-groups where one has
certain tensor product of the linearization functor as one of the variables. The functor L
is a direct summand of Γ1 so it is projective and its tensor powers are projective as well.
Hence we really have to start from calculating Tor-groups with tensor product of L∗ as the
contravariant variable. This will be accomplished by the end of this section. The methods
of achieving this will come from studying the inner tensor products in Γ̃. The discussion
below (up to 1.2) is taken, essentially, from [P1, section 4.1], so we are rather sketchy here.

The category Γ̃ is equipped with two types of inner tensor product. Let A, B and C,
D be respectively objects of Γ̃op and Γ̃. Then we have two versions of inner tensor product
¯, each of them making following functorial isomorphisms true:
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(A⊗B)⊗Γ D ∼= A⊗Γ (B ¯I D)

A⊗Γ (C ⊗D) ∼= (A¯II C)⊗Γ D

So we have defined two functors:

¯I : Γ̃op × Γ̃ → Γ̃

¯II : Γ̃op × Γ̃ → Γ̃op

Thanks to Yoneda lemma we can recover explicit formulas for these products putting
above A = Γn and D = Γn, and getting respectively:

(B ¯I D)[n] ∼= (Γn ⊗B)⊗Γ D

(A¯II C)[n] ∼= A⊗Γ (C ⊗ Γn)

We can perform this kind of construction in any category of functors, but in Γ-modules
it might be rewritten in slightly different form, because category Γ admits sums and prod-
ucts. For any U from the category Γ̃ or Γ̃op we have functors ∆n and ∆̃n which don’t
change variancy.

(∆nU)[m] := U([n]× [m])

(∆̃nU)[m] := U([n] ∨ [m])

There are natural isomorphisms:

(Γn ⊗B)⊗Γ D ∼= B ⊗Γ ∆nD

A⊗Γ (C ⊗ Γn) ∼= ∆̃nA⊗Γ C

It is easy to see that these formulas are true for B = Γm and C = Γm thanks to:

[n] ∨ [m] ∼= [n + m]

[n]× [m] ∼= [nm + n + m]

leading to the isomorphisms in Γ̃:

Γn ⊗ Γm ∼= Γn+m

Γn ⊗ Γm
∼= Γnm+n+m

Following lemma tells us that it is enough.
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Lemma 1.1: (Yoneda principle) Let G1, G2 : Γ̃ → V ectFp
be right exact functors com-

muting with sums. Let G̃i be the composition Γop → Γ̃ → vectFp where first arrow assigns
Γn to [n], latter being just Gi. If G̃1

∼= G̃2 then G1
∼= G2.

It is obvious that we have well defined objects : TorI
∗(B, D) ∈ Γ̃ and TorII

∗ (A,C) ∈
Γ̃op which are left derived functors of ¯I and ¯II respectively:

TorI
∗(B,D)[n] ∼= TorΓ̃

∗ (B, ∆nD)

TorII
∗ (A,C)[n] ∼= TorΓ̃

∗ (∆̃nA,C)

Again by the general homological algebra methods we can show

Lemma 1.2: There exist two spectral sequences of composition of functors:

IE2
i,j = TorΓ̃

i (A,TorI
j (B, D)) ⇒ TorΓ̃

i+j(A⊗B, C)

IIE2
i,j = TorΓ̃

i (TorII
j (A,C), D) ⇒ TorΓ̃

i+j(A,C ⊗D)

Let us finish this section with sample applications of 1.2, related to our main object
of study. This will lead us to the full understanding of TorΓ̃

i (L∗⊗a, Λp).

We will use following fact which might be found in [P1, Theorem 2.2 and Lemma 4.2].

Lemma 1.3: For any Γ-modules F, T and i ≥ 0 we have an isomorphism:

TorΓ̃
i (L∗, F ⊗ T ) ∼= TorΓ̃

i (L∗, F )⊗ T ([0])⊕ F ([0])⊗ TorΓ̃
i (L∗, T )

Corollary 1.4: If T ([0]) = F ([0]) = 0 then TorΓ̃
i (L∗, F ⊗ T ) = 0 for every i ≥ 0.

Theorem 1.5: There is an isomorphism for any Γ-module F and j > 0:

TorΓ̃
j (F ⊗ L∗,Λp) ∼= F [1]⊗ TorΓ̃

j (L∗, Λp).

Proof. In order to prove this theorem we need to study spectral sequence from 1.2,
which in our situation looks as follows:

IE2
i,j = TorΓ̃

i (F,TorI
j (L

∗, Λp)) ⇒ TorΓ̃
i+j(F ⊗ L∗, Λp).

The only way to simplify this formula is to find the Γ-module TorI
j (L∗, Λp) which is equal

to
TorI

j (L
∗,Λp)[n] ∼= TorΓ̃

j (L∗, ∆nΛp).

5



To proceed with calculations we have to analyze the following term:

∆nΛp[m] = Λp([n]× [m]) = Λp ◦ L([n]× [m]) = Λp(L⊕ Γ1 ⊕ . . .⊕ Γ1)[m]

with L corresponding to 0 ∈ [n] and Γ1 to k ∈ [n] for 1 < k ≤ n. We will denote some
chosen basis of L([n] × [m]) as xk,s. To specify our preferable basis observe that there is
another direct sum decomposition:

Γ1 = Γ0 ⊕ L.

The basis of Γ1[m] consists of functions (base point preserving) [1] → [m] and by xk,s

we denote the only function sending 1 to s in the kth term Γ1 in the preceding formula.
After choosing k we have inclusion of Γ0[m] into Γ1[m] sending the one and only function
[0] → [m] to xk,0. Then it is easy to see that the cokernel of this inclusion is just L[m]
with basis denoted as yk,s with 1 ≤ s ≤ m. Sometimes we will need also yk,0 = 0, which
fits well into all conventions. There is a section of the described above projection sending
yk,s ∈ L[m] to xk,s − xk,0 ∈ Γ1.

We apply the exponential formula to the decomposition Γ1 = Γ0 ⊕ L to get :

Λa(Γ1) = Λa(Γ0 ⊕ L) =
a⊕

t=0

Λt ◦ Γ0 ⊗ Λa−t = Λ1 ◦ Γ0 ⊗ Λa−1 ⊕ Λt

Finally it leads to the formula:

∆nΛp = Λp(L⊕ Γ1 ⊕ . . .⊕ Γ1) =

=
⊕

t+t1+t2+...+tn=p

{Λt ⊗ (Λ1 ◦ Γ0 ⊗ Λt1−1 ⊕ Λt1)⊗ . . .⊗ (Λ1 ◦ Γ0 ⊗ Λtn−1 ⊕ Λtn)}

First we will find TorI
j (L∗, Λp)[n] for j > 0. We have to calculate TorΓ̃

j (L
∗
,∆nΛp) and

we know from the formula that the Γ-module on second place is just big direct sum, so
we have to identify summands that give non-trivial results. Corollary 1.4 tells us we can
omit summands which are tensor products of Γ- modules with trivial value at [0]. It will
be shown in theorem 5.1 that for a ≤ p and j > 0 the groups TorΓ̃

j (L∗,Λa) are non-trivial
for a = p only, so we have to find summands which are p-th exterior powers in sense of the
formula (actually all summands are p-th exterior powers but the formula shows that some
of them are isomorphic to tensor products of exterior powers of smaller degrees). Finally
observe that Λ1◦Γ0⊗Λts−1 is isomorphic to Λts−1 since Λ1◦Γ0 is a constant functor. There
is exactly one summand Λp corresponding to t = p and n summands Λ1 ◦ Γ0 ⊗ Λp−1 ⊕ Λp

corresponding to ts = p for 1 ≤ s ≤ n. As it was shown Λ1 ◦ Γ0 ⊗ Λp−1 can be omitted so
we have n + 1 summands. Now we let the morphisms from Γ act on [n] and we find this
action exactly the same as in Γ-module Γ1.

