
Center-Based Indexing for Nearest Neighbors Search

Arkadiusz Wojna

Institute of Informatics, Warsaw University

ul. Banacha 2, 02-097 Warsaw, Poland

wojna@mimuw.edu.pl

Abstract

The paper addresses the problem of indexing data for

the k nearest neighbors (k-nn) search. It presents a tree-

based top-down indexing method that uses an iterative k-

means algorithm for tree node splitting and combines three

different search pruning criteria from BST, GHT and GNAT

into one. The experiments show that the presented indexing

tree accelerates the k-nn searching up to several thousands

times in case of large data sets.

1 Introduction

In the similarity based searching problem first a distance

measure is defined on data objects and next the problem is

to find k objects from a database that are nearest to a given

query object. The problem is important for multimedia, ma-

chine learning and data mining applications. To reduce the

cost of searching one can construct an indexing tree. Such

a tree is built using the top-down strategy starting with the

whole data set at the root of a tree and recursively at each

node splitting data objects into a fixed number k of smaller

clusters. The search algorithm traverses the constructed tree

in the depth-first order and tries to discard some nodes from

searching.

Great number of indexing methods (R-, R*-, R+-, X-,

TV-, SS-, M-trees) described in the literature concern the

case when data are stored on disk [6]. However, one of the

most popular application of the k-nn method is object clas-

sification. It requires fast access to data and often the only

solution is to assume that data are kept in the main memory.

With growing size of the main memory in data servers this

case attracts more and more attention of researchers work-

ing in other application areas too. In the paper we focus on

this case.

The first main memory based indexing structures for k-

nn searching are k-d- and quad-trees [1, 4]. They use iso-

oriented hyperplanes to split objects at each node of an in-

dexing tree. BST [8] and GHT [10] use a more advanced

algorithm for splitting nodes. It selects randomly two child

node centers among objects in the parent node and assigns

each object to the nearest center. This procedure may pro-

duce splitting hyperplanes in an arbitrary direction, what

is more effective for the search process. Both trees have

the same construction but different search pruning criteria

are used: the covering radius in BST and the hyperplane

cut in GHT. GNAT [3] is a more advanced version of the

BST/GHT tree. To balance the tree GNAT computes the

number of child nodes for each node separately. It uses the

same splitting procedure as in BST and GHT but the centers

for child nodes are selected more carefully. Finally, it uses

more sophisticated search pruning criterion.

Our method differs from the above indexing structures

in two ways. First, we use an iterative splitting procedure

instead of a one-step procedure. Second, as a search prun-

ing criterion we propose the combination of three different

criteria from BST [8], GHT [10] and GNAT [3]. The exper-

iments with real-life data show that the indexing tree with

the iterative k-means based splitting procedure and the com-

plex search pruning criteria is several times faster than the

tree with a one-step splitting procedure and any single cri-

terion. Hence, in case of large databases it can accelerate

searching even up to several thousands times in comparison

to the linear search.

2 Indexing

We assume that data objects are represented by vectors

from a d-dimensional vector space X with a distance func-

tion ρ : X
2 → R≥0 satisfying the triangular inequality. In

the paper we use a metric specialized for decision systems,

i.e., we assume that a training data set U is provided to in-

duce a metric and each data object x ∈ U is labeled with

a decision. The metric combines the distances specialized

for numerical and for symbolic attributes [7]. For numer-

ical attributes we use the difference between attribute val-

ues normalized by the largest observed attribute value dif-

ference and for symbolic attributes the VDM metric (two

symbolic values are similar if they have similar decision

Figure 1. Search pruning: (a) the covering ra

dius (b) the hyperplane cut (c) the rings

i,j

c
i

n
j

c

qrq

qrq

n
j

c

qrq

c
n

nr

n

n

j

j
n

i
ni

n

(a) (b) (c)

m

M
i,j

n

distribution). In the second phase of the metric induction

process the weights of attributes are adjusted to optimize

the performance of the metric on the training set U. The

results in [7] show that this metric with the k-nn algorithm

gives classification accuracy at least as good as other widely

used classification methods such as C5.0.

To construct an indexing tree we use an indexing strategy

introduced in [5]. It starts with the whole training data set

U and recursively splits data objects into a fixed k smaller

clusters. After each split the new child nodes are inserted

to the global priority queue and the node with the largest

weight is selected from the queue to be split as the next.

