
Analogy-Based Reasoning in
Classifier Construction

Arkadiusz Wojna

Institute of Informatics, Warsaw University,
Banacha 2, 02-097, Warsaw, Poland

wojna@mimuw.edu.pl

Abstract. Analogy-based reasoning methods in machine learning make
it possible to reason about properties of objects on the basis of similari-
ties between objects. A specific similarity based method is the k nearest
neighbors (k-nn) classification algorithm. In the k-nn algorithm, a deci-
sion about a new object x is inferred on the basis of a fixed number k of
the objects most similar to x in a given set of examples. The primary con-
tribution of the dissertation is the introduction of two new classification
models based on the k-nn algorithm.

The first model is a hybrid combination of the k-nn algorithm with
rule induction. The proposed combination uses minimal consistent rules
defined by local reducts of a set of examples. To make this combina-
tion possible the model of minimal consistent rules is generalized to a
metric-dependent form. An effective polynomial algorithm implement-
ing the classification model based on minimal consistent rules has been
proposed by Bazan. We modify this algorithm in such a way that after
addition of the modified algorithm to the k-nn algorithm the increase
of the computation time is inconsiderable. For some tested classification
problems the combined model was significantly more accurate than the
classical k-nn classification algorithm.

For many real-life problems it is impossible to induce relevant global
mathematical models from available sets of examples. The second model
proposed in the dissertation is a method for dealing with such sets based
on locally induced metrics. This method adapts the notion of similarity
to the properties of a given test object. It makes it possible to select the
correct decision in specific fragments of the space of objects. The method
with local metrics improved significantly the classification accuracy of
methods with global models in the hardest tested problems.

The important issues of quality and efficiency of the k-nn based meth-
ods are a similarity measure and the performance time in searching for
the most similar objects in a given set of examples, respectively. In this
dissertation both issues are studied in detail and some significant im-
provements are proposed for the similarity measures and for the search
methods found in the literature.

Keywords: analogy-based reasoning, case-based reasoning, k nearest
neighbors, similarity measure, distance based indexing, hybrid decision
system, local metric induction.

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets IV, LNCS 3700, pp. 277–374, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

278 A. Wojna

1 Introduction

Decision-making as a human activity is often performed on different levels of ab-
straction. It includes both simple everyday decisions, such as selection of prod-
ucts while shopping, choice of itinerary to a workplace, and more compound
decisions, e.g., in marking a student’s work or in investments. Decisions are al-
ways made in the context of a current situation (i.e., the current state of the
world) on the basis of the knowledge and experience acquired in the past. Com-
puters support decision making. Several research directions have been developed
to support computer-aided decision making. Among them are decision and game
theory [57, 81], operational research [10], planning [28], control theory [67, 87],
and machine learning [61]. The development of these directions has led to dif-
ferent methods of knowledge representation and reasoning about the real world
for solving decision problems.

Decision-making is based on reasoning. There are different formal reasoning
systems used by computers. Deductive reasoning [5] is based on the assumption
that knowledge is represented and extended within a deductive system. This
approach is very general and it encompasses a wide range of problems. How-
ever, real-life problems are usually very complex, and depend on many factors,
some of them quite unpredictable. Deductive reasoning does not allow for such
uncertainty. Therefore in machine learning another approach, called inductive
reasoning [33, 50, 59], is used. Decision systems that implement inductive rea-
soning are based on the assumption that knowledge about a decision problem
is given in the form of a set of examplary objects with known decisions. This
set is called a training set. In the learning phase the system constructs a data
model on the basis of the training set and then uses the constructed model to
reason about the decisions for new objects called test objects. The most popular
computational models used in inductive reasoning are: neural networks [15], de-
cision trees [65], rule based systems [60], rough sets [63], bayesian networks [45],
and analogy-based systems [68]. Inductive reasoning applied to large knowledge
bases of objects made it possible to develop decision support systems for many
areas of human activity, e.g., image, sound and handwriting recognition, med-
ical and industrial diagnostics, credit decision making, fraud detection. Besides
such general methods there are many specific methods dedicated to particular
applications.

The goal of this dissertation is to present and analyze machine learning meth-
ods derived from the analogy-based reasoning paradigm [68], in particular, from
case-based reasoning [3, 52]. Analogy-based reasoning reflects natural human rea-
soning that is based on the ability to associate concepts and facts by analogy. As
in other inductive methods, we assume in case-based reasoning that a training
set is given and reasoning about a new object is based on similar (analogous)
objects from the training set.

Selection of a similarity measure among objects is an important component
of this approach, which strongly affects the quality of reasoning. To construct
a similarity measure and to compare objects we need to assume a certain fixed
structure of objects. Most of data are collected in relational form: the objects

Analogy-Based Reasoning in Classifier Construction 279

are described by vectors of attribute values. Therefore, in the dissertation we
assume this original structure of data. Numerous different metrics are used for
such data [1, 14, 22, 51, 56, 77, 84, 88]. To construct such a metric one can use
both general mathematical properties of the domains of attribute values and
specific information encoded in the training data.

Case-based reasoning is more time-consuming than other inductive methods.
However, the advance of hardware technology and the development of indexing
methods for training examples [11, 29, 35, 43, 46, 62, 66, 78, 82] have made possi-
ble the application of case-based reasoning to real-life problems.

1.1 Results Presented in This Thesis

The research was conducted in two parallel directions. The first direction was
based on the elaboration of reasoning methods and theoretical analysis of their
quality and computational complexity. The second direction was focused on the
implementation of the elaborated methods, and on experiments on real data fol-
lowed by an analysis of experimental results. The quality of the methods devel-
oped was tested on data sets from the Internet data repository of the University
of California at Irvine [16].

One of the widely used methods of case-based reasoning is the k nearest
neighbors (k-nn) method [4, 23, 26, 31]. In the k-nn method the decision for a
new object x is inferred from a fixed number k of the nearest neighbors of x
in a training set. In the dissertation we present the following new methods and
results related to the k-nn method:

1. A new metric for numerical attributes, called the Density Based Value Dif-
ference Metric (DBVDM) (Subsection 3.2),

2. An effective method for computing the distance between objects for the
metrics WVDM [88] and DBVDM (Subsection 3.2),

3. Two attribute weighting algorithms (Subsections 3.4 and 3.5),
4. A new indexing structure and an effective searching method for the k nearest

neighbors of a given test object (Section 4),
5. A classification model that combines the k-nn method with rule based fil-

tering (Subsections 5.3 and 5.4),
6. The k-nn classification model based on locally induced metrics (Subsection

5.6).

Below we provide some detailed comments on the results of the dissertation.
Ad.(1). In case of the classical k-nn method is an important quality factor the

selection of an appropriate similarity measure among objects[1, 2, 14, 22, 25, 51],
[56, 77, 84, 85, 89, 88]. To define such a metric, in the first place, some generalmath-
ematical properties of the domains of attribute values can be used. The funda-
mental relation for comparing attribute values is the equality relation: for any
pair of attribute values one can check if they are equal or not. Other relations
on attribute values depend on the attribute type. In typical relational databases
two types of attributes occur. Nominal attributes (e.g., color, shape, sex) are the

280 A. Wojna

most general. The values of such attributes can only be compared by the equality
relation. The values of numerical attributes (e.g., size, age, temperature)
are represented by real numbers. Numerical attributes provide more information
about relations between values than nominal attributes, e.g., due to their linearly
ordered structure and the existence of a measure of distance between values. The
examples of metrics using only general relations on attribute values are the
Hamming distance for nominal attributes and the lp or the χ-square distance for
numerical attributes.

However, in decision making such general relations on attribute values are
not relevant, as they do not provide information about the relation between the
values of attributes and the decision. Hence, an additional source of information,
i.e., a training set, is used to construct a metric. By contrast to the properties of
general relations on attribute values, this information depends on the problem to
be solved and it helps to recognize which attributes and which of their properties
are important in decision making for this particular problem. An example of such
a data-dependent metric is provided by the Value Difference Metric (VDM) for
nominal attributes. The VDM distance between two nominal values is defined on
the basis of the distance between decision distributions for these two values in a
given training set [77, 22]. Wilson and Martinez [88] proposed analogous metrics
for numerical attributes: the Interpolated Value Difference Metric (IVDM) and
the Windowed Value Difference Metric (WVDM). By analogy to VDM both
metrics assign a decision distribution to each numerical value. To define such an
assignment, for both metrics the objects whose values fall into a certain interval
surrounding this value are used. The width of this interval is constant: it does
not depend on the value. In many data sets the density of numerical values
depends strongly on the values, and the constant width of the interval to be
sampled can lead to the situation where for some values the sample obtained is
not representative: it can contain either too few or too many objects.

In the dissertation we introduce the Density Based Value Difference Metric
(DBVDM). In DBVDM the width of the interval to be sampled depends on
the density of attribute values in a given training set. In this way we avoid the
problem of having either too few or too many examples in the sample.

Ad.(2). The time required to compute the decision distribution for each
numerical value by means of WVDM or DBVDM is linear with respect to the
training set size. Hence, it is impractical to perform such a computation every
time one needs the distance between two objects. In the dissertation we show
that the decision distributions for all the values of a numerical attribute can
be computed in total time O(n log n) (where n is the size of the given training
set). This allows to compute the distance between two objects in logarithmic
or even in constant time after preliminary conversion of the training set. This
acceleration is indispensable if WVDM or DBVDM is to be applied to real-
life data.

Ad.(3). Usually in real-life problems there are some factors that make at-
tributes unequally important in decision making. The correlation of some at-
tributes with the decision is stronger. Moreover, some attribute values are

Analogy-Based Reasoning in Classifier Construction 281

influenced by noise, which makes them less trustworthy than exact values of
other attributes. Therefore, to ensure good similarity measure quality it is im-
portant to use attribute weights in its construction. Much research has been done
on the development of algorithms for on-line optimization of attribute weights
(i.e., training examples are processed sequentially and weights are modified after
each example) [2, 48, 51, 69]. However, for real-life data sets the k-nn classifica-
tion requires an advanced indexing method. We discuss this in more detail in
the dissertation. In this case on-line algorithms are ineffective: indexing must
be performed each time attribute weights are modified, i.e., after each example.
Another disadvantage of on-line algorithms is that they are sensitive to the order
of training examples.