TorI
j (L

∗, Λp)[n] = TorΓ̃
j (L∗, ∆nΛp) = Γ1[n]⊗ TorΓ̃

j (L∗, Λp)
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Finally we have for j > 0:

IE2
i,j = TorΓ̃

i (F,TorI
j (L

∗, Λp)) = TorΓ̃
i (F, Γ1 ⊗ TorΓ̃

j (L∗, Λp)) ∼=

∼= TorΓ̃
i (F, Γ1)⊗ TorΓ̃

j (L∗, Λp)

and it is non-zero only for i = 0 giving one column with F [1]⊗TorΓ̃
j (L∗, Λp). To complete

the proof we have to calculate TorI
j (L

∗, Λp) for j = 0:

TorI
0(L

∗, Λp)[n] = TorΓ̃
0 (L∗, ∆nΛp) = L∗ ⊗Γ ∆nΛp

= L∗ ⊗Γ

⊕
t+t1+...+tn=p

{Λt ⊗ (Λ1 ◦ Γ0 ⊗ Λt1−1 ⊕ Λt1)⊗ . . .⊗ (Λ1 ◦ Γ0 ⊗ Λtn−1 ⊕ Λtn)}

First we notice that Λa is atomic of degree a and Λa ⊗ Λb has non-trivial value on < n >
(in the category Ω̃ ) for max(a, b) ≤ n ≤ a + b only. Λ1 ◦Γ0 is constant and has no impact
on degree of Γ-module. L∗ is atomic of degree 1 and it is easy to see that the functor
L∗⊗Γ− = cr(L∗)⊗Ω− has non-trivial values only on summands which have non-zero first
cross-effect. These are exactly tensor products of some Λ1 ◦ Γ0 and some Λ1. Corollary
1.4 tells us that we may omit summands with more than one factor Λ1. Finally we are
interested in summands of type:

Λ1 ⊗ Λ1 ◦ Γ0 ⊗ . . .⊗ Λ1 ◦ Γ0

which are obviously Γ-modules of degree 1. We group them together and by A we denote
a direct sum of these. There is one factor Λ1 and p− 1 factors Λ1 ◦ Γ0 in each summand
of A. It is obvious that factor Λ1 might occur for t = 1. Then for ts = 1 and 1 ≤ s ≤ n
we have interesting factors in Λ1 ◦Γ0⊕Λ1 and additionally, factors Λ1 ◦Γ0⊗Λ1 can come
from Λ1 ◦ Γ0 ⊗ Λ1 ⊕ Λ2 for ts = 2. We want to calculate

L∗ ⊗Γ A = cr(L∗)⊗Ω cr(A) = L∗([1])⊗A([1]) = A([1]).

In the previous notation A([1]) has basis:

yk,1 ∧ xt1,0 ∧ ... ∧ xtp−1,0

with 0 < ts ≤ n and 0 ≤ k ≤ n. This is the basis of TorI
0(L∗, Λp)[n] and (Γ1 ⊗ Λp−1)([n])

as well. Direct calculation shows that the action of morphisms from Γ is exactly the same,
and we have:

IE2
i,0 = TorΓ̃

i (F,TorI
0(L

∗, Λp)) = TorΓ̃
i (F, Γ1 ⊗ Λp−1) =

= TorΓ̃
i (F, Λp−1)⊕ TorΓ̃

i (F, L⊗ Λp−1).
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Both Λp−1 and L⊗Λp−1 are direct summands in the projective modules L⊗(p−1) and L⊗p

respectively so IE2
i,0 = 0 for i > 0. For i = 0 we have:

IE2
0,0 = F ⊗Γ Λp−1 ⊕ F ⊗Γ (L⊗ Λp−1).

Our spectral sequence collapses and we get the desired formula for j > 0:

E2
0,j = F [1]⊗ TorΓ̃

j (L∗, Λp) ∼= TorΓ̃
j (F ⊗ L∗,Λp).

This finishes the proof.

Corollary 1.6: For every a > 0 and j > 0 we have

TorΓ̃
j (L∗⊗a, Λp) ∼= TorΓ̃

j (L∗, Λp).

Proof. Since a > 0 we may use theorem 1.5 with F = L∗⊗(a−1). It is obvious that for
j = 0 the corollary is not true.

II. Comparison between F and Γ̃.

Let us start this section from recalling the main ingredients, which allowed the authors
of [FFSS] to obtain very strong computational results in the homological algebra of F . We
will denote as F any of Λi, Si, Di in the discussion below. There are four main ingredients
which lead to the results of [FFSS]:

1. Direct calculation of Ext∗F (Id, F ) (obtained in [FLS]).

2. Two sided adjointness of functors π : Vp × Vp → Vp and ∆ : Vp → Vp × Vp where the
first functor is given by sum and the second by the diagonal map.

3. Exponentiality of F :

Fn(V ⊕W ) = ⊕n
i=0F

i(V )⊕ Fn−i(W )

4. The fact (roughly speaking) that in some cases one can go with the action of the
symmetric group through the Ext-sign:

(Ext∗F (Id⊗n, F ))Σn = Ext∗F ((Id⊗n)Σn , F )

One explanation is necessary at this point. An expert can say, that there was the fifth
ingredient; the use of the category of strict polynomial functors instead of F . But, first
of all, this was needed for achieving 4. Hence 4 is the goal, whatever method one applies
to obtain it. Secondly, strict polynomial functors came from algebraic geometry and it is
hard to imagine this direction in studying Γ̃. This explains why strict polynomials functors
are skipped from our considerations.
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Let us have a closer look at the steps 1-4 from the point of view of category Γ̃.
Obviously for TorΓ̃-calculations we exchange Id by L∗. The calculation of TorΓ̃

∗ (L∗, F )
is done in [B1] so we can proceed further, to the ingredient 2. And this is the crucial
step for the rest of the program and the crucial difference between two categories under
consideration. Let us call bi−F the category of functors Vp ×Vp → V ectFp . We have the
following formulas in F (compare [FFSS, formula 1.7.1]), coming directly from 2 above:

