
SOME REMARKS ON ABSOLUTE MATHEMATICS

Stanislaw Betley

ABSTRACT: We calculate Hochschild cohomology groups of the integers treated as
an algebra over so-called ”field with one element”. We compare our results with calculation
of the topological Hochschild cohomology groups of the integers - this is the case when one
considers integers as an algebra over the sphere spectrum.

1.INTRODUCTION.

Absolute mathematics means here computations over field F1 with one element in the
sense of Soule and others (see [S]or [KOW]). There are two reasons for writing this short
note. First of all we want to pursue a little further calculations of Hochschild cohomology
of Z treated here as F1-algebra, started in [KOW]. This theory is highly nontrivial and in-
terpretation of nontrivial classes is still to be discovered. But the more important reason is
contained in Section 4. The idea of treating Z as an algebra over some ring in a nontrivial
way has been stimulating for topologists for many years. The topological approach to this
problem can be sketched in a few words. One identifies Z with Eilenberg-MacLane spec-
trum H(Z) and then considers it as an algebra spectrum over sphere spectrum S. This lead
to the definition of topological Hochschild homology of Z which is highly nontrivial, con-
trary to the ordinary Hochschild theory over Z . So for Z we have two nontrivial Hochschild
type (co)homology theories: topological Hochschild (co)homology, which should be con-
sidered as ordinary Hochschild theory over S and Hochschild (co)homology over F1. In
Section 4 we describe how these two theories are related. From this we derive vanishing
results on Hochschild cohomology over F1 for certain rings of matrices which seem to be
of independent interest (see for example [KOW]).

2. HOCHSCHILD COHOMOLOGY OF Z OVER F1.

In our treatment of absolute mathematics we will follow [KOW]. Recall, that viewing
a ring R as F1-algebra means that we forget the additive structure of R so we restrict
ourselves to the multiplicative monoid structure of R. To avoid misunderstandings we will
use constantly bold notation for monoids and normal one for other algebraic objects like
rings, abelian groups, bimodules, etc. Hence, when we use notation R for the ring R, it
means that we treat R only as the multiplicative monoid.

For example, the absolute derivations of R with values in an R-bimodule M (notation
DerF1(R,M) ) are maps D : R → M (not necessary linear) which satisfy the Leibniz rule

D(ab) = D(a)b + aD(b)

As it was shown in [KOW,Theorem 1] there is a direct product decomposition

DerF1(Z, Z) =
∏

p:prime

Zfp
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where fp : Z → Z is defined by the formula fp(x) = x
p · ordp(x). The number ordp(x)

means here p-order of x and it is easy to check that fp satisfies Leibniz rule.
Let R be a ring and M an R-bimodule. Define (see [KOW, section 1.6]) the cochain

complex (Cn(R, M), δn) where the nth group is given by the formula

Cn(R, M) = Map(Rn,M)

and

(δnf)(a1, ..., an+1) = a1f(a2, ..., an+1) +
n

Σ
i=1

(−1i)f(a1, ..., aiai+1, ..., an+1)

+(−1n+1)f(a1, ..., an)an+1

The cohomology of this complex will be called the absolute Hochschild cohomology of
R with coefficients in M and denoted H∗

F1
(R,M). It is easy to check that Theorem 1 of

[KOW] calculates H1
F1

(Z, Z) = DerF1(Z, Z).
One easily identifies

Map(Rn,M) = HomZ(Z[Rn],M) = HomZ(Z[R]⊗n, M)

In other words our absolute Hochschild cohomology theory can be identified with the
Hochschild cohomology groups over Z of the monoid ring Z[R] with coefficients in M .
This means that we can extend the definition of H∗

F1
-groups to all monoids with coeffi-

cients in arbitrary bimodules over their monoid rings. In this section we concentrate on
multiplicative monoids of integers (Z) and natural numbers (N) and their zero-free versions
Z∗ and N∗.

2.1.Theorem: The embedding N∗ → N induces an isomorphism on H∗
F1

-groups with
Z coefficients, where N acts on Z by multiplication. The same is true for the embedding
Z∗ → Z.

Proof. Choose a natural number n. We show first that every element of Hn
F1

(N, Z) can
be represented by a cocycle which vanishes on all n-tuples which contain a zero element.