Attribute weighting algorithms, used in practice, are batch algorithms with
a small number of iterations, i.e., the algorithms that modify attribute weights
only after having processed all the training examples. Lowe [56] and Wettschereck
[84] have proposed such algorithms. Both algorithms use the conjugate gradient
to optimize attribute weights, which means minimizing a certain error function
based on the leave-one-out test on the training set. However, Lowe and Wettis-
chereck’s methods are applicable only to the specific weighted Euclidean metric.

In the dissertation we introduce two batch weighting algorithms assuming
only that metrics are defined by a weighted linear combination of metrics for
particular attributes. This assumption is less restrictive: attribute weighting can
be thus applied to different metrics. The first algorithm proposed optimizes
the distance to the objects classifying correctly in the leave-one-out test on the
training set. The second algorithm optimizes classification accuracy in the leave-
one-out test on the training set. We performed experiments consisting in the
application of the proposed weighting methods to different types of metrics and
in each case the weighting algorithms improved metric accuracy.

Ad.(4). Real-life data sets collected in electronic databases often consist
of thousands or millions of records. To apply case-based queries to such large
data tables some advanced metric-based indexing methods are required. These
methods can be viewed as the extension of query methods expressed in the SQL
language in case of relational databases where the role of similarity measure is
taken over by indices and foreign keys, whereas similarity is measured by the
distance between objects in an index and belonging the ones to the same set at
grouping, respectively.

Metric-based indexing has attracted the interest of many researchers. Most
of the methods developed minimize the number of I/O operations [9, 12, 13, 20,
43, 47], [55, 62, 66, 71, 83, 86]. However, the increase in RAM memory available
in modern computers makes it possible to load and store quite large data sets in
this fast-access memory and indexing methods based on this type of storage gain
in importance. Efficiency of indexing methods of this type is determined by the
average number of distance computations performed while searching a database
for objects most similar to a query object. The first methods that reduces the
number of distance computations have been proposed for the case of a vector
space [11, 29]. They correspond to the specific Euclidean metric.

282 A. Wojna

In the dissertation we consider different metrics defined both for numerical
and nominal attributes and therefore we focus on more general indexing methods,
such as BST [46], GHT [78], and GNAT [18]. GHT assumes that only a distance
computing function is provided. BST and GNAT assume moreover that there is a
procedure that computes center of an object set, which corresponds to computing
the mean in a vector space. However, no assumptions about the properties of the
center are used. In each of these two methods both the indexing and searching
algorithms are correct for any definition of center. Such a definition affects only
search efficiency.

In the most popular indexing scheme the indexing structure is constructed in
the form of a tree. The construction uses the top-down strategy: in the beginning
the whole training set is split into a number of smaller nodes and then each node
obtained is recursively split into smaller nodes. Training objects are assigned to
the leaves. All the three indexing methods (BST, GHT, and GNAT) follow this
general scheme. One of the important components that affects the efficiency of
such indexing trees is the node splitting procedure. BST, GHT, and GNAT use
a single-step splitting procedure, i.e., the splitting algorithm selects criteria to
distribute the objects from a parent node and then assigns the objects to child
nodes according to these criteria. At each node this operation is performed once.
In the dissertation we propose an indexing tree with an iterative k-means-like
splitting procedure. Savaresi and Boley have shown that such a procedure has
good theoretical splitting properties [70] and in the experiments we prove that
the indexing tree with this iterative splitting procedure is more efficient than
trees with a single-step procedure.

Searching in a tree-based indexing structure can be speeded up in the follow-
ing way: the algorithm finds quickly the first candidates for the nearest neigh-
bors and then it excludes branches that are recognized to contain no candidates
closer than those previously found. Each of the three methods BST, GHT, and
GNAT uses a different single mathematical criterion to exclude branches of the
indexing tree. However, all the three criteria assume similar properties of the
indexing tree. In the dissertation we propose a search algorithm that uses all the
three criteria simultaneously. We show experimentally that for large data sets
the combination of this new search algorithm with the iterative splitting based
tree makes nearest neighbors searching up to several times more efficient than
the methods BST, GHT, and GNAT. This new method allows us to apply the
k-nn method to data with several hundred thousand training objects and for the
largest tested data set it makes it possible to reduce the 1-nn search by 4000
times as compared with linear search.

Ad.(5). After defining a metric and choosing a method to speed up the
search for similar objects, the last step is the selection of a classification model.
The classical k-nn method finds a fixed number k of the nearest neighbors of
a test object in the training set, assigns certain voting weights to these nearest
neighbors and selects the decision with the greatest sum of voting weights.

The metric used to find the nearest neighbors is the same for each test object:
it is induced globally from the training set. Real-life data are usually too complex

Analogy-Based Reasoning in Classifier Construction 283

to be accurately modeled by a global mathematical model. Therefore such a
global metric can only be an approximation of similarity encoded in data and
it can be inaccurate for specific objects. To ensure that the k nearest neighbors
found for a test object are actually similar, a popular solution is to combine the
k-nn method with another classification model.

A certain improvement in classification accuracy has been observed for mod-
els combining the k-nn approach with rule induction [25, 37, 54]. All these models
use the approach typical for rule induction: they generate a certain set of rules
a priori and then they apply these generated rules in the classification process.
Computation of an appropriate set of rules is usually time-consuming: to select
accurate rules algorithms need to evaluate certain qualitative measures for rules
in relation to the training set.

In the dissertation we propose a classification model combining the k-nn with
rule induction in such a way that after addition of the rule based component
the increase of the performance time of the k-nn method is inconsiderable. The
k-nn implements the lazy learning approach where computation is postponed
till the moment of classification [6, 34]. We add rule induction to the k nearest
neighbors in such a way that the combined model preserves lazy learning, i.e.,
rules are constructed in a lazy way at the moment of classification.

The combined model proposed in the dissertation is based on the set of all
minimal consistent rules in the training set [74]. This set has good theoretical
properties: it corresponds to the set of all the rules generated from all local
reducts of the training set [94]. However, the number of all minimal consistent
rules can be exponential with respect both to the number of attributes and to the
training set size. Thus, it is practically impossible to generate them all. An effec-
tive lazy simulation of the classification based on the set of all minimal consistent
rules for data with nominal attributes has been described by Bazan [6]. Instead
of computing all minimal consistent rules a priori before classification the algo-
rithm generates so called local rules at the moment of classification. Local rules
have specific properties related to minimal consistent rules and, on the other
hand, they can be effectively computed. This implies that classification based
on the set of all minimal consistent rules can be simulated in polynomial time.

In the dissertation we introduce a metric-dependent generalization of the
notions of minimal consistent rule and local rule. We prove that the model of
rules assumed by Bazan [6] is a specific case of the proposed generalization
where the metric is assumed to be the Hamming metric. We show that the
generalized model has properties analogous to those of the original model: there is
a relationship between generalized minimal consistent rules and generalized local
rules that makes the application of Bazan’s lazy algorithm to the generalized
model possible.

The proposed metric-dependent generalization enables a combination of
Bazan’s lazy algorithm with the k-nn method. Using the properties of the gen-
eralized model we modify Bazan’s algorithm in such a way that after addition
of the modified algorithm to the k-nn the increase of the performance time is
insignificant.

284 A. Wojna

We show that the proposed rule-based extension of the k-nn is a sort of voting
by the k nearest neighbors that can be naturally combined with any other vot-
ing system. It can be viewed as the rule based verification and selection of similar
objects found by the k-nn classifier. The experiments performed show that the pro-
posed rule-based voting gives the best classification accuracy when combined with
a voting model where the nearest neighbors of a test object are assigned the inverse
square distance weights. For some data sets the rule based extension added to the
k-nn method decreases relatively the classification error by several tens of percent.

Ad.(6). The k-nn, other inductive learning methods and even hybrid combi-
nations of these inductive methods are based on the induction of a mathematical
model from training data and application of this model to reasoning about test
objects. The induced data model remains invariant while reasoning about differ-
ent test objects. For many real-life data it is impossible to induce relevant global
models. This fact has been recently observed by researches in different areas, like
data mining, statistics, multiagent systems [17, 75, 79]. The main reason is that
phenomena described by real-life data are often too complex and we do not have
sufficient knowledge in data to induce global models or a parameterized class of
such models together with searching methods for the relevant global model in
such a class.

In the dissertation we propose a method for dealing with such real-life data.
The proposed method refers to another approach called transductive learning
[79]. In this approach the classification algorithm uses the knowledge encoded in
the training set, but it also uses knowledge about test objects in construction of
classification models. This means that for different test objects different classifi-
cation models are used. Application of transductive approach to problem solving
is limited by longer performance time than in inductive learning, but the advance
of hardware technology makes this approach applicable to real problems.

In the classical k-nn method the global, invariant model is the metric used to
find the nearest neighbors of test objects. The metric definition is independent
of the location of a test object, whereas the topology and the density of training
objects in real data are usually not homogeneous. In the dissertation we propose
a method for inducing a local metric for each test object and then this local
metric is used to select the nearest neighbors. Local metric induction depends
locally on the properties of the test object, therefore the notion of similarity
can be adapted to these properties and the correct decision can be selected in
specific distinctive fragments of the space of objects.

Such a local approach to the k-nn method has been already considered in
literature [24, 32, 44]. However, all the methods described in literature are spe-
cific: they can be applied only to data from a vector space and they are based on
local adaptation of a specific global metric in this space. In the dissertation we
propose a method that requires a certain global metric but the global metric is
used only for a preliminary selection of a set of training objects used to induce a
local metric. This method is much more general: it makes the global metric and
the local metric independent and it allows us to use any metric definition as a
local metric.

Analogy-Based Reasoning in Classifier Construction 285

In the experiments we show that the local metric induction method is help-
ful in the case of hard classification problems where the classification error
of different global models remains high. For one of the tested data sets this
method obtaines the classification accuracy that has never been reported before
in literature.

Partial results from the dissertation have been published and presented at
the international conferences RSCTC, ECML and ICDM [8, 39, 38, 76, 91] and
in the journal Fundamenta Informaticae [40, 92]. The methods described have
been implemented and they are available in the form of a software library and
in the system RSES [8, 73].