Theorem 2.1: Let T ∈ F and S ∈ bi−F . Then

Ext∗F (T ◦∆, S) = Ext∗bi−F (T, S ◦ π)

Ext∗F (T, S ◦∆) = Ext∗bi−F (T ◦ π, S)

The first equality leads to a quick calculation of Ext∗F (Id⊗n, F ) for the exponential
F because in bi− F we have the Kunneth formula. Let us check whether point 2 is valid
in Γ. We have the maps: diagonal one has the obvious definition and π takes a pair of
pointed sets X and Y to their wedge. But this two functors satisfy only one adjointness
formula:

Lemma 2.2: HomΓ×Γ((Y,Z), (X,X)) = HomΓ(Y ∨ Z, X).

which gives us

Lemma 2.3: Ext∗
Γ̃
(E, F ◦∆) = Ext∗

bi−Γ̃
(E ◦ π, F )

This allows to treat the situations when one has to deal with Ext-groups from an
exponential functor to a tensor product of functors. Unfortunately, neither the second
adjointness nor the first part of 2.1 is true in Γ̃. Examples of this phenomenon in the
language of Tor-groups were shown in the previous section, perhaps the easiest one is
given by the formula from 1.6:

TorΓ̃
∗ (L∗ ⊗ L∗, Λp) = TorΓ̃

∗ (L∗,Λp)

It is easy to calculate that in the Ext-world one has

Ext∗
Γ̃op(L∗ ⊗ L∗, Λp) = Ext∗

Γ̃op(L∗, Λp)

III. Preliminary calculations in degree 0.

As one can imagine knowing published papers on homological algebra in F and Γ̃,
in our calculations we will use Koszul and de Rham sequences which relate exterior and
symmetric powers. The middle terms in this sequences are given by tensor products of
the same type of functors. This, very simple section, shows that at least categorical tensor
products of such functors are computable. Of course we will treat mostly the cases which
are needed in further calculations. Remember that since now up to the end our functors
are of degree ≤ p.
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First we want to list few cases when tensor products of some interesting modules are
trivial, or easy to describe. First lemma is just an easy consequence of the definition. We
work mostly in the category Ω̃, it was justified in section I.

Lemma 3.1:

cr(Λa)⊗Ω cr(Λb) =
{

0 for a 6= b,
Fp otherwise

Proof is obvious. Next lemma generalizes this computation using the same observation
that tensor product of Ω-modules concentrated in different dimensions is trivial.

Lemma 3.2: Let 0 ≤ i ≤ a, then:

cr(Λi ⊗ Sa−i)⊗Ω cr(Λj ⊗ Sb−j) =
{ 0 for a < j,

0 for b < i

There is still something to say in other cases.

Lemma 3.3: Let 0 ≤ i ≤ a, then:

cr(Λa)⊗Ω cr(Λa−i ⊗ Si) =





0 for i ≥ 2,
Fp for i = 1,
Fp for i = 0

cr(Λa−i ⊗ Si)⊗Ω cr(Λa) =





0 for i ≥ 2,
Fp for i = 1,
Fp for i = 0

Proof. These formulas require short comment, but first we need some notation. Our
functors are of degree a so it is enough to evaluate them on the set of a elements. Let
x1, ..., xa denote the basis of L([a]) and x∗1, ..., x

∗
a the dual basis of L∗([a]). The first formula

is easier to show. Passing to cross-effects we see that cr(Λa) is atomic and generated by
x∗1 ∧ · · · ∧ x∗a, while cr(Λa−i⊗Si) in dimension a has generators of form xr1 ∧ · · · ∧ xra−i ⊗
xra−i+1 · · ·xra . We get tensor product in Ω-modules tensoring these as vector spaces and
dividing the result by relations coming from the action of Σa. For i ≥ 2 we have:

x∗1 ∧ · · · ∧ x∗a ⊗ xr1 ∧ · · · ∧ xra−i ⊗ xra−i+1 · · ·xra =

= x∗1 ∧ · · · ∧ x∗a ⊗ (ra−1, ra) · [xr1 ∧ · · · ∧ xra−i ⊗ xra−i+1 · · ·xra ] =

= −x∗1 ∧ · · · ∧ x∗a ⊗ xr1 ∧ · · · ∧ xra−i ⊗ xra−i+1 · · ·xra

where (ra−1, ra) denote the transposition of two numbers. So we see that we have to
divide by 2x∗1 ∧ · · · ∧ x∗a ⊗ xr1 ∧ · · · ∧ xra−i ⊗ xra−i+1 · · ·xra . By assumption characteristic
of our field is different from 2, so this way we get rid of all generators. When i = 1 similar
calculations show us that:

x∗1 ∧ · · · ∧ x∗a ⊗ xr1 ∧ · · · ∧ xra−1 ⊗ xra =
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= x∗1 ∧ · · · ∧ x∗a ⊗ (ra−1, ra) · [xr1 ∧ · · · ∧ xra
⊗ xra−1 ] =

= −x∗1 ∧ · · · ∧ x∗a ⊗ xr1 ∧ · · · ∧ xra
⊗ xra−1

and this way we will get only one generator. Case of i = 0 is easy as it is tensor product
over Σp of two sign representations.

When we want to calculate (Λa−i ⊗ Si)⊗Γ Λa we have to be a little bit more careful.
When i 6= 1 arguments are exactly the same, but for i = 1 we have new relations coming
from smaller dimensions. But it is clear that this chosen generator x∗1 ∧ · · · ∧ x∗a−1 ⊗ x∗a ⊗
x1 ∧ · · · ∧ xa is not hit by them.

?

When 0 < a < p it is well known that Sa and Λa are direct summands in L⊗a. In
consequence, Λp−i ⊗ Si is direct summand in L⊗p for 0 < i < p. Next lemma generalizes
previous results and will be most commonly used in our further considerations.

Lemma 3.4: Let F be a Γ-module with cra(F ) = 0 and G be some direct summand in
L⊗a. Then

F ⊗Γ G = 0

Proof. As usual we pass to the cross-effects and get:

F ⊗Γ G ⊆ F ⊗Γ L⊗a ∼= cr(F )⊗Ω cr(L⊗a) ∼= cr(F )⊗Ω Ωa ∼= cra(F ) = 0

where Ωa = Fp[HomΩ(< a >,−)]. It is a direct calculation to show that Ωa = cr(L⊗a)
(compare [P1, page 160]). Hence the last ”∼=” above comes from the Yoneda lemma (for
the tensor product).