Each tree node has the center and the weight of a node is

defined as the sum of the distances between the node mem-

bers and the center. The algorithm stops when the number

of leaf nodes exceeds 1

5
of the size of the training set |U|,

in other words when the average size of the leaf nodes is

5. This stopping criterion reflects the trade-off between the

optimality of searching and the additional memory usage.

For node splitting procedure we use the k-means algo-

rithm. Initially, it selects k objects from the parent node as

the centers of the child nodes. Then it assigns each object

in the parent node to the child node with the nearest center

and computes the means of the child nodes as the new cen-

ters. It iterates the assignment procedure until the same set

of centers is obtained in two subsequent iterations.

For initial centers selection in the k-means algorithm we

use the following global method. First the mean of a node

is computed. As the first seed the farthest object from the

mean is picked. Then the farthest object from this one is

picked. Then the object that is farthest from these two is

chosen, i.e., such that the minimum distance from the pre-

vious two seeds is the greatest one among all unchosen ob-

jects. Then the one farthest from these three is picked and

so on until there are k data objects chosen. The computa-

tional cost is O(ndk2) where n is the size of the node and

d is the number of attributes. For small values of k this cost

is still acceptable. The above global method provides a lit-

tle better results than the GNAT sampled and the random

methods and this method was used in our experiments.

3 Searching

The searching algorithm is assumed to find a fixed num-

ber k of data objects nearest to a query object q. It tra-

verses an indexing tree in the depth-first order and stores

the k nearest data objects from already visited nodes in

nearestQueue. The objects in nearestQueue are sorted

in the increasing order of the distance to the query q. The

algorithm starts with the empty nearestQueue and visits

tree nodes unconditionally as long as nearestQueue con-

tains less than k objects. Since then the algorithm checks

at each tree node n with search pruning criteria whether n

is to be visited, i.e., whether n can contain an object that is

closer to the query q than any other previously found nearest

neighbor in nearestQueue. If not, the whole subtree of the

node n is discarded from searching. Otherwise, if the node

n is a leaf, it compares each data object x ∈ n against data

objects in nearestQueue and replaces the farthest object y

from nearestQueue if x is closer to the query q than y. In

case when the node n is an inner node it visits child nodes

in the increasing order of the distance between the center

of a child node and the query q. This heuristics guides the

algorithm first to child nodes that are more probable to have

data object close to the query q, what makes the searching

considerably more effective than random order of visiting.

There are different search pruning criteria described in

the literature and all of them are based on the triangu-

lar inequality. Figure 1 presents three different criteria

for pruning tree nodes. The value rq denotes the distance

ρ(q, x) between the query q and the farthest from q object

x ∈ nearestQueue. The most common criterion applied

in BST [8] uses the covering radius (Figure 1a). Each node

n keeps the center cn and the covering radius rn:

rn := max
x∈n

ρ(cn, x).

A node n is discarded if the intersection between the

ball around q containing all nearest neighbors from

nearestQueue and the ball containing all members of the

node n is empty:

ρ(cn, q) > rq + rn

Uhlmann proposed another criterion for his Generalized

Hyperplane Tree (GHT) [10] based on the assumption that

the splitting procedure assigns each object to the node with

the nearest center. It uses the hyperplanes separating the

child nodes of the same parent (Figure 1b). A node ni is

discarded if there is a brother node nj of ni (another child

node of the same parent node as ni) such that the whole

query ball is placed beyond the hyperplane separating ni

and nj on the side of the brother node nj :

ρ(cni
, q) − rq > ρ(cnj

, q) + rq.

GNAT pruning criterion [3] is also based on mutual relation

among brother nodes (Figure 1c). If the degree of a tree is k

then each child node ni keeps the minimal mi,1, . . . ,mi,k

and the maximal Mi,1, . . . ,Mi,k distances from its ele-

ments to the centers of the remaining brother nodes:

mi,j = min
x∈ni

ρ(cnj
, x) and Mi,j = max

x∈ni

ρ(cnj
, x).

A node ni is discarded if there is a brother node nj such

that the query ball is entirely placed outside the ring around

the center of nj containing all members of ni:

either ρ(cnj
, q) + rq < mi,j or ρ(cnj

, q) − rq > Mi,j .