1.2 Organization of the Thesis

Section 2 introduces the reader to the problem of learning from data and to the
evaluation method of learning accuracy (Subsections 2.1 and 2.2). It describes
the basic model of analogy-based learning, the k-nn (Subsections 2.3–2.5), and
it presents the experimental methodology used in the dissertation (Subsections
2.6 and 2.7).

Section 3 introduces different metrics induced from training data. It starts
with the definition of VDM for nominal attributes (Subsection 3.1). Then, it
describes three extensions of the VDM metric for numerical attributes: IVDM,
WVDM and DBVDM, and an effective algorithm for computing the distance be-
tween objects for these metrics (Subsection 3.2). Next, two attribute weighting
algorithms are presented: an algorithm that optimizes distance and an algo-
rithm that optimizes classification accuracy (Subsections 3.3–3.5). Finally, ex-
periments comparing accuracy of the described metrics and weighting methods
are presented (Subsections 3.6–3.9).

Section 4 describes the indexing tree with the iterative splitting procedure
(Subsections 4.2–4.4), and the nearest neighbors search method with three com-
bined pruning criteria (Subsections 4.5 and 4.6). Moreover, It presents an exper-
imental comparison of this search method with other methods known from the
literature (Subsections 4.7 and 4.8).

In Section 5, first we describe the algorithm that estimates automatically the
optimal number of neighbors k in the k-nn classifier (Subsection 5.1). The rest
of the section is dedicated to two new classification models that use previously
described components: the metrics, indexing and the estimation of the optimal
k. First, the metric-based extension of rule induction and the combination of
a rule based classification model with the k nearest neighbors method is de-
scribed and compared experimentally with other known methods (Subsections
5.3–5.5). Next, the model with local metric induction is presented and evaluated
experimentally (Subsections 5.6 and 5.7).

2 Basic Notions

In this section, we define formally the problem of concept learning from examples.

286 A. Wojna

2.1 Learning a Concept from Examples

We assume that the target concept is defined over a universe of objects U∞.
The concept to be learnt is represented by a decision function dec : U∞ → Vdec.
In the thesis we consider the situation, when the decision is discrete and finite
Vdec = {d1, . . . dm}. The value dec(x) ∈ Vdec for an object x ∈ U∞ represents
the category of the concept that the object x belongs to.

In the thesis we investigate the problem of decision learning from a set of
examples. We assume that the target decision function dec : U∞ → Vdec is
unknown. Instead of this there is a finite set of training examples U ⊆ U∞

provided, and the decision values dec(x) are available for the objects x ∈ U only.
The task is to provide an algorithmic method that learns a function (hypothesis)
h : U∞ → Vdec approximating the real decision function dec given only this set
of training examples U .

The objects from the universe U∞ are real objects. In the dissertation we as-
sume that they are described by a set of n attributes A = {a1, . . . , an}. Each real
object x ∈ U∞ is represented by the object that is a vector of values (x1, . . . , xn).
Each value xi is the value of the attribute ai on this real object x. Each attribute
ai ∈ A has its domain of values Vi and for each object representation (x1, . . . , xn)
the values of the attributes belong to the corresponding domains: xi ∈ Vi for all
1 ≤ i ≤ n. In other words, the space of object representations is defined as the
product X = V1 × . . . × Vn. The type of an attribute ai is either numerical, if
its values are comparable and can be represented by numbers Vi ⊆ R (e.g., age,
temperature, height), or nominal, if its values are incomparable, i.e., if there is
no linear order on Vi (e.g., color, sex, shape).

It is easy to learn a function that assigns the appropriate decision for each
object in a training set x ∈ U . However, in most of decision learning prob-
lems a training set U is only a small sample of possible objects that can oc-
cur in real application and it is important to learn a hypothesis h that recog-
nizes correctly as many objects as possible. The most desirable situation is to
learn the hypothesis that is accurately the target function: h(x) = dec(x) for
all x ∈ U∞. Therefore the quality of a learning method depends on its abil-
ity to generalize information from examples rather than on its accuracy on the
training set.

The problem is that the target function dec is usually unknown and the
information about this function dec is restricted only to a set of examples. In
such a situation a widely used method to compare different learning algorithms
is to divide a given set of objects U into a training part Utrn and a test part
Utst, next, to apply learning algorithms to the training part Utrn, and finally,
to measure accuracy of the induced hypothesis on the test set Utst using the
proportion of the correctly classified objects to all objects in the test set [61]:

accuracy(h) =
|{x ∈ Utst : h(x) = dec(x)}|

|Utst| .

Analogy-Based Reasoning in Classifier Construction 287

2.2 Learning as Concept Approximation in Rough Set Theory

The information available about each training object x ∈ Utrn is restricted
to the vector of attribute values (x1, . . . , xn) and the decision value dec(x).
This defines the indiscernibility relation IND = {(x, x′) : ∀ai ∈ A xi = x′

i}.
The indiscernibility relation IND is an equivalence relation and defines a par-
tition in the set of the training objects Utrn. The equivalence class of an object
x ∈ Utrn is defined by IND(x) = {x′ : xINDx′}. Each equivalence class con-
tains the objects that are indiscernible by the values of the attributes from the
set A. The pair (Utrn, IND) is called an approximation space over the set Utrn

[63, 64].
Each decision category dj ∈ Vdec is associated with its decision class in

Utrn: Class(dj) = {x ∈ Utrn : dec(x) = dj}. The approximation space AS =
(Utrn, IND) defines the lower and upper approximation for each decision
class:

LOWERAS(Class(dj)) = {x ∈ Utrn : IND(x) ⊆ Class(dj)}
UPPERAS(Class(dj)) = {x ∈ Utrn : IND(x) ∩ Class(dj) �= ∅}

The problem of concept learning can be described as searching for an exten-
sion (U∞, IND∞) of the approximation space (Utrn, IND), relevant for approx-
imation of the target concept dec. In such an extension each new object x ∈ U∞

provides an information (x1, . . . , xn) ∈ X with semantics IND∞(x) ⊆ U∞. By
‖(x1, . . . , xn)‖Utrn and ‖(x1, . . . , xn)‖U∞ we denote the semantics of the pat-
tern (x1, . . . , xn) in Utrn and U∞, respectively. Moreover, ‖(x1, . . . , xn)‖Utrn =
IND(x) and ‖(x1, . . . , xn)‖U∞ = IND∞(x).

In order to define the lower and upper approximation of Class(dj) ⊆ U∞

using IND∞ one should estimate the relationships between IND∞(x) and
Class(dl) for l = 1, . . . , m.

In the dissertation two methods are used.
In the first method we estimate the relationships between IND∞(x) and

Class(dl) by:

1. selecting from Utrn the set NN(x, k) of k nearest neighbors of x by using a
distance function (metric) defined on patterns;

2. using the relationships between ‖(y1, . . . , yn)‖Utrn and Class(dl) ∩ Utrn for
y ∈ NN(x, k) and l = 1, . . . , m to estimate the relationship between IND∞

(x) and Class(dj).

One can also use another method for estimating the relationship between
IND∞(x) and Class(dj). Observe that the patterns from {(y1, . . . , yn) : y ∈
Utrn} are not enough general for matching arbitrary objects from U∞. Hence,
first, using a distance function we generalize the patterns (y1, . . . , yn) for y ∈ Utrn

to patterns pattern(y) that are combinations of so called generalized descriptors
ai ∈ W , where W ⊆ Vi, with the semantics ‖ai ∈ W‖Utrn = {y ∈ Utrn : yi ∈
W}. The generalization preserves the following constraint: if ‖(y1, . . . , yn)‖Utrn ⊆
Class(dl) then ‖pattern(y)‖Utrn ⊆ Class(dl). For a given x ∈ U∞ we select

288 A. Wojna

all pattern(y) that are matching x and we use the relationships between their
semantics and Class(dl) for l = 1, . . . , m to estimate the relationship between
IND∞(x) and Class(dj).

Since in the considered problem of concept learning the only information
about new objects to be classified is the vector of attribute values (x1, . . . , xn) ∈
X the objects with the same value vector are indiscernible. Therefore searching
for a hypothesis h : U∞ → Vdec approximating the real function dec : U∞ → Vdec

is restricted to searching for a hypothesis of the form h : X → Vdec. To this end
the space of object representations X is called for short the space of objects
and we consider the problem of learning a hypothesis using this restricted form
h : X → Vdec.

2.3 Metric in the Space of Objects

We assume that in the space of objects X a distance function ρ : X
2 → R is de-

fined. The distance function ρ is assumed to satisfy the axioms of a pseudometric,
i.e., for any objects x, y, z ∈ X:

1. ρ(x, y) ≥ 0 (positivity),
2. ρ(x, x) = 0 (reflexivity),
3. ρ(x, y) = ρ(y, x) (symmetry),
4. ρ(x, y) + ρ(y, z) ≥ ρ(x, z) (triangular inequality).

The distance function ρ models the relation of similarity between objects. The
properties of symmetry and triangular inequality are not necessary to model
similarity but they are fundamental for the efficiency of the learning methods
described in this thesis and for many other methods from the literature [9, 11, 12,
18, 19, 20, 29, 35, 36]. Sometimes the definition of a distance function satisfies the
strict positivity: x �= y ⇒ ρ(x, y) > 0. However, the strict positivity is not used
by the distance based learning algorithms and a number of important distance
measures like VDM [77] and the metrics proposed in this thesis do not satisfy
this property.

In the lp-norm based metric the distance between two objects x=(x1, . . . , xn),
y = (y1, . . . , yn) is defined by

ρ(x, y) =

(
n∑

i=1

ρi(xi, yi)p

) 1
p

where the metrics ρi are the distance functions defined for particular attributes
ai ∈ A.

Aggarwal et al. [1] have examined the meaningfulness of the concept of sim-
ilarity in high-dimensional real value spaces investigating the effectiveness of
the lp-norm based metric in dependence on the value of the parameter p. They
proved the following result:

Analogy-Based Reasoning in Classifier Construction 289

Theorem 1. For the uniform distribution of 2 points x, y in the cube (0, 1)n

with the norm lp (p ≥ 1):

lim
n→∞ E

[(
max(‖x‖p , ‖y‖p) − min(‖x‖p , ‖y‖p)

min(‖x‖p , ‖y‖p)

)
√

n

]
= C

√
1

2p + 1

where C is a positive constant and ‖·‖p denotes the standard norm in the
space lp.