Lemma 3.5: Let 0 ≤ i ≤ p, then:

cr(Sp)⊗Ω cr(Λp−i ⊗ Si) =





0 for i ≤ p− 2,
Fp for i = p− 1,
Fp for i = p

Proof. Let us start from the case i = p. By the right exactness of the tensor product
we know that we have an epimorphism

Fp = Sp ⊗Γ L⊗p → Sp ⊗Γ Sp

and it is easy to see that x∗1...x
∗
p ⊗ x1...xp generates a nontrivial 1 dimensional summand

in the target.
Since Λp−i ⊗ Si is a direct summand in L⊗p for i ≥ 1 we have:

Sp ⊗Γ Λp−i ⊗ Si ⊆ Sp ⊗Γ L⊗p ∼= cr(Sp)⊗Ω cr(L⊗p) ∼= cr(Sp)⊗Ω Ωp ∼= Fp

The generator of cr(Sp)⊗Ω cr(L⊗p) is x∗1 · · ·x∗p ⊗ x1 ⊗ · · · ⊗ xp. It is easy to observe that
x∗1 · · ·x∗p ⊗ x1 ∧ · · · ∧ xp−i ⊗ xp−i+1 · · ·xp generates Sp ⊗Γ Λp−i ⊗ Si. Hence we have to
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check only when x∗1 · · ·x∗p ⊗ x1 ∧ · · · ∧ xp−i ⊗ xp−i+1 · · ·xp is nontrivial. The same kind
of arguments as in the proof of the previous lemma show that this element is zero when
i ≤ p− 2 and give one generator when i = p− 1. This last case can be also easily seen in
the spirit of section V, via tensoring Kp

∗ with Sp.

IV. Preliminary calculations in higher degrees.

This short section is devoted to the preliminary calculations of the higher Tor-functors.
Most of the results here are very simple but we have to state them for further reference.
In all formulas of the type TorΓ̃

i (−,−) we will assume that i > 0. We will work in the
categories Γ̃ and Ω̃ which are equivalent. We start from considering functors of degree
smaller than p. The first two lemmas are obvious but let us recall these facts again:

Lemma 4.1: If 0 < a < p then for any functor F :

TorΓ̃
i (F, Λa) = 0

TorΓ̃
i (F, Sa) = 0

Proof. It is obvious because under our assumptions both Λa and Sa are projective as
direct summands of a projective object L⊗a.

Lemma 4.2: If 1 < b ≤ p and 0 < j < b then for any functor F :

TorΓ̃
i (F, Λj ⊗ Sb−j) = 0

Proof. As previously, we use the fact that for b ≤ p and 0 < j < b, Λj ⊗Sb−j is direct
summand in a projective object L⊗b.

The following lemma will be crucial to proceed with calculations when one of our Γ-
modules is equal to the p-th symmetric power.

Lemma 4.3: For every Γ-module G group TorΓ̃
i (L∗, G) is direct summand in TorΓ̃

i (Sp, G).

Proof.
Observe that L∗ is direct summand in Sp ◦ L∗. It might be easily checked in the

category Ω̃. One can see that there is quotient map Sp ◦L∗ → L∗ obtained by moding out
all cross effects above degree 1. The Frobenius morphism gives us the splitting. Hence

L∗ ⊕X ∼= Sp

and
TorΓ̃

i (Sp, G) ∼= TorΓ̃
i (L∗, G)⊕ TorΓ̃

i (X,G).

Lemma 4.4: If 1 < a < p then:

12



TorΓ̃
i (Λa, Λp) = 0

Proof. Once again we use the formula:

Λa ⊕ Fa
∼= L∗⊗a

for some functor Fa to get:

TorΓ̃
i (Λa,Λp)⊕ TorΓ̃

i (Fa, Λp) ∼= TorΓ̃
i (L∗⊗a, Λp) ∼= TorΓ̃

i (L∗,Λp)

where the last equivalence comes from 1.6. Moreover we know that the last equivalence
comes from the quotient map to the first cross-effect L∗⊗a → L∗. We know also that the
first cross-effects of Fa and L∗⊗a are naturally the same. This gives us the desired formula.
We will get the same result in 5.1 in another way.

V. Main calculations.

Let us start from recalling that groups TorΓ̃
i (L∗,Λb) were calculated in [B1] with the

crucial help of Koszul and de Rham complexes. We recall and extend these computations
in Theorem 5.1 below.

We should start from recalling necessary notions. Koszul sequence Kn is a sequence
of Γ-modules Kn

j = Λj ⊗ Sn−j :

0 → Λn → Λn−1 ⊗ S1 → ... → Λ1 ⊗ Sn−1 → Sn → 0

which is exact for any n. Similarly we have de Rham sequence
Rn

j = Λn−j ⊗ Sj :

0 ← Λn ← Λn−1 ⊗ S1 ← ... ← Λ1 ⊗ Sn−1 ← Sn ← 0.

which is exact for n relatively prime to p and Hi+pk−k(Rpk) = Rk
i .

Theorem 5.1: Let 1 ≤ a < p. Then

TorΓ̃
j (Λa, Λp) =

{
Fp for a=1, j = (2s + 1)(p− 1) + 1, s ≥ 0
Fp for a=1, j = (2s + 1)(p− 1), s ≥ 0
0 otherwise.

Proof. We will divide our arguments in two steps.
Step 1. Let us have a look at the hyperhomology spectral sequences (two of them)

with coefficients in the Koszul complex.

IE
2

i,j = TorΓ̃
i (Λa,Hj(Kp)) ⇒ HTori+j(Λa,Kp)

and
IIE

2

i,j = Hi(TorΓ̃
j (Λa,Kp)) ⇒ HTori+j(Λa,Kp)
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The first converges to zero since Koszul complex is acyclic, so does the second. On the other
hand second spectral sequence IIE

2
i,j has possibly non-trivial terms in columns i = 0, p.

Indeed, TorΓ̃
j (Λa, Sb ⊗ Λp−b) = 0 for a < p as it was shown before (compare lemmas 3.4

and 4.2). The only nontrivial differential on IIE
p
i,j induces an isomorphism for j ≥ 0:

dp
p,j : TorΓ̃

j (Λa, Λp) ∼= TorΓ̃
j+p−1(Λ

a, Sp) [5.1.1]

Obviously, for p− 2 ≥ j ≥ 0 we have:

TorΓ̃
j (Λa, Sp) = 0

by dimension reason.