The covering radius and the hyperplane criteria require from

each node n only to store the center cn and the covering ra-

dius rn. The criterion based on rings requires more mem-

ory: each node stores the 2(k − 1) distances to the centers

of brother nodes.

4 Experimental results

We have performed experiments with different index-

ing and search methods for 6 benchmark data sets from

the UCI repository [2] (the indexed and the query set

sizes are given in parenthesis): census94 (30162, 15060),

census94-95 (199523, 99762), covertype (387308, 193704),

letter (15000, 5000), nursery (8640, 4320), pendigits (7494,

3498). The data sets provided as a single file (covertype,

nursery) have been randomly split into an indexed and a

query parts with the ratio 2 to 1, the others have been tested

with the originally provided partition.

The k-means splitting procedure used in our method se-

lects initial centers, assigns each data object to the nearest

center and computes the means as the new centers of clus-

ters. Then assignment of data objects to the centers and

computation of new cluster centers is iterated until the same

set of cluster centers is generated in two subsequent itera-

tions. The one-step splitting procedure used in the other

indexing trees (BST, GHT and GNAT) stops after the first

iteration and uses the initial centers as the final. The in-

teresting question is how much the search process profits

from the additional cost due to the iterative k-means split-

ting procedure and the combined search pruning criterion

in comparison to the one-step case with a single pruning

criterion. To answer this question we tested the iterative

k-means based and the one-step k-centers based trees.

First we analyzed the performance of the k-means index-

ing tree as a function of the degree k by testing all values

in the range 2 ≤ k ≤ 9. The experiment showed that the

best performance is for small values of k but greater than

2. Assuming k equal to 3, 4 or 5 one may have the confi-

dence that they get almost optimal performance. In farther

experiments we have used the degree k = 3 in the k-means

Figure 2. The average number of distance

computations per single object of the 1nn
(the upper graph) and the 100nn (the lower
graph) search in different indexing trees

0

200

400

600

800

1000

1200

1400

1600

1800

2000

cens94 cens94-95 covtype letter nursery pendigits

GNAT

3means-iterative-3criteria

2centers-onestep-3criteria

3means-iterative-1criterion

2centers-onestep-1criterion

0

1000

2000

3000

4000

5000

6000

7000

cens94 cens94-95 covtype letter nursery pendigits

GNAT

3means-iterative-3criteria

2centers-onestep-3criteria

3means-iterative-1criterion

2centers-onestep-1criterion

based indexing tree. A similar experiment was performed

for the one-step k-centers based tree, for which k = 2 was

the optimal.

Figure 2 presents the cost of searching in the trees with

the iterative k-means and the one-step k-centers splitting

procedures. The performance of searching is presented for

two cases: with all 3 pruning criteria and with a single cov-

ering radius criterion. We chose this single criterion for

comparison since it has the best performance among all

three tested criteria. For comparison we also present the

performance of the GNAT tree [3]. We implemented dif-

ferent structures from the literature [3, 8, 10] and GNAT

had the best performance among them. To make the results

comparable all indexing trees were tested with the same dis-

tance function and the same partition for each data set.

While comparing the performance of the iterative 3-

means (the second column) and the one-step 2-centers (the

third column) procedures the profit from applying the iter-

ative procedure is visible: it ranges from 20% to 50% and

is similar for the 1-nn and the 100-nn search. The good

experimental performance of the tree with the k-means pro-

cedure may result from the theoretical property proved by

Savaresi and Boley [9]. They show that in an infinite the-

oretical model of data the 2-means procedure with random

selection of initial centers converges to the partition orthog-

onal to the principal direction, what is in a sense the optimal

partition of data.

The comparison of the second and the fourth column

shows that the application of the combined pruning crite-

rion also accelerates the performance of the k-nn search in

relation to a single criterion. In case of the 1-nn search the

acceleration is visible for all data sets and reaches up to sev-

eral times for the largest sets. In case of the 100-nn search

the difference is visible only for three larger data sets (cen-

sus94, census94-94, covertype) and is much smaller than in

the 1-nn case. It indicates that the less number of neigh-

bors k and the greater size of a data set, the improvement is

more significant. We have compared the performance of all

combinations among the three presented criteria and in both

cases of the 1-nn and the 100-nn search adding the memory

consuming criterion based on rings does not improve the

combination of the remaining two. This result may suggest

that the covering radius and the hyperplane cut provide the

optimal pruning combination and there is no need to search

for more sophisticated pruning mechanisms.