It shows that the smaller p, the larger relative contrast is between the point
closer to and the point farther from the beginning of the coordinate system. It
indicates that the smaller p the more effective metric is induced from the lp-
norm. In the context of this result p = 1 is the optimal trade-off between the
quality of the measure and its properties: p = 1 is the minimal index of the lp-
norm that preserves the triangular inequality. The fractional distance measures
with p < 1 do not have this property.

On the basis of this result we assume the value p = 1 and in the thesis we
explore the metrics that are defined as linear sum of metrics ρi for particular
attributes ai ∈ A:

ρ(x, y) =
n∑

i=1

ρi(xi, yi). (1)

In the problem of learning from a set of examples Utrn the particular distance
functions ρi are induced from a training set Utrn. It means that the metric
definition depends on the provided examples and it is different for different data
sets.

2.4 City-Block and Hamming Metric

In this subsection we introduce the definition of a basic metric that is widely
used in the literature. This metric combines the city-block (Manhattan) distance
for the values of numerical attributes and the Hamming distance for the values
of nominal attributes.

The distance ρi(xi, yi) between two values xi, yi of a numerical attribute ai

in the city-block distance is defined by

ρi(xi, yi) = |xi − yi| . (2)

The scale of values for different domains of numerical attributes can be differ-
ent. To make the distance measures for different numerical attributes equally
significant it is better to use the normalized value difference. Two types of nor-
malization are used. In the first one the difference is normalized with the range
of the values of the attribute ai

ρi(xi, yi) =
|xi − yi|

maxi − mini
, (3)

290 A. Wojna

where maxi = maxx∈Utrn xi and mini = minx∈Utrn xi are the maximal and the
minimal value of the attribute ai in the training set Utrn. In the second type of
normalization the value difference is normalized with the standard deviation of
the values of the attribute ai in the training set Utrn:

ρi(xi, yi) =
|xi − yi|

2σi

where σi =

√
�

x∈Utrn
(xi−µi)2

|Utrn| and µi =
�

x∈Utrn
xi

|Utrn| .

The distance ρi(xi, yi) between two nominal values xi, yi in the Hamming
distance is defined by the Kronecker delta:

ρi(xi, yi) =
{

1 if xi �= yi

0 if xi = yi.

The combined city-block and Hamming metric sums the normalized value dif-
ferences for numerical attributes and the values of Kronecker delta for nominal
attributes. The normalization of numerical attributes with the range of values
maxi − mini makes numerical and nominal attributes equally significant: the
range of distances between values is [0; 1] for each attribute. The only possible
distance values for nominal attributes are the limiting values 0 and 1, whereas
the normalized distance definition for numerical attributes can give any value
between 0 and 1. It results from the type of an attribute: the domain of a nom-
inal attribute is only a set of values and the only relation in this domain is the
equality relation. The domain of a numerical attribute are the real numbers and
this domain is much more informative: it has the structure of linear order and
the natural metric, i.e., the absolute difference.

Below we define an important property of metrics related to numerical
attributes:

Definition 2. The metric ρ is consistent with the natural linear order of nu-
merical values if and only if for each numerical attribute ai and for each three
real values v1 ≤ v2 ≤ v3 the following conditions hold: ρi(v1, v2) ≤ ρi(v1, v3) and
ρi(v2, v3) ≤ ρi(v1, v3).

The values of a numerical attribute reflect usually a measure of a certain
natural property of analyzed objects, e.g., size, age or measured quantities like
temperature. Therefore, the natural linear order of numerical values helps often
obtain useful information for measuring similarity between objects and the notion
of metric consistency describes the metrics that preserve this linear order.

Fact 3. The city-block metric is consistent with the natural linear order.

Proof. The city-block metric depends linearly on the absolute difference as de-
fined in Equation 2 or 3. Since the absolute difference is consistent with the
natural linear order, the city-block metric is consistent too.
�

Analogy-Based Reasoning in Classifier Construction 291

Fig. 1. The Voronoi diagram determined by examples on the Euclidean plane

2.5 K Nearest Neighbors as Analogy-Based Reasoning

One of the most popular algorithms in machine learning is the k nearest neigh-
bors (k-nn). The predecessor of this method, the nearest neighbor algorithm
(1-nn) [23], induces a metric ρ from the training set Utrn, e.g., the city-block
and Hamming metric described in Subsection 2.4, and stores the whole training
set Utrn in memory. Each test object x is classified by the 1-nn with the decision
of the nearest training object ynearest from the training set Utrn according to
the metric ρ:

ynearest := arg min
y∈Utrn

ρ(x, y),

dec1−nn(x) := dec(ynearest).

On the Euclidean plane (i.e., with the Euclidean metric) the regions of the
points nearest to particular training examples constitute the Voronoi diagram
(see Figure 1).

The k nearest neighbors is an extension of the nearest neighbor [26, 31].
Instead of the one nearest neighbor it uses the k nearest neighbors NN(x, k) to
select the decision for an object x to be classified. The object x is assigned with
the most frequent decision among the k nearest neighbors:

deck−nn(x) := arg max
dj∈Vdec

|{y ∈ NN(x, k) : dec(y) = dj}| . (4)

Ties are broken arbitrary in favor of the decision dj with the smallest index j or
in favor of a randomly selected decision among the ties.

The k nearest neighbors method is a simple example of analogy-based rea-
soning. In this approach a reasoning system assumes that there is a database
providing the complete information about examplary objects. When the system
is asked about another object with an incomplete information it retrieves similar
(analogous) objects from the database and the missing information is completed
on the basis of the information about the retrieved objects.

292 A. Wojna

In the k-nn the induced metric ρ plays the role of a similarity measure. The
smaller the distance is between two objects, the more similar they are. It is
important for the similarity measure to be defined in such a way that it uses
only the information that is available both for the examplary objects in the
database and for the object in the query. In the problem of decision learning it
means that the metric uses only the values of the non-decision attributes.

2.6 Data Sets

The performance of the algorithms described in this dissertation is evaluated for
a number of benchmark data sets. The data sets are obtained from the repos-
itory of University of California at Irvine [16]. This repository as the source of
benchmark data sets is the most popular in the machine learning community
and all the data sets selected to evaluate learning algorithms in this dissertation
have been also used by other researchers. This ensures that the presented per-
formance of algorithms can be compared to the performance of other methods
from the literature.

To compare the accuracy of the learning models described in this dissertation
(Section 3 and Section 5) 10 benchmark data sets were selected (see Table 1). All
the selected sets are the data sets from UCI repository that have data objects
represented as vectors of attributes values and have the size between a few
thousand and several tens thousand of objects. This range of the data size was
chosen because such data sets are small enough to perform multiple experiments
for all the algorithms described in this dissertation and to measure their accuracy
in a statistically significant way (see Subsection 2.7). The evaluation of these
algorithms is based on the largest possible data sets since such data sets are
usually provided in real-life problems.

To compare the efficiency of the indexing structures used to speedu up search-
ing for the nearest neighbors (Section 4) all the 10 data sets from Table 1 were
used again with 2 additional very large data sets (see Table 2). The size of the 2
additional data sets is several hundred thousand. The indexing and the searching

Table 1. The data sets used to evaluate accuracy of learning algorithms

Data set Number Types Training Test
of attributes of attributes set size set size

segment 19 numeric 1 540 770
splice (DNA) 60 nominal 2 000 1 186
chess 36 nominal 2 131 1 065
satimage 36 numeric 4 435 2 000
mushroom 21 numeric 5 416 2 708
pendigits 16 numeric 7 494 3 498
nursery 8 nominal 8 640 4 320
letter 16 numeric 15 000 5 000
census94 13 numeric+nominal 30 160 15 062
shuttle 9 numeric 43 500 14 500

Analogy-Based Reasoning in Classifier Construction 293

Table 2. The data sets used to evaluate efficiency of indexing structures

Data set Number Types Training Test
of attributes of attributes set size set size

census94-95 40 numeric+nominal 199 523 99 762
covertype 12 numeric+nominal 387 308 193 704

process are less time consuming than some of the learning models. Therefore,
larger data sets are possible to be tested. The 2 largest data sets illustrate the
capabilities of the indexing methods described in the dissertation.

Each data set is split into a training and a test set. Some of the sets (splice,
satimage, pendigits, letter, census94, shuttle, census94-95) are available in the
repository with the original partition and this partition was used in the experi-
ments. The remaining data sets (segment, chess, mushroom, nursery, covertype)
was randomly split into a training and a test part with the split ratio 2 to 1.
To make the results from different experiments comparable the random parti-
tion was done once for each data set and the same partition was used in all the
performed experiments.

2.7 Experimental Evaluation of Learning Algorithms

Both in the learning models constructed from examples (Sections 3 and 5) and
in the indexing structures (Section 4) described in the dissertation there are
elements of non-determinism: some of the steps in these algorithms depend on
selection of a random sample from a training set. Therefore the single test is
not convincing about the superiority of one algorithm over another: difference
between two results may be a randomness effect. Instead of the single test in each
experiment a number of tests was performed for each data set and the average
results are used to compare algorithms. Moreover, the Student’s t-test [41, 30]
is applied to measure statistical significance of difference between the average
results of different algorithms.

The Student’s t-test assumes that the goal is to compare two quantities
being continuous random variables with normal distribution. A group of sample
values is provided for each quantity to be compared. In the dissertation these
quantities are either the accuracy of learning algorithms measured on the test
set (see Subsection 2.1) or the efficiency of the indexing and searching algorithm
measured by the number of basic operations performed.

There are the paired and the unpaired Student’s t-test. The paired t-test is
used where there is a meaningful one-to-one correspondence between the values
in the first and in the second group of sample values to be compared. In our
experiments the results obtained in particular tests are independent. In such a
situation the unpaired version of the Student’s t-test is appropriate.

Another type of distinction between different tests depends on the informa-
tion one needs to obtain from a test. The one-tailed t-test is used if one needs to
know whether one quantity is greater or less than another one. The two-tailed
t-test is used if the direction of the difference is not important, i.e., the infor-

294 A. Wojna

Table 3. The Student’s t-test probabilities

df \ α 90% 95% 97.5% 99% 99.5%

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169

mation whether two quantities differ or not is required only. In our experiments
the information about the direction of difference (i.e., whether one algorithm is
better or worse than another one) is crucial so we use the one-tailed unpaired
Student’s t-test.