Let f ∈ Cn(N, Z) be a cocycle. Assume first that f(0, ..., 0) = a 6= 0. We will find
a representative of the same cohomology class which vanishes on (0, ..., 0). The element
f is a cocycle so its coboundary is 0. When we calculate δnf(0, ..., 0) we obtain −a or 0
depending on the parity of n. In the first case we do nothing because it means that a has to
be zero anyway. In the second situation we replace f by f − δn−1g where g ∈ Cn−1(N, Z)
is defined by the following rule: g(0, ..., 0) = a and g is 0 at any other point.

Now we will continue our proof by induction. Assume that the cocycle f ∈ Cn(N, Z)
vanishes at all points (x1, ..., xn) which contain at least k + 1 zeros and f(y1, ..., yn) =
b 6= 0 where the tuple Y = (y1, ..., yn) has k zeros. But to proceed further we need some
more notation. Any maximal subsequence of Y of length s of the type (yi, yi+1, ..., yi+s)
consisting of zeros only will be called a s-period of Y . Write Y (e1, ..., ei, o1, ..., oj) for a
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n-tuple which has i even periods of length es, s = 1, ..., i and j odd ones of corresponding
length ot, t = 1, ..., j. In such situation we will say that Y is of the type (i, j).

Assume first that Y is of type (0, j). Then

0 = δnf(Y (o1 + 1, o2, ..., oj)) = ±f(Y ) = ±b

by the assumption on f , so b has to be 0. Now assume that Y is of type (i, 0). Define
g ∈ Cn−1(N, Z) by the formula g(Y (e1 − 1, e2, ..., ei)) = ±b and g is 0 at any other point.
Whether we should have here plus or minus depends on the parity of the first term of the
index in the period corresponding to e1. Then

(f − δn−1g)(Y ) = 0

and

2.1.1 δn−1g is 0 everywhere but Y .

Hence the set of points with k zeros for which f − δn−1g is non zero is smaller than
such a set for f . So subtracting δn−1g like above for all points Y of type (., 0) we can make
our cocycle vanish at all points with k zeros and only even periods (we are in a product
situation so infinite sums are allowed).

The situation, with even and odd periods is a little more complicated to describe. Of
course it is very easy to make f vanish at a particular Y by subtracting some boundary
element as previously. But we have to be sure that we will not increase the set of points
with k zeros at which our cocycle is non-zero. Analyze first the case when Y is of type
(i, 1). Put g ∈ Cn−1(N, Z) to be defined by the formula

for any t g(Y (e1, ..., et − 1, ..., ei, o1)) = ±f(Y (..., et − 1, ...., o1 + 1))

and is 0 otherwise, where the choice of sign depends on the parity of the first term of the
index in the period corresponding to et. We have to show that

2.1.2. f − δn−1g vanishes at Y .

Let us start from the calculation of δnf(Y (..., o1 + 1)). Because f is a cocycle and
vanishes at all points which contain at least k + 1 zeros we get:

0 = δnf(Y (..., o1 + 1)) = f(Y ) +
i∑

t=1

f(Y (..., et − 1, ...., o1 + 1))

where on the right hand side, in order to simplify notation, we did not put signs preceding
all terms. These signs depend on the parity of the indices of the first terms of periods (as
previously). Hence up to signs we can say that

f(Y ) =
i∑

t=1

f(Y (..., et − 1, ...., o1 + 1))

On the other hand (up to signs as above) we calculate that

3



δn−1g(Y ) =
i∑

t=1

f(Y (..., et − 1, ...., o1 + 1))

by the definition of g. Hence 2.1.2 is proven.

Moreover observe that δn−1g can be nonzero at a point with k zeros only if this tuple
equals Y (..., et − 1, ..., o1 + 1) for some t ∈ {1, ..., i}. But at such tuples f and g agree by
the definition of g. Hence again the set of points with k zeros for which f − δn−1g is non
zero is smaller than such a set for f .