Step 2. Now we turn our attention to the hyperhomology spectral sequences with
coefficients in the de Rham complex. Situation is now slightly different, since de Rham
complex is not acyclic. In fact it has Hp−1(Rp) = Hp(Rp) = L, so we have possibly two
nontrivial columns in IE

2
i,j for i = (p − 1) and i = p. First we consider case a 6= 1. We

know that TorΓ̃
∗ (Λa, L) = 0 so first spectral sequence converges to 0. Hence second does

the same. The second spectral sequence has only two nontrivial columns for exactly the
same reason as in the case of Kp, but this time TorΓ̃

j (Λa, Sp) stands in pth column and
TorΓ̃

j (Λa, Λp) in IIE2
0,j . Hence we get

dp
p,j : TorΓ̃

j (Λa, Sp) ∼= TorΓ̃
j+p−1(Λ

a, Λp) [5.1.2]

and for p− 2 ≥ j ≥ 0 we have:
TorΓ̃

j (Λa, Λp) = 0

Comparing Koszul and de Rham calculations we get:

TorΓ̃
j (Λa, Λp) ∼= TorΓ̃

j+2(p−1)(Λ
a, Λp) = 0

Case a = 1 was calculated in [B1], we give the proof for the sake of completeness.
First step is similar with necessary changes. We get an isomorphism for j ≥ 0:

TorΓ̃
j (L∗,Λp) ∼= TorΓ̃

j+p−1(L
∗, Sp) [5.1.3]

and TorΓ̃
j (L∗, Sp) = 0 for j < p− 1. The first spectral sequence with coefficients in the de

Rham complex reduces to only two groups by the formula for the homology of Rp, so the
spectral sequence collapses and we have:

IE∞
p−1,0 =I E2

p−1,0 = TorΓ̃
0 (L∗, L) = Fp, and IE∞

p,0 =I E2
p,0 = TorΓ̃

0 (L∗, L) = Fp

As previously the second spectral sequence has only two nontrivial columns and again
TorΓ̃

j (Λa, Sp) stands in pth column and TorΓ̃
j (Λa, Λp) in IIE2

0,j . We have to examine
carefully an exact sequence induced by the differential on IIE

p
i,j :

dp
p,j : TorΓ̃

j (L∗, Sp) → TorΓ̃
j+p−1(L

∗, Λp)
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From the very definition we have:

0 →II E∞
p,j →II Ep

p,j = TorΓ̃
j (L∗, Sp) → TorΓ̃

j+p−1(L
∗, Λp) =II Ep

0,j+p−1 →II E∞
0,j+p−1 → 0.

We know that this spectral sequence converges to trivial groups in all dimensions except
the following two terms:

HTorp−1 = IE
∞
p−1,0 = Fp and HTorp = IE

∞
p,0 = Fp

These two vector spaces must be found among terms IIE
∞
i,j with i + j = (p − 1) and

i + j = p in the second spectral sequence. We know that TorΓ̃
i (L∗, Sp) = 0 for i < p − 1

so we get immediately that:
TorΓ̃

p−1(L
∗,Λp) = Fp

TorΓ̃
p (L∗,Λp) = Fp.

For j > 1 we have an isomorphism:

TorΓ̃
j (L∗, Sp) ∼= TorΓ̃

j+p−1(L
∗, Λp)

and TorΓ̃
j (L∗, Λp) = 0 for j < p − 1. These formulas and 5.1.3 give us isomorphism for

j > 1:
TorΓ̃

j (L∗,Λp) ∼= TorΓ̃
j+2(p−1)(L

∗, Λp).

This completes the proof.

From 5.1 we have an obvious corollary

Corollary 5.2: For 1 ≤ a < p

TorΓ̃
j (Λa, Sp) =

{
Fp for a=1, j = (2s + 2)(p− 1) + 1, s ≥ 0
Fp for a=1, j = (2s + 2)(p− 1), s ≥ 0
0 otherwise.

Now we can move towards more serious calculations. First we have:
Theorem 5.3:

TorΓ̃
j (Λp, Λp) =

{
Fp for j = (2s + 2)(p− 1)− 1, s ≥ 0
Fp for j = 2s(p− 1), s ≥ 0
0 otherwise.

Proof. We will proceed as in 5.1. But now first step needs some comments. First
hyperhomology spectral sequence with coefficients in Koszul complex converges to zero
and so does the second as previously. Now we have to look more carefully on first stage
of the second one IIE

1
i,j , because nonzero terms may appear not only in columns i = 0, p,

but in the row j = 0 either. Indeed, TorΓ̃
j (Λp, Sb⊗Λp−b) = 0 for p > b > 0 and j > 0 since
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Sb⊗Λp−b is projective, and when j = 0 we know that TorΓ̃
0 (Λp, Sb⊗Λp−b) = Λp⊗Γ (Sb⊗

Λp−b) is zero when b > 1, but there is still one nonzero term which is Λp ⊗Γ (S1 ⊗ Λp−1)
standing in E1

p−1,0. In consequence there is one possibly nontrivial differential on the first
stage:

d1
p,0 : E1

p,0 = Λp ⊗Γ Λp → Λp ⊗Γ (S1 ⊗ Λp−1) = E1
p−1,0

Direct calculation below shows that it is zero.
It is easy to see that Λp ⊗Γ (S1 ⊗ Λp−1) is one dimensional. It is generated by

x∗1 ∧ · · · ∧ x∗p ⊗ x1 ⊗ x2 ∧ · · · ∧ xp, in the notation of 3.3. Indeed, Λp has one generator,
and (S1 ⊗ Λp−1) has p generators xj ⊗ x1 ∧ · · · ∧ xj−1 ∧ xj+1 ∧ · · · ∧ xp. In the tensor
product over Ω we have p-dimensional vector space generated by the tensor product over
Fp of these, and we divide by relations coming from the action of Σp:

x∗1 ∧ · · · ∧ x∗p ⊗ xj ⊗ x1 ∧ · · · ∧ xj−1 ∧ xj+1 ∧ · · · ∧ xp =

= −(x∗1 ∧ · · · ∧ x∗p)(1j)⊗ xj ⊗ x1 ∧ · · · ∧ xj−1 ∧ xj+1 ∧ · · · ∧ xp =

= −x∗1 ∧ · · · ∧ x∗p ⊗ (1j)(xj ⊗ x1 ∧ · · · ∧ xj−1 ∧ xj+1 ∧ · · · ∧ xp) =

= −x∗1 ∧ · · · ∧ x∗p ⊗ x1 ⊗ xj ∧ · · · ∧ xj−1 ∧ xj+1 ∧ · · · ∧ xp =

= −x∗1 ∧ · · · ∧ x∗p ⊗ (−1)j−2x1 ⊗ x2 ∧ · · · ∧ xj−1 ∧ xj ∧ xj+1 ∧ · · · ∧ xp =

= (−1)j−1x∗1 ∧ · · · ∧ x∗p ⊗ x1 ⊗ x2 ∧ · · · ∧ xp

Recall that (1j) denotes here the transposition interchanging 1 and j. Our differential is
now:

d1
p,0(x

∗
1 ∧ · · · ∧ x∗p ⊗ x1 ∧ · · · ∧ xp) =

=
p∑

j=1

(−1)j−1x∗1 ∧ · · · ∧ x∗p ⊗ xj ⊗ x1 ∧ · · · ∧ xj−1 ∧ xj+1 ∧ · · · ∧ xp =

=
p∑

j=1

(−1)2(j−1)x∗1 ∧ · · · ∧ x∗p ⊗ x1 ⊗ x2 ∧ · · · ∧ xp =

=
p∑

j=1

x∗1 ∧ · · · ∧ x∗p ⊗ x1 ⊗ x2 ∧ · · · ∧ xp =

= px∗1 ∧ · · · ∧ x∗p ⊗ x1 ⊗ x2 ∧ · · · ∧ xp = 0

In consequence, apart from two possibly nontrivial columns, we have one more non-
trivial term on the second stage E2

p−1,0 = Λp ⊗Γ (S1 ⊗Λp−1) = Fp. Now nothing happens
until we reach (p − 1)st stage of our spectral sequence where we have one non-trivial
differential:

dp−1
p−1,0 : Ep−1

p−1,0 = E2
p−1,0 → TorΓ̃

p−2(Λ
p, Sp) = E2

0,p−2.