Let X1 and X2 be continuous random variables and let p be a number of
values sampled for each variable Xi. In the Student’s t-test only the means
E(X1), E(X2) and the standard deviations σ(X1), σ(X2) are used to measure
statistical significance of difference between the variables. First, the value of t is
to be calculated:

t =
E(X1) − E(X2)√

σ(X1)2+σ(X2)2
p

.

Next, the degree of freedom df is to be calculated:

df = 2(p − 1).

Now the level of statistical significance can be checked in the table of the t-test
probabilities (see Table 3). The row with the calculated degree of freedom df is
to be used. If the calculated value of t is greater than the critical value of t given
in the table then X1 is greater than X2 with the level of significance α given in
the header of the column. The level of significance α means that X1 is greater
than X2 with the probability α.

3 Metrics Induced from Examples

This section explores metrics induced from examples.

3.1 Joint City-Block and Value Difference Metric

Subsection 2.4 provides the metric definition that combines the city-block metric
for numerical attributes and the Hamming metric for nominal attributes. In this
subsection we focus on nominal attributes.

Analogy-Based Reasoning in Classifier Construction 295

x
i

y
i

(0,1,0)

(0,0,1)

(1,0,0)

P(dec=1|a =v)i
P(dec=2|a =v)i

P(dec=3|a =v)i

Fig. 2. An example: the Value Difference Metric for the three decision values Vdec =
{1, 2, 3}. The distance between two nominal values xi, yi corresponds to the length of
the dashed line.

The definition of the Hamming metric uses only the relation of equality in
the domain of values of a nominal attribute. This is the only relation that can be
assumed in general about nominal attributes. This relation carries often insuf-
ficient information, in particular it is much less informative than the structure
of the domains for numerical attributes where the values have the structure of
linear order with a distance measure between the values.

Although in general one can assume nothing more than equality relation
on nominal values, in the problem of learning from examples the goal is to
induce a classification model from examples assuming that a problem and data
are fixed. It means that in the process of classification model induction the
information encoded in the database of examples should be used. In the k nearest
neighbors method this database can be used to extract meaningful information
about relation between values of each nominal attribute and to construct a
metric.

This fact has been used first by Stanfill and Waltz who defined a measure
to compare the values of a nominal attribute [77]. The definition of this mea-
sure, called the Value Difference Metric (VDM), is valid only for the problem of
learning from examples. It defines how much the values of a nominal attribute
ai ∈ A differ in relation to the decision dec. More precisely, the VDM metric
estimates the conditional decision probability P (dec = dj |ai = v) given a nom-

296 A. Wojna

inal value v and uses the estimated decision probabilities to compare nominal
values. The VDM distance between two nominal values xi, yi is defined by the
difference between the estimated decision probabilities P (dec = dj |ai = xi),
P (dec = dj |ai = xi) corresponding to the values xi, yi (see Figure 2):

ρi(xi, yi) =
∑

dj∈Vdec

|P (dec = dj |ai = xi) − P (dec = dj |ai = yi)| . (5)

The estimation of the decision probability P (dec = dj |ai = v) is done from
the training set Utrn. For each value v, it is defined by the decision distribution
in the set of all the training objects that have the value of the nominal attribute
ai equal to v:

PV DM (dec = dj |ai = v) =
|{x ∈ Utrn : dec(x) = dj ∧ xi = v}|

|{x ∈ Utrn : xi = v}| .

From Equation 5 and the definition of PV DM (dec = dj |ai = v) one can
see that the more similar the correlations between each of two nominal values
xi, yi ∈ Vi and the decisions d1, . . . , dm ∈ Vdec in the training set of examples
Utrn are the smaller the distance in Equation 5 is between xi and yi. Different
variants of these metric were used in many applications [14, 22, 77].

To define a complete metric the Value Difference Metric needs to be combined
with another distance function for numerical attributes. For each pair of possible
data objects x, y ∈ X the following condition ρi(xi, yi) ≤ 2 is satisfied for any
nominal attribute ai ∈ A. It means that the range of possible distances for the
values of nominal attributes in the Value Difference Metric is [0; 2]. It corresponds
well to the city-block distance for a numerical attribute ai normalized by the
range of the values of this attribute in the training set Utrn (see Subsection 2.4):

ρi(xi, yi) =
|xi − yi|

maxi − mini
.

The range of this normalized city-block metric is [0; 1] for the objects in the
training set Utrn. In the test set Utst this range can be exceeded but it happens
very rarely in practice. The most important property is that the ranges of such
a normalized numerical metric and the VDM metric are of the same order.

The above described combination of the distance functions for nominal and
numerical attributes was proposed by Domingos [25]. The experimental results
described in Subsection 3.7 and 3.9 prove that this combination is more effective
than the same normalized city-block metric combined with the Hamming metric.

3.2 Extensions of Value Difference Metric for Numerical Attributes

The normalized city-block metric used in the previous subsection to define the
joint metric uses information from the training set: it normalizes the difference
between two numerical values v1, v2 by the range of the values of a numerical
attribute maxi − mini in the training set. However, it defines the distance be-
tween values of the numerical attribute on the basis of the information about

Analogy-Based Reasoning in Classifier Construction 297

this attribute only, whereas the distance definition for nominal attributes makes
use of the correlation between the nominal values of an attribute and the deci-
sion values. Since this approach improves the effectiveness of metrics for nominal
attributes (see Subsection 3.7) analogous solutions has been investigated for nu-
merical attributes.

Wilson and Martinez proposed two analogous distance definitions. In the
Interpolated Value Difference Metric (IVDM) [88, 89] it is assumed that the
range of values [mini; maxi] of a numerical attribute ai in a training set is
discretized into s equal-width intervals. To determine the value of s they use the
heuristic value

s = max (|Vdec| , 5) .

The width of such a discretized interval is:

wi =
maxi − mini

s
.

In each interval Ip = [mini +(p− 1) ·wi; mini + p ·wi], where 0 ≤ p ≤ s+1, the
midpoint midp and the decision distribution P (dec = dj |ai ∈ Ip) are defined by

midp = mini + (p − 1
2
) · wi,

P (dec = dj |ai ∈ Ip) =

{
0 if p = 0 or p = s + 1

|{x∈Utrn: dec(x)=dj∧xi∈Ip}|
|{x∈Utrn: xi∈Ip}| if 1 ≤ p ≤ s.

.
To determine the decision distribution in the IVDM metric for a given nu-

merical value v the two neighboring intervals are defined by

I(v) = max{p ≤ s + 1 : midp ≤ v ∨ p = 0},

I3 I4 I5 I6I0 v

j
P(dec=d |a =v)

i

I I1 2

Fig. 3. An example of the interpolated decision distribution for a single decision dj

with the number of intervals s = 5

298 A. Wojna

(1,0,0) (0,1,0)

(0,0,1)

x

P(dec=2|a =v)iP(dec=1|a =v)i

P(dec=3|a =v)i

i

yi

Fig. 4. The Interpolated Value Difference Metric: to measure the distance between two
numerical values xi, yi the decision distribution for each value is interpolated between
the decision distributions in the midpoints of the two neighboring intervals.

I(v) = min{p ≥ 0 : midp ≥ v ∨ p = s + 1}.

If v is out of the range [mid0; mids+1] the interval indices are set either to zero:
I(v) = I(v) = 0 or to s + 1: I(v) = I(v) = s + 1, and the null distribution is
assigned to v. If v lies in the range [mid0; mids+1] there are two cases. If I(v)
and I(v) are equal the value v is exactly the midpoint of the interval II(v) = II(v)
and the decision distribution from this interval P (dec = dj |ai ∈ II(v)) is used
to compare v with other numerical values. Otherwise, the decision distribution
for the value v is interpolated between the two neighboring intervals II(v) and
II(v). The weights of the interpolation are proportional to the distances to the
midpoints of the neighboring intervals (see Figure 3):

PIV DM(dec = dj |ai = v) =

P (dec = dj |ai ∈ II(v)) ·
midI(v) − v

wi
+ P (dec = dj |ai ∈ II(v)) ·

v − midI(v)

wi
.

The decision distributions for the values of a numerical attribute correspond
to the broken line in the space of decision distributions in Figure 4. The di-
mension of this space is equal to the number of decisions m = |Vdec|. To define

Analogy-Based Reasoning in Classifier Construction 299

the IVDM metric these decision distributions for numerical values are used by
analogy to the decision distributions for nominal values of nominal attributes
the VDM metric. The IVDM distance between two numerical values is defined
by Equation 5 as equal to the city-block distance between the two corresponding
distributions in the space of decision distributions.

The IVDM metric can be explained by means of sampling the value of
P (dec = dj |ai ∈ Ip) at the midpoint midp of each discretized interval [midp −
wi

2 ; midp + wi

2]. Then the IVDM metric interpolates between these sampled
points to provide a continuous approximation of the decision probability P (dec =
dj |ai = v) for the whole range of values of the attribute ai.

The IVDM metric is computationally effective. The limits of the range of
values mini, maxi, the interval width wi and the decision distributions in the
discretized intervals I0, . . . , Is+1 for all attributes can be computed in linear
time O(|Utrn| |A|). The cost of the single distance computation is also linear
O(|A| |Vdec|): the two neighboring intervals of a value v can be determined in a
constant time by the evaluation of the expressions:

I(v) =

⎧⎪⎨
⎪⎩

0 if v < mini − wi

2
s + 1 if v > maxi + wi

2⌊
v−mini+

wi
2

wi

⌋
if v ∈ [mini − wi

2 ; maxi + wi

2],

I(v) =

⎧⎪⎨
⎪⎩

0 if v < mini − wi

2
s + 1 if v > maxi + wi

2⌈
v−mini+

wi
2

wi

⌉
if v ∈ [mini − wi

2 ; maxi + wi

2].

and the interpolation of two decision distributions can be computed in O(|Vdec|).
Another extension of the VDM metric proposed by Wilson and Martinez

is the Windowed Value Difference Metric (WVDM) [88]. It replaces the linear
interpolation from the IVDM metric by sampling for each numerical value. The
interval width wi is used only to define the size of the window around the value
to be sampled. For a given value v the conditional decision probability P (dec =
dj |ai = v) is estimated by sampling in the interval [v − wi

2 ; v + wi

2] that v is the
midpoint in:

PWV DM (dec = dj |ai = v) ={
0 if v ≤ mini − wi

2 or v ≥ maxi + wi

2|{x∈Utrn: dec(x)=dj∧|xi−v|≤ wi
2 }|

|{x∈Utrn: |xi−v|≤ wi
2 }| if v ∈ [mini − wi

2 ; maxi + wi

2].