Now we have to treat the general case of Y of the type (i, j). We will write formulas
only for i ≤ j. The opposite situation should be done the same way and is left to the
reader as an exercise. For any s = 1, ..., i let Ys denote the point in which s-even periods
where shortened by 1 and s − 1-odd periods where enlarged by 1 excluding the first odd
period from extending procedure. Correspondingly, let Y1,s be the same as Ys with the
first odd period extended also by 1. Define g by the formula: for any s = 1, ..., i and any
choice of periods we have

g(Ys) = f(Y1,s)

and zero otherwise. Then the analogous calculations as above give us that f − δn−1g
vanishes at Y and the set of points with k zeros for which f − δn−1g is non zero is smaller
than such a set for f , as previously. The idea behind this construction is simple: when we
increase the number of odd periods we increase the set of points at which δn−1g can be
nontrivial (these are the points Y1,s) so we have to make sure that δn−1g agrees at these
points with f .

Now we can finish the proof of 2.1. Observe that any f ∈ Cn(N, Z) can be uniquely
written f = f1 + f0 where f1 vanishes on all tuples with some coordinates equal to 0 and
f0 vanishes on all tuples without zeros. This decomposition is preserved by the boundary
operators and gives us a decomposition of our cochain complex as a sum C∗(N, Z) =
C∗1 ⊕C∗0 . Our considerations above show that C∗0 has trivial cohomology. So we have our
theorem for N. It is obvious that the monoid Z can be treated similarly.

2.2.Remark: Observe that theorem 2.1 is valid for any commutative monoid M
without 0 divisors with coefficients taken in any abelian group on which M∗ acts by
monomorphisms and 0 ∈ M acts as multiplication by 0.

Let C2 denote the cyclic group of two elements . Identifying C2 with {−1, 1} we see
that Z∗ = N∗ ×C2. We have Kunneth-type spectral sequence for the product of monoids
and C2 is a group so cohomology groups of its monoid ring are the same as cohomology
of the group with conjugate action on coefficients. It means that in our case relevant are
cohomology of the group C2 with coefficients in the trivial module Z. These groups are
given in every textbook containing the notion of group (co)homology. So everything that
was done so far can be summarized in the statement that absolute cohomology H∗

F1
(Z, Z)

will be fully understood if we know H∗
F1

(N∗, Z).
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Observe, that Theorem 1 of [KOW] that was quoted above gives us the calculation of
H1

F1
(N∗, Z) = H1

F1
(Z, Z) and the elements fp are well defined in C1(N∗, Z).

2.3.Proposition: For any cocycle f ∈ Cn(N∗, Z) we can find a cocycle

f ′ ∈ Cn(N∗, Z)

which represents the same cohomology class as f and which vanishes on all tuples which
contain 1.

We will give only a proof of this proposition in two particular cases, because we do
not have so far any application of this proposition in full generality. But the careful reader
should notice immediately , that an analysis from the proof of Theorem 2.1 can be done
with 0 replaced by 1.
Partial Proof. Assume first that our cocycle f is non trivial at (1, ..., 1). Then by calculating
δn(1, ..., 1) we get that n has to be odd. But then f = δn−1g, where g is the (n−1) cochain
which at (1, ..., 1) is equal to f(1, ..., 1) and is zero otherwise.
Secondly assume that f(1, ..., 1) = 0 and f(a, 1, ..., 1) = b 6= 0. Calculate δnf(a, 1, ..., 1).
One gets immediately that n has to be odd. Then f = δn−1g , where g is the (n − 1)
cochain which at (a, 1, ..., 1) is equal to −f(a, ..., 1) and is zero otherwise. Case (1, ..., 1, a)
can be treated similarly.

Of course, it is easy to check by a direct computation that for any n and any sequence
of prime numbers (p1, ..., pn) we have well defined cocycles in Hn

F1
(N∗, Z) given by the

formulas
f(a1, ..., an) = fp1(a1) · ... · fpn(an)

For the increasing sequence (p1 < p2 <, ..., < pn) we will denote them later as f(p1,...,pn).
In section 3 we will show in full generality that Hn

F1
(N∗, Z) is equal to the direct

product of Z indexed by all f(p1,...,pn) defined above. Below we give a direct calculation of
this fact in the case n = 2.

2.4. Theorem: H2
F1

(N∗, Z) is equal to the direct product of Z indexed by all pairs
of distinct prime numbers (p, q) with p < q.