The experimental results show that the tree with the iter-

ative 3-means splitting procedure and the combined search

pruning criteria (the second column) is up to several times

as effective as the one-step based tree with a single criterion

(the fifth column). A particularly advanced acceleration

level in comparison to the linear search has been reached

in case of the largest tested data sets. The presented struc-

ture has reduced the 1-nn search cost 4000 times in case of

the data set covertype and 400 times in case of the data set

census94-95. For the 100-nn search the reductions in cost

are 300 and 60 times, respectively. Such good performance

has been reached both due to the improved splitting proce-

dure and the complex search criterion.

The question arises whether the cost of constructing the

k-means based tree is not too large in comparison to the cost

of searching. We have compared the average cost of index-

ing a single object to the average cost of searching for near-

est neighbors of a single object. In case of a small number of

neighbors the results are not uniformly interpretable and the

usefulness of the presented structure depends on individual

properties of a data set and on the number of queries to be

performed. However, while estimating the optimal size of

a neighborhood or searching for geometrical properties in a

data set, there is a need to search for a large number of near-

est neighbors and in this case the presented tree keeps the

appropriate balance between the costs of construction and

searching: for all tested data sets the average cost of index-

ing a single object was lower than the average cost of the

100-nn search, usually several times lower. It means that if

the size of an indexed database and the number of queries

are of the same order the main workload remains on the side

of the search process. The cost of indexing increases while

increasing the degree of a tree k. The cost of searching is

stable for k ≥ 3. It indicates that the best trade-off between

the indexing cost and the search performance is obtained at

k = 3 and by increasing the value of k the cost of indexing

is increased without any profit for searching.

5 Summary

In the paper we present the searching tree with the iter-

ative k-means splitting procedure and the combined search

pruning criteria that is up to several times better than the

one-step based tree with a single criterion and is particularly

effective while indexing very large data sets. The effective-

ness of indexing structures is measured by the average num-

ber of distance computations in a single k-nn search what

allows us to measure the acceleration of searching in com-

parison to the linear search. Almost 100% of run-time is

used by distance computation operations and the measured

acceleration factors correspond directly to the real-time ac-

celeration. The presented tree is used for the k-nn classifier

included in RSES system (http://logic.mimuw.edu.pl/˜rses).

Acknowledgments. The author is very grateful to pro-

fessor Andrzej Skowron for useful remarks on this presenta-

tion. This work was supported by the grants 8 T11C 009 19

and 4 T11C 040 24 from the Polish State Committee for

Scientific Research and by the grant from Ministry of Sci-

entific Research and Information Technology.

References

[1] J. L. Bentley. Multidimensional binary search trees used

for associative searching. Communications of the ACM,

18(9):509–517, 1975.
[2] C. L. Blake and C. J. Merz. UCI

repository of machine learning databases.

http://www.ics.uci.edu/˜mlearn/MLRepository.html, De-

partment of Information and Computer Science, University

of California, Irvine, CA, 1998.
[3] S. Brin. Near neighbor search in large metric spaces. In

Proceedings of the Twenty First International Conference on

Very Large Databases, pages 574–584, 1995.
[4] R. Finkel and J. Bentley. Quad-trees: a data structure for

retrieval and composite keys. ACTA Informatica, 4(1):1–9,

1974.
[5] K. Fukunaga and P. M. Narendra. A branch and bound al-

gorithm for computing k-nearest neighbors. IEEE Transac-

tions on Computers, 24(7):750–753, 1975.
[6] V. Gaede and O. Gunther. Multidimensional access meth-

ods. ACM Computing Surveys, 30(2):170–231, 1998.
[7] G. Góra and A. G. Wojna. RIONA: a new classification sys-

tem combining rule induction and instance-based learning.

Fundamenta Informaticae, 51(4):369–390, 2002.
[8] I. Kalantari and G. McDonald. A data structure and an algo-

rithm for the nearest point problem. IEEE Transactions on

Software Engineering, 9(5):631–634, 1983.
[9] S. M. Savaresi and D. L. Boley. On the performance of bi-

secting K-means and PDDP. In Proceedings of the First

SIAM International Conference on Data Mining, pages 1–

14, Chicago, USA, 2001.
[10] J. Uhlmann. Satisfying general proximity/similarity

queries with metric trees. Information Processing Letters,

40(4):175–179, 1991.