On the pth stage we have isomorphisms for j ≥ 0:

dp
p,j : TorΓ̃

j (Λp, Λp) ∼= TorΓ̃
j+p−1(Λ

p, Sp), [5.3.1]
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Observe that we still have for 0 ≤ i < p− 2:

TorΓ̃
i (Λp, Sp) = 0. [5.3.2]

Finally our spectral sequence converges to zero so:

Ep
0,p−2 = E∞

0,p−2 = 0

and the differential dp−1
p−1,0 must have been an epimorphism. Similarly Ep

p−1,0 survives to
infinity so it must be trivial since spectral sequence converges to 0. That means dp−1

p−1,0

must have been monomorphism and an isomorphism.
E2

p−1,0 = Λp ⊗Γ (S1 ⊗ Λp−1) = Fp so we have:

TorΓ̃
p−2(Λ

p, Sp) ∼= Fp, [5.3.3]

From 5.3.1 we get:
TorΓ̃

p−1(Λ
p, Sp) ∼= TorΓ̃

0 (Λp,Λp) = Fp, [5.3.4]

This completes first step of our calculations. Now we look at the hyperhomology with
coefficients in the de Rham complex. First spectral sequence converges to zero as in
previous theorem since the only possibly non-trivial terms on IE2

p,q are:

E∞
p−1,0 = E2

p−1,0 = TorΓ̃
0 (Λp, L) = 0, and E∞

p,0 = E2
p,0 = TorΓ̃

0 (Λp, L) = 0.

On IIE
1
i,j we have two nonzero columns i = 0, p and one additional term on the row j = 0.

It is just as previously Λp ⊗Γ (S1 ⊗ Λp−1) standing in E1
1,0 (this time TorΓ̃

∗ (Λp, Sp) stand
in pth column while TorΓ̃

∗ (Λp,Λp) in the column number 0). In consequence there is one
possibly nontrivial differential on the first stage:

d1
1,0 : E1

1,0 = Λp ⊗Γ (S1 ⊗ Λp−1) → Λp ⊗Γ Λp = E1
0,0

But this time we know that it is an epimorphism on the one dimensional vector space since
tensor product is right exact and TorΓ̃

0 (Λp,Λp) = Fp. In fact it is even isomorphism as
any epimorphism from one dimensional space on Fp.

Now nothing happens until we reach IIE
p
i,j where we have series of isomorphisms for

j ≥ 0:
dp

p,j : TorΓ̃
j (Λp, Sp) ∼= TorΓ̃

j+p−1(Λ
p, Λp), [5.3.5]

and additionally for p− 2 ≥ i > 0:

TorΓ̃
i (Λp, Λp) = 0. [5.3.6]

Formulas [5.3.1]-[5.3.6] give us desired result.
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Corollary 5.4:

TorΓ̃
j (Λp, Sp) =

{
Fp for j = (2s + 1)(p− 1)− 1 , s ≥ 0
Fp for j = (2s + 1)(p− 1) , s ≥ 0
0 otherwise.

Remark 5.5: It is easy to see that TorΩ̃
j (Λp,Λp) = Hj(Σp, Fp). Hence theorem 5.3 can be

viewed as calculation of the mod-p homology of the symmetric group Σp. This is the point
which we are going to push forward in our next papers and give a new way of calculating
mod-p homology of Σn for any n.

To finish our calculations we need formulas for TorΓ̃
j (Sp, Λp) and TorΓ̃

j (Sp, Sp). We
will get them in the same spirit as previously, analyzing spectral sequences for HTor(Sp, X)
where X will be Koszul or de Rham sequence.

Theorem 5.6: We have following formulas

TorΓ̃
j (Sp, Λp) =

{
Fp for j = (2s + 1)(p− 1) + c where c = −1, 1, s ≥ 0
Fp ⊕ Fp for j = (2s + 1)(p− 1), s ≥ 0
0 otherwise

.

and

TorΓ̃
j (Sp, Sp) =





Fp for j = (2s + 2)(p− 1) + c where c = −1, 1, s ≥ 0
Fp for j = 0
Fp ⊕ Fp for j = (2s + 2)(p− 1), s ≥ 0
0 otherwise.

Proof. The proof is very similar to the proofs of 5.1 and 5.3. We wrote them with
all details so here we will give details only at places where one needs some additional
argument. The spectral sequence for HTor-groups with coefficients in Kp converges to
0. It has two nontrivial columns and one additional Fp at (1, 0). This latter Fp kills
TorΓ̃

0 (Sp, Sp) = Fp on the first stage. The fact that this sequence converges to 0 gives us
the appropriate shift in dimension between TorΓ̃

j (Sp, Sp) and TorΓ̃
j (Sp,Λp).

The first spectral sequence with coefficients in Rp has only two nontrivial groups on
the second table IE2

p−1,0 =I E2
p,0 = Fp. Hence it converges to two Fp’s in dimensions p−1

and p, and so does the second spectral sequence. The latter one has possibly two nontrivial
columns number 0 and p. Additionally we have one more nontrivial group:

IIE1
p−1,0 = Fp

as we observed previously. One can check by hands that d1
p,p−1 = 0. By the general

diagram chasing one can get formulas of Theorem 5.6 if one proves that both Fp’s standing
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at IIE1
p−1,0 and IIE1

p,0 do not survive to IIE∞
∗,∗. And for this we need some additional

argument.
Observe that we have a map of complexes φ : X → Rp where X has only two nontrivial

terms equal to L in dimension p−1 and p. The map Xp → Xp−1 is trivial and φ is obviously
a quasi-isomorphism. Hence φ induces an isomorphism

HTor∗(Sp, X) → HTor∗(Sp,Rp)

On the other hand, direct inspection shows that φp−1 : L → Λ1 ⊗ Sp−1 and φp : L → Sp

induce trivial maps on TorΓ̃
0 (Sp, .)-groups. That means the composition:

TorΓ̃
0 (Sp, L) = HTorj(Sp, X) = HTorj(Sp,Rp) →II E∞

j,0

with the last map quotient, is trivial for j = p, p− 1. This tells us immediately that these
two nontrivial Fp summands of HTor∗(Sp,Rp) should appear on the 0 column of the
second spectral sequence for HTor∗(Sp,Rp). But this forces our two differentials

dp−1
p−1,0 :II Ep−1

p−1,0 →II Ep−1
0,p−2

and
dp

p,0 :II Ep
p,0 →II Ep

0,p−1

to be nontrivial.
Remark 5.7: As was observed in 4.3, the functor L∗ splits as a direct summand from
Sp ◦ L∗. Hence we have the corresponding splitting on Tor-groups:

TorΓ̃
j (Sp, Sp) = Uj ⊕ TorΓ̃

j (L∗, Sp)

for a certain graded vector space Uj . It is easy to check from our computations that
Uj = TorΓ̃

j (Λp,Λp). Hence one can say that the graded group TorΓ̃
j (Sp, Sp) consists of

the homology of Hj(Σp, Fp) (corresponding to TorΓ̃
j (Λp, Λp)) and the part of the Steenrod

algebra corresponding to TorΓ̃
j (L∗, Sp) (compare [B1]).