Proof: Observe , that for any pair of distinct prime numbers p and q we have the
element fp,q ∈ C2(N∗, Z) defined by the formula

fp,q(a, b) = fp(a)fq(b)

It is easy to check that for any p, q this is a cocycle:

δ2fp,q(a, b, c) = afp(b)fq(c)− fp(ab)fq(c) + fp(a)fq(bc)− fp(a)fq(b)c

= afp(b)fq(c)− afp(b)fq(c)− bfp(a)fq(c) + bfp(a)fq(c) + cfp(a)fq(b)− fp(a)fq(b)c = 0
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by Leibniz rule.
Moreover, for any f ∈ C1(N∗, Z) we have the formula

δ1(f)(a, b) = af(b)− f(ab) + bf(a)

which is invariant under permutation a ↔ b so any coboundary satisfies this symmetry. On
the other hand any product of elements of the type fp,q with p < q is not symmetric in this
sense. Hence we know that the product of Z indexed by the set {(p, q); p, q primes p < q}
is contained in H2

F1
(N∗, Z).

In order to show equality we need some more computations. We must show that every
cocycle represents the same class in H2

F1
(N∗, Z) as a certain product of fp,q’s.

By the proof of 2.3 we know that the cohomology class of f is equivalent to the class
of f ′ where f ′ vanishes on all pairs (a, 1) and (1, a).

We start from subtracting from f the product of elements f(p, q) · fp,q, where p, q
are prime numbers. This way we get a cocycle which vanishes at all pairs (p, q) of prime
numbers and all pairs (a, 1), (1, a). We show that such f is a coboundary in our cochain
complex. This will be achieved by induction on the number of prime factors in the product
of coordinates. Assume that our cocycle f vanishes on all pairs (v, w) such that vw is a
multiplication of at most k primes. Assume that xy is a product of k + 1 primes and
f(x, y) = d. We will modify f inside its cohomology class to get a new cocycle which
vanishes also at (x, y).

Let g : N∗ → Z be defined by the formula g(xy) = d and zero otherwise. Then
(f + δ1g)(x, y) = 0 as required. But of course δ1g(s, t) = −d at all pairs (s, t) for which
st = xy and neither of s and t is 1 (and is 0 at all other points). We have to check that
f(s, t) = d at all such points. To see this observe that for any triple of different from 1
points a, b and c satisfying abc = xy = st we have

0 = δ2f(a, b, c) = af(b, c)− f(ab, c) + f(a, bc)− f(a, b)c

because f is a cocycle. By our assumption, that f vanishes on all pairs (v, w) for which vw
is a product of at most k-primes and by the assumption, that xy is a product of precisely
k + 1 prime numbers we see that

f(a, bc) = f(ab, c)

Let x = p1p2...pi and y = pi+1...pk+1 where each pj is a prime number. Assume that p1|s.
Then by the formula above applied several times we get

f(x, y) = f(p1, p2...pk+1) = f(s, t)

If none of the pjs divides s for j = 1, ..., i let pm|s for a certain m ∈ {i+1, ..., k +1}. Then

f(x, y) = f(p1, p2...pk+1) = f(p1pm, p2...pm−1pm+1...pk+1) =

= f(pm, p1p2...pm−1pm+1...pk+1) = f(s, t)
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This obviously implies the statement that f(s, t) = d at all pairs satisfying st = xy. So
by induction on k we know that our group H2

F1
(N∗, Z) is generated by elements fp,q. Let

now p and q be two prime numbers and g : N∗ → Z be a function defined by the rule
g(pq) = −1 and is 0 otherwise. Then fp,q +fq,p−δ1g is a cocycle which vanishes at all pairs
(s, t) with prime s and t. By our previous considerations we can say that it represents the
trivial element in H2

F1
(N∗, Z). Hence [fp,q] = [fq,p] in H2

F1
(N∗, Z). Similarly fp,p − δ1h

vanishes at all pairs (s, t) with prime s and t, where h(p2) = −1 and is zero otherwise.
This observation finishes the proof of Theorem 2.4.

We finish the present section with classical considerations. The groups H2 typically
classify extensions in considered theories. Similarly we have here:

2.6. Theorem: The elements of the group H2
F1

(N∗, Z) are in 1-1 correspondence
with isomorphism classes of monoids which are extensions of the multiplicative monoid N∗

by the abelian group Z, where a monoid acts on a group by standard multiplication in Z.