The WVDM metric locates each value v to be estimated in the midpoint of
the interval to be sampled and in this way it provides a closer approximation of
the conditional decision probability P (dec = dj |ai = v) than the IVDM metric.
However, the size of the window is constant. In many problems the density of
numerical values is not constant and the relation of being similar between two
numerical values depends on the range where these two numerical values occur.
It means that the same difference between two numerical values has different

300 A. Wojna

meaning in different ranges of the attribute values. For example, the meaning
of the temperature difference of the one Celsius degree for the concept of water
freezing is different for the temperatures over 20 degrees and for the temperatures
close to zero.

Moreover, in some ranges of the values of a numerical attribute the sample
from the training set can be sparse and the set of the training objects falling
into a window of the width wi may be insufficiently representative to estimate
correctly the decision probability. In the extreme case the sample window can
even contain no training objects.

To avoid this problem we propose the Density Based Value Difference Metric
(DBVDM) that is a modification of the WVDM metric. In the DBVDM metric
the size of the window to be sampled depends on the density of the attribute
values in the training set. The constant parameter of the window is the number
of the values from the training set falling into the window rather than its width.
To estimate the conditional decision probability P (dec = dj |ai = v) for a given
value v of a numerical attribute ai the DBVDM metric uses the vicinity set of
the value v that contains a fixed number n of objects with the nearest values of
the attribute ai. Let wi(v) be such a value that

∣∣∣∣
{

x ∈ Utrn : |v − xi| <
wi(v)

2

}∣∣∣∣ ≤ n and
∣∣∣∣
{

x ∈ Utrn : |v − xi| ≤ wi(v)
2

}∣∣∣∣ ≥ n.

vic(x) vic(y) a

(1,0,0) (0,1,0)

(0,0,1)

P(dec=3|a =v)

P(dec=2|a =v)P(dec=1|a =v)

xi

y
i

i i

i i

i

Fig. 5. The Density Based Value Difference Metric: The decision distributions for xi, yi

are sampled from the windows vic(xi), vic(yi) around xi and yi, repsectively, with a
constant number of values in a training set

Analogy-Based Reasoning in Classifier Construction 301

iwi

midpoint

a

Fig. 6. A window with the midpoint ascending in the domain of values of a numerical
attribute ai

The value wi(v) is equal to the size of the window around v dependent on the
value v. The decision probability in the DBVDM metric for the value v is defined
as in the WVDM metric. However, it uses this flexible window size wi(v) (see
Figure 5):

PDBV DM (dec = dj |ai = v) =

∣∣∣{x ∈ Utrn : dec(x) = dj ∧ |xi − v| ≤ wi(v)
2

}∣∣∣∣∣∣{x ∈ Utrn : |xi − v| ≤ wi(v)
2

}∣∣∣ .

The DBVDM metric uses the sample size n as the invariable parameter of the
procedure estimating the decision probability at each point v. If the value n is
selected reasonably the estimation of the decision probability avoids the problem
of having either too few or too many examples in the sample. We performed a
number of preliminary experiments and we observed that the value n = 200 was
large enough to provide representative samples for all data sets and increasing
the parameter n above 200 did not improve the classification accuracy.

The WVDM and the DBVDM metric are much more computationally com-
plex than the IVDM metric. The basic approach where the estimation of the
decision probability for two numerical values v1, v2 to be compared is performed
during distance computation is expensive: it requires to scan the whole windows
around v1 and v2 at each distance computation. We propose another solution
where the decision probabilities for all values of a numerical attribute are esti-
mated from a training set a priori before any distance is computed.

Theorem 4. For both metrics WVDM and DBVDM the range of values of a
numerical attribute can be effectively divided into 2 · |Utrn| + 1 or less intervals
in such a way that the estimated decision probability in each interval is constant.

Proof. Consider a window in the domain of real values moving in such a way that
the midpoint of this window is ascending (see Figure 6). In case of the WVDM
metric the window has the fixed size wi. All the windows with the midpoint
v ∈ (−∞; mini − wi

2

)
contain no training objects. While the midpoint of the

window is ascending in the interval
[
mini − wi

2 ; maxi + wi

2

]
the contents of the

window changes every time when the lower or the upper limit of the window
meets a value from the training set Utrn. The number of different values in
Utrn is at most |Utrn|. Hence, each of the two window limits can meet a new
value at most |Utrn| times. Hence, the contents of the window can change at
most 2 · |Utrn| times. Since the decision probability estimation is constant if the
contents of the window does not change there are at most 2 · |Utrn| + 1 intervals
each with constant decision probability.

302 A. Wojna

In the DBVDM metric at the beginning the window contains a fixed number
of training objects with the lowest values of the numerical attribute to be con-
sidered. Formally, while the midpoint of the window is ascending in the range(
−∞; mini + wi(mini)

2

)
the upper limit of the window is constantly equal to

mini +wi(min) and the lower limit is ascending. Consider the midpoint ascend-
ing in the interval[
mini + wi(mini)

2 ; maxi − wi(maxi)
2

]
. In DBVDM the size of the window is chang-

ing but one of the two limits of the window is constant. If the lower limit has
recently met an object from the training set then it is constant and the upper
limit is ascending. If the upper limit meets an object it becomes constant and
the lower limit starts to ascend. This repeats until the upper limit of the window
crosses the maximum value maxi. Hence, as in WVDM, the contents of the win-
dow can change at most 2 · |Utrn| times and the domain of numerical values can
be divided into 2 · |Utrn|+1 intervals each with constant decision probability.
�

Given the list of the objects from the training set sorted in the ascending
order of the values of a numerical attribute ai the proof provides a linear pro-
cedure for finding the intervals with constant decision probability. The sorting
cost dominates therefore the decision probabilities for all the values of all the
attributes can be estimated in O(|A| |Utrn| log |Utrn|) time. To compute the dis-
tance between two objects one needs to find the appropriate interval for each
numerical value in these objects. A single interval can be found with the binary
search in O(log |Utrn|) time. Hence, the cost of a single distance computation is
O(|A| |Vdec| log |Utrn|). If the same objects are used to compute many distances
the intervals corresponding to the attribute values can be found once and the
pointers to these intervals can be saved.

All the metrics presented in this subsection: IVDM, WVDM and DBVDM
use the information about the correlation between the numerical values and the
decision from the training set. However, contrary to the city-block metric none of
those three metrics is consistent with the natural linear order of numerical values
(see Definition 2). Summing up, the metrics IVDM, WVDM and DBVDM are
based more than the city-block metric on the information included in training
data and less on the general properties of numerical attributes.

3.3 Weighting Attributes in Metrics

In the previous subsections we used the distance defined by Equation 1 without
attribute weighting. This definition treats all attributes as equally important.
However, there are numerous factors that make attributes unequally significant
for classification in most real-life data sets. For example:

– some attributes can be strongly correlated with the decision while other
attributes can be independent of the decision,

– more than one attribute can correspond to the same information, hence,
taking one attribute into consideration can make other attributes redundant,

Analogy-Based Reasoning in Classifier Construction 303

– some attributes can contain noise in values, which makes them less trust-
worthy than attributes with the exact information.

Therefore, in many applications attribute weighting has a significant impact
on the classification accuracy of the k-nn method [2, 51, 56, 85]. To improve the
quality of the metrics described in Subsection 3.2 we also use attribute weighting
and we replace the non-weighted distance definition from Equation 1 with the
weighted version:

ρ(x, y) =
n∑

i=1

wi · ρi(xi, yi). (6)

In the dissertation we combine attribute weighting with linear metrics. As we
substantiated in Subsection 2.3 the linear metric is the optimal trade-off between
the quality of the measure and its properties.

Weighting methods can be categorized along several dimensions [85]. The
main criterion for distinction depends on whether a weighting algorithm com-
putes the weights once following a pre-existing model or uses feedback from
performance of a metric to improve weights iteratively. The latter approach has
an advantage over the former one: the search for weight settings is guided by
estimation how well those settings perform. Thus, attribute weights are adjusted
to data more than in case of a fixed, pre-existing model. In this dissertation we
propose the weighting methods that incorporate performance feedback.

The next distinction among algorithms searching in a weight space depends
on the form of a single step in an algorithm. The algorithms fall into two
categories:

– on-line algorithms: training examples are processed sequentially and the
weights are modified after each example; usually the weights are modified in
such a way that the distance to nearby examples from the same class is de-
creased and the distance to nearby examples from other classes is increased,

– batch algorithms: the weights are modified after processing either the whole
training set or a selected sample from the training set.

Online algorithms change weights much more often than batch algorithms so
they require much less examples to process. However, for large data sets both
online and batch algorithms are too expensive and an advanced indexing method
must be applied (see Section 4). In such a case online algorithms are impractical:
indexing must be performed every time when weights are modified, in online
algorithms it is after each example. Therefore we focus our research on batch
methods. Batch algorithms have the additional advantage: online algorithms are
sensitive to an order of training examples, whereas batch algorithms are not.