We proceed now with some less interesting cases, which will be useful in future cal-
culations for the functors of higher degree. In Corollary 1.6 we proved that for s > 0 we
have:

TorΓ̃
s (L∗⊗a, Λp) ∼= TorΓ̃

s (L∗, Λp).

Now we will prove analogical result for Sp.

Theorem 5.8: For every a > 0 and j > 0 we have

TorΓ̃
j (L∗⊗a, Sp) ∼= TorΓ̃

j (L∗, Sp).
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Proof. First we will assume a < p. We will use Koszul and de Rham sequences as
previously. We know that for i 6= 0, p:

L∗⊗a ⊗Γ (Sp−i ⊗ Λi) ⊂ crp(L∗⊗a) = 0

For i = p we still have L∗⊗a ⊗Γ Λp = 0 but there is one case unknown: for i = 0 we have
L∗⊗a ⊗Γ Sp. Let us have a look at the hyperhomology spectral sequences (two of them)
with coefficients in the Koszul complex.

IE
2

i,j = TorΓ̃
i (L∗⊗a, Hj(Kp)) ⇒ HTori+j(L∗⊗a,Kp)

and
IIE

2

i,j = Hi(TorΓ̃
j (L∗⊗a,Kp)) ⇒ HTori+j(L∗⊗a,Kp)

As previously, the first one converges to zero since Koszul complex is acyclic, so does
the second. On the other hand second spectral sequence has possibly nontrivial terms
in columns number 0 and p. The only non-trivial (possibly) differential on IIE

p
i,j stage

induces an isomorphism for j ≥ 0:

dp
p,j : TorΓ̃

j (L∗⊗a, Λp) ∼= TorΓ̃
j+p−1(L

∗⊗a, Sp) [5.7.1]

what implies that for p− 2 ≥ i ≥ 0 we have:

TorΓ̃
i (L∗⊗a, Sp) = 0

Hence taking i = 0 we find the mysterious term L∗⊗a ⊗Γ Sp trivial as well. Now corollary
1.6 and formula [5.7.1] for a = 1 gives us desired isomorphism:

TorΓ̃
j+p−1(L

∗, Sp) ∼= TorΓ̃
j (L∗, Λp) ∼= TorΓ̃

j (L∗⊗a, Λp) ∼= TorΓ̃
j+p−1(L

∗⊗a, Sp)

Case a = p is more complicated since we have to deal with non-trivial terms L∗⊗p ⊗Γ

(Sp−i⊗Λi). This time we turn our attention to the hyperhomology spectral sequences with
coefficients in the de Rham complex first. The first spectral sequence reduces to only two
groups by the formula for the homology of the de Rham complex, so the spectral sequence
collapses and we have:

IE∞
p−1,0 =I E2

p−1,0 = TorΓ̃
0 (L∗⊗p, L) = Fp, and IE∞

p,0 =I E2
p,0 = TorΓ̃

0 (L∗⊗p, L) = Fp

The second spectral sequence IIE
2
i,j has two non-trivial columns: TorΓ̃

j (L∗⊗p, Sp) stands
in column i = p and TorΓ̃

j (L∗⊗p, Λp) in IIE1
0,j . Now we have also nontrivial row IIE1

i,0.
Actually this row is simply de Rham complex tensored over Γ with right Γ-module L∗⊗p.
On the next stage of spectral sequence we calculate homology of this complex. First we
know that tensor product is right exact so IIE2

0,0 = 0. Then we know from corollary 1.6
and theorem 5.1 that non-trivial terms appear in column IIE2

0,j only for (2s+1)(p−1)+1
and (2s+1)(p−1). This spectral sequence converges to HTork which is nonzero for k = p
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and k = p− 1 only. That means differentials dk
k,0 are isomorphisms for 1 < k < p− 1. In

consequence IIE2
k,0 = 0 for 0 ≤ k ≤ p− 2. Now we need to examine carefully:

d1
p,0 : L∗⊗p ⊗Γ Sp → L∗⊗p ⊗Γ (Sp−1 ⊗ L).

We claim it is monomorphism. Indeed, L∗⊗p⊗Γ Sp is one dimensional space. crp(L∗⊗p) is
just Fp[Σp], so one can check directly that the following isomorphism holds:

cr(L∗⊗p)⊗Ω cr(Sp) ∼= crp(L∗⊗p)⊗Σp
crp(Sp) ∼= crp(Sp)

Similarly
crp(L∗⊗p)⊗Σp

crp(Sp−1 ⊗ L) ∼= crp(Sp−1 ⊗ L).

Now

d1
p,0(x1...xp) =

p∑

i=1

x1...x̂i...xp ⊗ xi ∈ crp(Sp−1 ⊗ L)

and it is obviously a monomorphism. We have shown that IIE2
p,0 = 0. Now we examine

carefully an exact sequence, induced by the differentials on IIE
p−1
i,j and IIE

p
i,j stages:

dp
p,j : TorΓ̃

j (L∗⊗p, Sp) → TorΓ̃
j+p−1(L

∗⊗p, Λp)

For j = 0 we have:

0 → IIE∞
p,0 → IIEp

p,0 = 0 → TorΓ̃
p−1(L

∗⊗p,Λp) = IIEp
0,p−1 → IIE∞

0,p−1 → 0.

In consequence Fp in TorΓ̃
p−1(L

∗⊗p,Λp) = IIEp
0,p−1 survives to infinity and IIE2

p−1,0 = 0.
This way we have shown that complex IIE1

0,j is acyclic. Moreover, Fp in TorΓ̃
p (L∗⊗p,Λp) =

IIEp
0,p also survives to infinity since IIEp

p,0 = 0. Now we look at exact sequence induced
by dp

p,j for j = 1:

0 → IIE∞
p,1 = 0 → IIEp

p,1 → TorΓ̃
p (L∗⊗p, Λp) = IIEp

0,p → IIE∞
0,p → 0.

Last arrow is an isomorphism so TorΓ̃
1 (L∗⊗p, Sp) = 0. Differentials dp

p,j for j > 1 are
isomorphisms so we get:

dp
p,j : TorΓ̃

j (L∗⊗p, Sp) ∼= TorΓ̃
j+p−1(L

∗⊗p,Λp)

For j > 1 we have also the isomorphism from the proof of theorem 5.1:

TorΓ̃
j (L∗, Sp) ∼= TorΓ̃

j+p−1(L
∗,Λp),

so finally for j > 1 we get:

TorΓ̃
j (L∗⊗p, Sp) ∼= TorΓ̃

j (L∗, Sp)
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This completes the proof.