Proof. Standard checking. Of course the result is the same as if we classify the
extensions of the monoid ring Z[N∗] by a Z[N∗]-module Z in the category of Z-algebras.

3. ABSOLUTE HOCHSCHILD COHOMOLOGY OF N∗

Let Wn denote the free abelian monoid generated by n elements {a1, ..., an}. We
will identify Wn with the multiplicative submonoid of N∗ generated by the first n prime
numbers. With this interpretation in mind we can view N∗ as the direct limit of the Wn’s.
Observe that Z[Wn] is isomorphic to the ring of polynomials over Z with n indeterminates.
Hence its Hochschild cohomology groups are well known. Let us recall (see for example
[W, Ex. 9.1.3]):

3.1. Lemma: Hochschild homology and cohomology groups of Z[Wn] with any
coefficients vanish above dimension n.

We will start our considerations with the simple lemma:

3.2. Lemma: Let p be a prime number. Let Z(p) denote the W1 bimodule which is
isomorphic to Z as an abelian group and on which a1 acts from both sides via multiplication
by the prime number p. Let M be any trivial W1 bimodule which is free as an abelian
group. Then

Hoch0(Z[W1], Z(p)⊗M) = Hoch1(Z[W1], Z(p)⊗M) = Z ⊗M

and

Hoch0(Z[W1], Z(p)⊗M) = Hoch1(Z[W1], Z(p)⊗M) = Z ⊗M

where tensor product means tensoring over Z.
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Proof. Calculation for Hoch0 and Hoch0 is obvious. We know that Hoch1(Z[W1], Z(p)) is
equal to the group of derivations with values in Z(p). So we have to calculate all the maps
W1 → Z(p)⊗M which satisfy the Leibniz rule. Let f be a derivation and f(a1) = x. It is
obvious that f(1) = 0 and from the Leibniz rule we get by induction that f(an

1 ) = npn−1x.
Hence Hoch1(Z[W1], Z(p)) = Z ⊗ M and, if we forget about M , it is generated by the
derivation gp which sends a1 to 1. For the homological calculations observe first that Z(p)
is isomorphic to its dual also as Z[W1]-bimodule. Hence we can use the ordinary universal
coefficients formula relating Hochschild homology and cohomology:

Hochk(Z[W1], Z(p)) = Hom(Hochk(Z[W1], Z(p));Z)⊕ Ext1(Hochk−1(Z[W1], Z(p); Z)

From this we get our calculation for M = Z. But this implies the general case by our
assumption on M .

Let Q∗(p1,...,pn) denote the subgroup of the multiplicative group of positive rational
numbers which consists of all fractions which (in not reducible form) are built out of the
prime numbers p1, ..., pn only. Then the map Wn → Q∗(p1,...,pn) which sends ai to pi

embeds the monoid Wn into a group Q∗(p1,...,pn), the images of ai’s generate Q∗(p1,...,pn) and
every element of Q∗(p1,...,pn) can be written as a fraction x−1y for some x, y belonging to
the image of Wn. So we are in the situation which is thoroughly studied in [CE, chapters
8 and 10]. We have:

3.3. Theorem: The embedding of multiplicative monoids Wn → Q∗(p1,...,pn) induces
and isomorphism on Hochschild cohomology groups with Q coefficients, where Z[Q∗

(p1,...,pn)]
bimodule structure on Q is given by multiplication of rational numbers from both sides.

Proof. The proof is essentially taken from [CE, chapter 8 and 10] . We will sketch it
below for the readers’ convenience because we are not able to quote one particular theorem
from [CE] which implies immediately our theorem. Only for this proof let A denote the
monoid ring Z[Wn] and B = Z[Q∗(p1,...,pn)]. Let, as usual, Ae and Be denote enveloping
algebras of Z-algebras. Using the Ext-interpretation of Hochschild cohomology groups we
have to show only that the natural embedding of algebras A 7→ B induces an isomorphism

ExtBe(B, Q) → ExtAe(A, Q)