Lowe [56] and Wettschereck [84] have proposed such batch algorithms using
performance feedback. Both algorithms use the conjugate gradient to optimize
attribute weights in order to minimize a certain error function based on the leave-
one-out test on a training set. However, Lowe and Wettischereck’s methods are
applicable only to the specific weighted Euclidean metric. To make it possible
to apply attribute weighting to different metrics we propose and test two batch

304 A. Wojna

Algorithm 1. Attribute weighting algorithm optimizing distance

nearest(x) - the nearest neighbor of x in the sample Strn

for each attribute wi := 1.0
modifier := 0.9
convergence := 0.9
repeat l times

Strn := a random training sample from Utrn

Stst := a random test sample from Utrn

MR :=
�

x∈Stst:dec(x)�=dec(nearest(x)) ρ(x,nearest(x))
�

x∈Stst
ρ(x,nearest(x))

for each attribute ai

MR(ai) :=
�

x∈Stst:dec(x)�=dec(nearest(x)) ρi(xi,nearest(x)i)
�

x∈Stst
ρi(xi,nearest(x)i)

for each attribute ai

if MR(ai) > MR then wi := wi + modifier
modifier := modifier · convergence

methods based on less restrictive assumptions. They assume only that metrics
are defined by the linear combination of metrics for particular attributes as
in Equation 6. The first proposed method optimizes distance to the objects
classifying correctly in a training set and the second one optimizes classification
accuracy in a training set.

A general scheme of those algorithms is the following: they start with the
initial weights wi := 1, and iteratively improve the weights. At each iteration
the algorithms use the distance definition from Equation 6 with the weights wi

from the previous iteration.

3.4 Attribute Weighting Method Optimizing Distance

Algorithm 1 presents the weighting method optimizing distance. At each itera-
tion the algorithm selects a random training and a random test samples Strn and
Stst, classifies each test object x from Stst with its nearest neighbor in Strn and
computes the global misclassification ratio MR and the misclassification ratio
MR(ai) for each attribute ai. The misclassification ratio is the ratio between
the sums of the distances to the nearest neighbors ρ(x, nearest(x)) for the in-
correctly classified objects and for all training objects, respectively. Attributes
with greater misclassification ratio MR(ai) than others have a larger share in
the distance between incorrectly classified objects and their nearest neighbors.
All attributes ai that have the misclassification ratio MR(ai) higher than the
global misclassification ratio MR have the weights wi increased.

If the misclassification ratio MR(ai) of an attribute ai is large then the
distance between incorrectly classified objects and their nearest neighbors is
influenced by the attribute ai more than the distance between correctly clas-
sified objects and their nearest neighbors. The goal of weight modification is

Analogy-Based Reasoning in Classifier Construction 305

Algorithm 2. Attribute weighting algorithm optimizing classification accuracy

nearest(x) - the nearest neighbor of x with the same decision
in the sample Strn

nearest(x) - the nearest neighbor of x with a different decision
in the sample Strn

for each attribute wi := 1.0
modifier := 0.9
convergence := 0.9
repeat l times

Strn := a random training sample from Utrn

Stst := a random test sample from Utrn

correct :=
�
��x : ρ(x,nearest(x)) ≤ ρ(x,nearest(x))

���
for each attribute ai

correct(ai) :=
�
��x : ρi(xi, nearest(x)i) ≤ ρi(xi, nearest(x)i)

���
for each attribute ai

if correct(ai) > correct then wi := wi + modifier
modifier := modifier · convergence

to replace incorrectly classifying nearest neighbors without affecting correctly
classifying nearest neighbors. Increasing the weights of attributes with the large
misclassification ratio gives a greater chance to reach this goal than increasing
the weights of attributes with the small misclassification ratio.

In order to make the procedure convergable the coefficient modifier used to
modify the weights is decreased at each iteration of the algorithm. We performed
a number of preliminary experiments to determine the appropriate number of
iterations l. It is important to balance between the optimality of the final weights
and the time of computation. For all tested data sets we observed that increasing
the number of iterations l above 20 did not improve the results significantly and
on the other hand the time of computations with l = 20 is still acceptable for
all sets. Therefore in all further experiments we set the number of iterations
to l = 20.

3.5 Attribute Weighting Method Optimizing Classification
Accuracy

Algorithm 2 presents the weighting method optimizing classification accuracy. At
each iteration the algorithm selects a random training and a random test samples
Strn and Stst and for each test object x from Stst it finds the nearest neighbor
nearest(x) with the same decision and the nearest neighbor nearest(x) with a
different decision in Strn. Then for each attribute ai it counts two numbers. The
first number correct is the number of objects that are correctly classified with
their nearest neighbors according to the total distance ρ, i.e., the objects for
which the nearest object with the correct decision nearest(x) is closer than the

306 A. Wojna

nearest object with a wrong decision nearest(x). The second number correct(ai)
is the number of objects for which the component ρi(xi, nearest(x)i) related to
the attribute ai in the distance to the correct nearest neighbor ρ(x, nearest(x))
is less than the corresponding component ρi(xi, nearest(x)i) in the distance to
the wrong nearest neighbor ρ(x, nearest(x)). If the number of objects correctly
classified by a particular attribute ai (correct(ai)) is greater than the number
of objects correctly classified by the total distance (correct), the weight for this
attribute wi is increased. Like in the previous weighting algorithm to make the
procedure convergable the coefficient modifier used to modify the weights is
decreased at each iteration and the number of iterations is set to l = 20 in all
experiments.

3.6 Experiments

In the next subsections we compare the performance of the k nearest neighbors
method for the metrics and the weighting methods described in the previous
subsections. We compare the Hamming metric (Subsection 2.4) and the Value
Difference Metric (Subsection 3.1) for nominal attributes and the city-block met-
ric (Subsection 2.4), the Interpolated Value Difference Metric and the Density
Based Value Difference Metric (Subsection 3.2) for numerical attributes. Com-
parison between the Interpolated and the Windowed Value Difference Metric
(Subsection 3.2) was presented in [88] and the authors reported that there was
no significant difference between both metrics. Since the interpolated version
is more efficient it was chosen to be compared in this dissertation. As the at-
tribute weighting models we compare the algorithm optimizing distance, the
algorithm optimizing classification accuracy and the model without weighting,
i.e., all weights are equal wi := 1.

To compare the metrics and the weighting methods we performed a num-
ber of experiments for the 10 benchmark data sets presented in Table 1. Each
data set was partitioned into a training and a test set as described in Subsec-
tion 2.7 and the test set was classified by the training set with the k nearest
neighbors method. Each data set was tested 5 times with the same partition
and the average classification error is used for comparison. To compare ac-
curacy we present the classification error for k = 1 and for k with the best
accuracy for each data set. The results for k with the best accuracy are com-
puted in the following way. In each test the classification error was computed
for each value of k in the range 1 ≤ k ≤ 200 and the smallest error among
all k was chosen to compute the average error from 5 tests. It means that for
the same data set the results of particular tests can correspond to different val-
ues of k.

3.7 Results for Data with Nominal Attributes Only

First, we compare the metrics and the weighting methods for data only with
nominal attributes. Among the 10 described data sets there are 3 sets that
contain only nominal attributes: chess, nursery and splice.

Analogy-Based Reasoning in Classifier Construction 307

0%

5%

10%

15%

20%

25%

chess nursery splice

C
la

ss
if

ic
at

io
n

 e
rr

o
r

Hamming optimizing
distance
Hamming optimizing
accuracy
Hamming without
weighting
VDM optimizing
distance
VDM optimizing
accuracy
VDM without
weighting

Fig. 7. The average classification error of the 1-nn for the two metrics: Hamming
metric and VDM and for the three weighting models: Optimizing distance, optimizing
classification accuracy and without weighting

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

chess nursery splice

C
la

ss
if

ic
at

io
n

 e
rr

o
r

Hamming optimizing distance

Hamming optimizing accuracy

Hamming without weighting

VDM optimizing distance

VDM optimizing accuracy

VDM without weighting

Fig. 8. The average classification error of the k-nn with the best k for the two metrics:
Hamming metric and VDM and for the three weighting models: Optimizing distance,
optimizing classification accuracy and without weighting

Figure 7 presents the average classification error of the nearest neighbor
method for those 3 data sets. The graph presents the results for the two metrics
and for the three weighting methods.

308 A. Wojna

The results for the VDM metric are distinctly better than for the Hamming
metric therefore we focus our attention on comparison of the weighting methods
for the VDM metric.

The differences between the weighting methods are much smaller but the
Student’s t-test (see Subsection 2.7) indicates that they are still significant. In
case of the data set chess the method optimizing distance outperforms the two
others the maximum confidence level 99.5%. In case of the data set nursery
the weighting does not help: the algorithm optimizing classification accuracy
gives exactly the same result as without weighting and the algorithm optimizing
distance gives a worse result with the confidence level 99.5%. In case of the data
set splice the algorithm optimizing distance has again the lowest classification
error but the statistical significance of the difference is only 97.5%.

Figure 8 presents the average classification error for the best value of k. As
in case of the 1-nn, the results for the VDM metric are much better than for the
Hamming metric so we compare the weighting methods for the VDM metric.

The table below presents the average value of k with the smallest classification
error for particular data sets.

Metric Hamming VDM
Weighting optimizing optimizing none optimizing optimizing none

distance accuracy distance accuracy
chess 2.6 1.8 3 1 1 1

nursery 11.6 13 13 1 1 1
splice 152.4 78.4 158 8.2 7 7

In case of the data sets chess and nursery the average value of the best k
for all weighting models for the metric VDM is 1 what means that in all tests
the smallest error was obtained for k = 1. Hence, for those two data sets and
for all the weighting models the average classification error for the best k is
equal to the average classification error for k = 1 presented before. For chess
the weighting method optimizing distance outperformed the others with the
maximum confidence level 99.5% and for nursery the model without weighting
provided exactly the same results like the weighting optimizing classification
accuracy and both models outperformed the weighting optimizing distance also
with the maximum confidence level 99.5%. In case of the data set splice the
average values of the best k for all the weighting models are greater than 1 so
the results are slightly different. In case of 1-nn the weighting optimizing distance
is the best but only with the confidence level 97.5% whereas in case of the best
k the weighting optimizing distance is the best with the maximum confidence
level 99.5%.

The results for data sets with nominal attributes show clearly that the VDM
metric is more accurate than the Hamming metric. In case of the Hamming
metric the properties of the domain of values of a nominal attribute are only used
(the equality relation), whereas in the case of the VDM metric the information
contained in a training set is also used. In the latter case a structure of a metric
is learnt from a set of values of an attribute in a training set. In comparison to

Analogy-Based Reasoning in Classifier Construction 309

the equality relation such a structure is much richer and it allows to adapt the
VDM metric more accurately to data than in the case of the Hamming metric.