There is one thing we want to underline here for further considerations. On the first
stage of second spectral sequence with coefficients in Koszul complex, we have two non-
trivial columns: TorΓ̃

j (L∗⊗p, Sp) stands in IIE1
0,j and TorΓ̃

j (L∗⊗p,Λp) in pthcolumn. Now
we have also non-trivial row IIE1

i,0. We know that on the second stage IIE1
0,0 = 0 since

tensor product is right exact. We have already shown that IIE1
0,j = 0 for j < p − 1.

Spectral sequence converges to zero so IIE1
i,0 = 0 for i ≤ p. This discussion and the

observations from the proof of 5.7 can be summarized in the statement that tensoring
over Γ both Koszul and de Rham sequences with right Γ-module L∗⊗p leads to acyclic
complexes of vector spaces.

Theorem 5.9: If 1 < a < p and 1 < i < a then:

TorΓ̃
j (Sa−i ⊗ Λi, Λp) = 0

Proof. We know that for a < p, Sa−i⊗Λi is direct summand in L∗⊗a. In the previous
proof we have shown that tensoring any term of Koszul and de Rham complexes with L∗⊗a

gives zero. Tensoring with direct summand must be trivial as well. The spectral sequences
have exactly the same shape as in proof of theorem 5.1 for a > 1.

Corollary 5.10: If 1 < a < p and 1 < i < a then:

TorΓ̃
j (Sa−i ⊗ Λi, Sp) = 0

Theorem 5.11: If 1 < a < p then:

TorΓ̃
j (Sa, Λp) =

{
Fp for j = (2s + 1)(p− 1) + 1, s ≥ 0
Fp for j = (2s + 1)(p− 1), s ≥ 0
0 otherwise.

TorΓ̃
j (Sa−1 ⊗ Λ1,Λp) =

{
Fp for j = (2s + 1)(p− 1) + 1, s ≥ 0
Fp for j = (2s + 1)(p− 1), s ≥ 0
0 otherwise.

Proof. This time spectral sequences are exactly as in the proof of theorem 5.1 for a = 1
since Sa ⊗Γ L = Fp and Sa−1 ⊗Λ1 ⊗Γ L = Fp give nontrivial terms in the hyperhomology
spectral sequence with coefficients in the de Rham complex.

Corollary 5.12: If 1 < a < p then:

TorΓ̃
j (Sa, Sp) =

{
Fp for j = (2s + 2)(p− 1) + 1, s ≥ 0
Fp for j = (2s + 2)(p− 1), s ≥ 0
0 otherwise.
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TorΓ̃
j (Sa−1 ⊗ Λ1, Sp) =

{
Fp for j = (2s + 2)(p− 1) + 1, s ≥ 0
Fp for j = (2s + 2)(p− 1), s ≥ 0
0 otherwise.

Theorem 5.13: If 1 < i < p then:

TorΓ̃
j (Sp−i ⊗ Λi, Λp) = 0

Proof. We know that for 0 < i < p, Sp−i ⊗ Λi is direct summand in L∗⊗p. We have
shown that tensoring over Γ both Koszul and de Rham sequences with right Γ-module
L∗⊗p leads to acyclic complexes. Tensoring with some direct summand must give the same
result. The spectral sequences have exactly the same shape as in proof of theorem 5.1 for
a > 1.

Corollary 5.14: If 1 < i < p then:

TorΓ̃
j (Sp−i ⊗ Λi, Sp) = 0

Theorem 5.15:

TorΓ̃
j (Sp−1 ⊗ Λ1, Λp) =

{
Fp for j = (2s + 1)(p− 1) + 1, s ≥ 0
Fp for j = (2s + 1)(p− 1), s ≥ 0
0 otherwise.

Proof. This time spectral sequences are exactly as in Theorem 5.1 for a = 1 since two
vector spaces (Sp−1 ⊗Λ1)⊗Γ L = Fp give nontrivial terms in the hyperhomology spectral
sequence with coefficients in the de Rham complex. Actually this theorem could be proved
using theorem 1.5.

Corollary 5.16:

TorΓ̃
j (Sp−1 ⊗ Λ1, Sp) =

{
Fp for j = (2s + 2)(p− 1) + 1, s ≥ 0
Fp for j = (2s + 2)(p− 1), s ≥ 0
0 otherwise.

Remark 5.17: We did not say anything about divided powers. But of course one can
easily perform the same calculations for Di as were presented for Si. The only change
needed here is to use duals in the sense of Kuhn of the Koszul and de Rham sequences, or
to combine at Λp Koszul complex and its dual and get an exact sequence connecting Sp

and Dp. The details are left to the interested reader.

23



References:

[BP] S.Betley, T.Pirashvili. Stable K-theory as a derived functor. J. Pure and Applied
Algebra 96 (1994) 245-258.
[BS] S.Betley, J.Slominska. New approach to the groups H∗(Σn, Lien) by the homology
theory of the category of functors. J. Pure and Applied Algebra 161 (2001) 31-43.
[B1] S.Betley. Stable derived functors, the Steenrod algebra and homological algebra in
the category of functors. Fundamenta Math. 168 (2001) 279-293.
[B2] S.Betley. Ext groups for the composition of functors. Algebraic Topology: Categorical
Decomposition Techniques. Birkhauser Verlag, Basel, Switzerland, Progress in Math. 215
(2003) 31-45.
[FLS] V.Franjou, J.Lannes, L.Schwartz. Autour de la cohomologie de MacLane des corps
finis. Invent. Math. 115 (1994) 513-538.
[FFSS] V.Franjou, E.Friedlander, A.Scorichenko, A.Suslin. General linear and functor
cohomology over finite fields. Ann. of Math. 150 (1999) 663-728.
[K] N.Kuhn Generic representation theory of the finite general linear groups and the Steen-
rod algebra: I. Amer. J. Math. 116 (1994) 327-360.
[P1] T.Pirashvili. Hodge decomposition for higher order Hochschild homology. Ann. Sci-
ent. Ec. Norm. Sup. 33 (2000) 151-179.
[P2] T.Pirashvili. Dold-Kan type theorem for Γ-groups. Math. Annalen 318 (2000) 277-
298.
[Ri] B. Richter. Taylor towers for Γ-modules. Annales de L’Institut Fourier 51 (2001)
995-1023.
[Ro] A. Robinson. Gamma homology, Lie representations and E∞ multiplications.Inventiones
Math. 152 (2003) 331-348.

First author’s address:
Institute of Mathematics of the Polish Academy of Sciences,
ul. Sniadeckich 8, 00-956 Warsaw 10, Poland
e-mail: jant@impan.gov.pl

Second author’s address:
Instytut Matematyki, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland
e-mail: betley@mimuw.edu.pl

24