For this we will use Theorem 3.1 from [CE, chapter 8] where the necessary and suffi-
cient condition is formulated for the map of augmented algebras to induce an isomorphism
on Ext-groups with any coefficients. We have to check two conditions:

3.3.1. Be ⊗Ae A ' B
3.3.2. TorAe

n (Be, A) = 0 for n > 0

The first is easy: the natural map from the left to the right is certainly an epimorphism
because the basic vector 1 · p/q can be obtained as an image of 1⊗ 1/q ⊗ p. Assume now
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that x goes to 0. By finding common divisors and moving elements over the tensor product
we can present x as

k∑

i=1

(1/b⊗ 1/b⊗ pi)

where pi’s are arbitrary elements of A. The fact that x maps to 0 in B means that∑k
i=1 pi/b2 = 0. This means that

∑k
i=1 pi = 0 which immediately implies that x = 0 .

For the second condition it is enough to show that

3.3.3 Be is a direct limit of projective Ae-modules.

Observe that our monoids are commutative so both Ae and Be are monoid algebras
over Z of cartesian products of corresponding monoids. But in such a case 3.3.3 is fully
shown as the second part of the proof of proposition 4.1 of chapter 10 in [CE].

3.4. Proposition: For any natural k the group Hochk(Z[Q∗(p1,...,pn)], Q) is equal to
the direct product of Q indexed by all k-tuples of distinct prime numbers q1 < q2 < ... < qk

taken from the set {p1, ..., pn}.
Proof. The monoid Q∗(p1,...,pn) is an abelian group and hence its Hochschild coho-

mology groups are the same as the group homology with conjugation action on Q. But
conjugation action is trivial so the groups of interest are equal to the cohomology of the
group Q∗

(p1,...,pn) with trivial coefficients Q. Observe that Q∗
(p1,...,pn) is a free finitely gener-

ated abelian group generated by the numbers p1, p2, ..., pn . Then our proposition is proved
by the formula for the cohomology of a free finitely generated abelian group.

3.5. Proposition: The group Hochk(Z[Wn], Z) is equal to the direct product of Z
indexed by all k-tuples of distinct prime numbers q1 < q2 < ... < qk taken from the set
{p1, ..., pn}.

Proof. This is an easy exercise from homological algebra and we will present only the
way of reasoning leaving the details to the reader. The previous proposition gives us the
size of the torsion free part of the groups of interest. Now use the cohomological Kunneth
spectral sequence for the monoid Wn = W1 ×Wn−1. By lemma 3.2 we know that the
first table of this spectral sequence consists of two columns 0 and 1 (besides the trivial
ones), each of which being equal to C∗(Z[Wn−1], Z). Hence the second table consists of
two columns each of which filled with Hoch∗(Z[Wn−1], Z). So they contain no torsion
by induction on n and by proposition 3.4 (”rank counting”) we know that all differentials
must be zero. From this our result follows immediately.

3.6. Theorem: The group Hochk(Z[N∗], Z) is equal to the direct product of Z
indexed by all k-tuples of distinct prime numbers q1 < q2 < ... < qk.

Proof. The proof is again based on the basic homological algebra methods. The
monoid N∗ is a direct limit of Wn’s so from 3.5 we know that Hochk(Z[N∗], Z) contains
a subgroup isomorphic to the one described in the statement of the theorem coming from
the inverse limit of the groups Hochk(Z[Wn], Z) . To show that this is all of it we need
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some more arguments. Observe that we can perform the same calculations for Hochschild
homology of Wn as were done for cohomology in 3.5. We get then that Hochk(Z[Wn], Z)
are, as abelian groups, the same as cohomology. But homology of monoids commute with
direct limits hence we calculate that Hochk(Z[N∗],Z) is a direct sum of Z indexed by
all k-tuples of distinct prime numbers. Now observe (compare the proof of 3.2) that Z is
isomorphic to its dual as bimodules over Z[N∗] and hence we get our result for cohomology
by the universal coefficients formula.

3.7. Remark: We know now the group Hn
F1

(N∗, Z) for any natural n . It is equal
to the infinite product of Z indexed by all n-tuples of prime numbers (p1 < p2 < ... < pn).
We leave it to the interested reader to check directly from the definitions that the classes
f(p1,...,pn) form a basis of it (in the sense of an infinite product).

4. RELATION TO TOPOLOGICAL HOCHSCHILD COHOMOLOGY.

In this section we will relate absolute mathematics to better known objects. In [KOW]
and [O] the problem of finding H1

F1
for matrix rings Mn(R) was studied for different R

and n. In our language this is the same as to try to calculate Hochschild cohomology

Hoch1(Z[Mn(R)], Mn(R))

with bimodule structure defined by multiplication of matrices from both sides. This prob-
lem with growing n was studied in [BP]. The expression ”growing n” means here that we
study the map on (co)homology induced by the embedding of Mn(R) into Mn+1(R) and
we are interested in the (co)limit of Hochi(Z[Mn(R)], Mn(R)) when n tends to infinity
(actually the more complicated coefficients where considered in [BP]) . Theorem 1.3 of
[BP] says that the map described above is an isomorphism provided n > 2i+1. It means
that for i = 1 stability starts at n = 5. On the other hand , by [JP] (see also [B, lemma
3.2]) the stable groups are isomorphic to HML∗(R, R) - the MacLane cohomology groups
of the ring R with coefficients in the bimodule R. So absolute Hochschild (co)homology
theory can be viewed as unstable version of MacLane theory or we can interpret the latter
one as stabilization of the former. The MacLane groups for R = Z were calculated in [FP].
In particular it was shown there that HML1(Z,Z) = 0. Hence as an immediate corollary
we get the following result about absolute mathematics:

4.1.Corollary: H1
F1

(Mn(Z), Mn(Z)) = 0 for n > 4.

Of course in the corollary above we can replace Z by any ring for which HML1(R, R) =
0. In [O] the result was shown for n > 2 and rings R contained in the algebraic closure of
Q. For n > 4 we can extend this result to other rings. We have the following calculation:

4.2.Theorem: Let k = Z or k = Fp. Let R be an algebra over k which is projective
as a k-module. Then

H1
F1

(Mn(R),Mn(R)) = Hoch1(R, R)

for n > 4.
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Proof. We have described at the beginning of this section the relation between abso-
lute Hochschild theory and MacLane cohomology. After that it is obvious that we have
only to show that HML1(R, R) = Hoch1(R, R). We will follow the lines of [P]. Let us
recall, that any R-bimodule M can be used as coefficients in MacLane cohomology groups.
Using precisely the same method as was used in [P, Proposition 4.1] one can construct a
cohomological type spectral sequence for any R-bimodule M

Ep,q
2 = Hochp(R,HMLq(k,M)) ⇒ HMLp+q(R, M)

(The only difference here comparing to [P] is to start from the resolution of the identity
functor and not its dual.) For our purposes we put M = R. In both cases, which we
consider here, HML1(k, k) = 0 and hence HML1(k,R) = 0 by our assumption on R. On
the other hand HML0(k, R) = R because k commutes with the elements of R and the
only matrix over R which commutes with all matrices over k is the diagonal one. Hence
we get our calculation and the proof is finished.

4.3.Remark: Theorem 4.2 shows that for Z or Fp algebra R vanishing of absolute
Hochschild groups of large matrices over R is implied by the vanishing of Hoch1(R,R).

4.4.Remark: It is clear that the method used in the proof of 4.2 can be extended
to algebras over other ground rings. We wanted here to present the method of attacking
absolute problems rather than the most general results in this direction. The interesting
feature, which should have some explanation, lies in the fact that absolute mathematics
of the ring R seems to be simpler when R is less commutative (rings versus matrices over
them).

4.5.Problem: As we have said before MacLane cohomology groups of the ring Z
were calculated in [FP]. They are torsion and given by the formula HML2i−1(Z,Z) = Z/i
and vanish in other dimensions. As we have shown in sections 2 and 3 the absolute
Hochschild cohomology groups of Z are huge but contain only 2-torsion. Do the 2-torsion
classes from HML∗(Z, Z) map nontrivially by the stability homomorphisms to the absolute
Hochschild cohomology of Z ? In other words, do the 2-torsion classes in HML∗(Z,Z)
describe phenomena related to the multiplication of integers or, perhaps, they describe
only phenomena which are related to larger and larger matrices.
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