The comparison between the weighting methods is not unilateral. However,
in most cases the method optimizing distance works best and in case when it
loses (for the data set nursery) the difference is not so large: the error 1.38%
of the weighting optimizing distance in comparison to the error 1.07% of the
remaining methods.

3.8 Results for Data with Numerical Attributes Only

In this subsection we present the performance analysis of the metric and weight-
ing models for data only with numerical attributes. There are 6 data sets that
contain only numerical attributes: letter, mushroom, pendigits, satimage, seg-
ment and shuttle. All the tests for the data set mushroom gave the error 0% and
all the tests for the data set shuttle gave an error not greater than 0.1%. These
two data sets are very easy and the classification results for them can not be a
reliable basis for comparison of different metrics and weighting methods. There-
fore we exclude those two sets from analysis and we focus on the 4 remaining
data sets: letter, pendigits, satimage and segment.

Figure 9 presents the average classification error of the nearest neighbor
method for those 4 data sets. The graph presents the results for the three metrics
and for the three weighting methods. First we compare again the metrics. The
results are not so unilateral as in case of data with nominal attributes. The table
below presents statistical significance of the differences in accuracy between the
tested metrics.

0%

2%

4%

6%

8%

10%

12%

letter pendigi satimag segment

C
la

ss
if

ic
at

io
n

 e
rr

o
r

City-block optimizing distance
City-block optimizing accuracy
City-block without weighting
DBVDM optimizing distance
DBVDM optimizing accuracy
DBVDM without weighting
IVDM optimizing distance
IVDM optimizing accuracy
IVDM without weighting

Fig. 9. The average classification error of the 1-nn for the three metrics: The city-block
metric, DBVDM and IVDM and for the three weighting models: Optimizing distance,
optimizing classification accuracy and without weighting

310 A. Wojna

Weighting optimizing optimizing none
distance accuracy

letter City-block 99.5% City-block 99.5% City-block 99.5%
pendigits City-block 99.5% City-block 99.5% City-block 99.5%
satimage City-block 90% DBVDM 99,5% DBVDM 99,5%
segment City-block DBVDM City-block & IVDM

¡90% (from DBVDM) 99.5% 99.5%
90% (from IVDM)

Each cell in the table presents the metric (or metrics) that the best classifica-
tion accuracy was obtained for, and explains the confidence level of the difference
between this best metric and the other tested metrics for the data set given in
the row header and with the weighting method given in the column header. For
example, the cell on the crossing of the first row and the first column states
that for the data set letter with the weighting method optimizing distance the
best accuracy was obtained by the city-block metric and the probability that
the city-block metric outperforms the others is 99.5%.

The results from the table indicate that the city-block metric wins in most
cases, especially when combined with the weighting method optimizing distance.
In this case the city-block metric is never worse: for letter and pendigits it wins
with the maximum confidence level 99.5% and for satimage and segment the
classification accuracy for all metrics is similar. In combination with the two
other weighting methods the results are not unilateral but still the city-block
metric dominates.

If we consider the value of k with the smallest classification error, in each
test for the tree data sets: letter, pendigits and satimage it is usually greater
than 1. The table below presents the average value of the best k for particular
data sets:

Metric City-block DBVDM IVDM
Weighting opt. opt. none opt. opt. none opt. opt. none

dist. acc. dist. acc. dist. acc.
letter 1 5 5 3 2.6 3 1.4 1 1

pendigits 4.6 4 4 3.2 4 4 3.8 4 4
satimage 4.2 3 3 4.6 3 3 3.8 3 3
segment 1.6 1 1 1 1 1 1.4 1 1

Since in tests the best value of k was often greater than 1 the results are
different from the case of k = 1. Figure 10 presents the average classification
error for the best value of k and in the table below we present the winning metric
(or metrics) and the confidence level of the difference between the winning metric
and the others for the results at Figure 10:

Analogy-Based Reasoning in Classifier Construction 311

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

letter pendigi satimag segment

C
la

ss
if

ic
at

io
n

 e
rr

o
r

City-block optimizing distance
City-block optimizing accuracy
City-block without weighting
DBVDM optimizing distance
DBVDM optimizing accuracy
DBVDM without weighting
IVDM optimizing distance
IVDM optimizing accuracy
IVDM without weighting

Fig. 10. The average classification error of the k-nn with the best k for the three
metrics: The city-block metric, DBVDM and IVDM metric and for the three weighting
models: Optimizing distance, optimizing classification accuracy and without weighting

Weighting optimizing optimizing none
distance accuracy

letter City-block 99.5% City-block 99.5% City-block 99.5%
pendigits City-block 99.5% City-block 99.5% City-block 99.5%
satimage City-block City-block City-block

¡90% (from IVDM) 99.5% 99.5%
99.5% (from DBVDM)

segment City-block DBVDM City-block & IVDM
¡90% (from DBVDM) 99.5% 99.5%

90% (from IVDM)

The results are even more unilateral than for the case of k = 1. The city-block
metric loses only in one case: for the data set segment when combined with the
weighting method optimizing classification accuracy.

The general conclusion is that the city-block metric is the best for data with
numerical attributes and up to now different attempts to replace it with metrics
induced from data like the VDM metric for nominal attributes are unsuccessful.
This conclusion for numerical data is opposite to the analogous conclusion for
nominal data. Like the Hamming metric the city-block metric uses mainly the
properties of the domain of values of a numerical attribute. The probable reason
for the opposite observation is that the properties of a numerical attribute are
much more informative than the equality relation in case of a nominal attribute.
In many cases the natural linear order in the domains of numerical attributes

312 A. Wojna

corresponds well with the properties of objects important for a decision attribute
and the information provided in this linear order is rich enough to work well in
the city-block metric. Therefore, it is difficult to construct a better metric from
training data. The proposed metrics: DBVDM and IVDM are not consistent
with the natural linear order of numerical values. The presented results show
that this order is important for reasoning from numerical attributes.

Now, we compare accuracy of the weighting models. The results are presented
in Figures 9 and 10 by means of the graphs used for comparison of metrics.
The results are different for the different data sets and metrics. However, the
city-block metric appeared to be generally the best so we focus on this metric.
The table below presents the winning weighting method (or methods) and the
confidence level of the difference between this winning method and the others
in case of the 1-nn classification and in case of the classification with the best k
(using the city-block metric):

k k = 1 the best k

letter optimizing distance 99.5% optimizing distance 99.5%
pendigits optimizing acc. & none ¡90% optimizing acc. & none 99.5%
satimage optimizing acc. & none ¡90% optimizing acc. & none 99.5%
segment optimizing distance optimizing distance

99% (from none) 99.5%
99.5% (from optimizing acc.)

The results are not unilateral but we show that the method optimizing dis-
tance dominates for the city-block metric. For this metric the results of the
method optimizing accuracy differs from the results without weighting only in
case of the data set segment : the model without weighting provides a better
classification. Then it is enough to compare the method optimizing distance to
the model without weighting. For k = 1, in the cases where the method optimiz-
ing distance wins, the statistical significance of the difference is quite large: at
least 99%, and the error reduction is also large: from 4.85% to 3.05% for letter
(37% of the relative difference) and from 3.13% to 2.63% for segment (16% of
the relative difference) whereas in cases when the method optimizing distance
loses the difference is statistically insignificant and relatively very small: 2% of
the relative difference for pendigits and 0.5% for satimage. For the best k all
the differences are statistically significant with the maximum confidence level
99.5% but the relative differences are still in favour of the method optimizing
distance: for letter and segment the reduction in error is similar to the case of
k = 1 (33% and 17% respectively) and for pendigits and satimage the opposite
relative differences in error are only 8% and 5% respectively.

The conclusion is that for the city-block metric it pays to apply the method
optimizing distance because a gain in case of improvement can be much larger
than a loss in case of worsening. For the two other metrics the results of the
weighting methods are more similar and the method optimizing distance does
not have the same advantage as in case of the city-block metric.

Analogy-Based Reasoning in Classifier Construction 313

3.9 Results for Data with Numerical and Nominal Attributes

In this subsection we present analysis of the performance of the metrics and the
weighting models for data with both nominal and numerical attributes. There
is only one such a data set: census94. It is the most difficult data set among
all the tested sets: the classification accuracy obtained for census94 by different
classification algorithms from the literature is the lowest [40, 53].

Figure 11 presents the average classification error of the 1-nn for the data set
census94 for all the combinations of the four joint metrics: the Hamming with
the city-block, the VDM with the city-block, the VDM with the DBVDM and
the VDM with the IVDM metric and the three weighting models: optimizing
distance, optimizing accuracy and without weighting. The results are surprising:
the best combination is the VDM metric for nominal attributes with the DB-
VDM metric for numerical attributes. The same is in the analogous classification
results of the k-nn with the best k presented at Figure 12.

Generally, the combinations of the VDM metric with its extensions for nu-
merical attributes: DBVDM and IVDM work better than with the city-block
metric. In a sense it is contradictory to the results for data only with numerical
attributes. The possible explanation is that the data census94 are more diffi-
cult and the information contained in the properties of the domain of numerical
attributes does not correspond directly to the decision. The metrics DBVDM
and IVDM are more flexible, they can learn from a training set more than
the city-block metric and in case of such difficult data they can adapt more
accurately to data.

18,0%

18,5%

19,0%

19,5%

20,0%

20,5%

21,0%

21,5%

22,0%

Hamming+City-block VDM+City-block VDM+DBVDM VDM+IVDM

C
la

ss
if

ic
at

io
n

 e
rr

o
r

optimizing distance

optimizng accuracy

without weghting

Fig. 11. The average classification error of the 1-nn for the four joint metrics: Hamming
with the city-block metric, VDM with the city-block metric, VDM with DBVDM and
VDM with IVDM and for the three weighting models: Optimizing distance, optimizing
classification accuracy and without weighting, obtained for the data set census94

314 A. Wojna

14,0%

14,5%

15,0%

15,5%

16,0%

16,5%

17,0%

Hamming+City-
block

VDM+City-block VDM+DBVDM VDM+IVDM

C
la

ss
if

ic
at

io
n

 e
rr

o
r

optimizing distance

optimizng accuracy

without weghting

Fig. 12. The average classification error of the k-nn with the best k for the four joint
metrics: Hamming with the city-block metric, VDM with the city-block metric, VDM
with DBVDM and VDM with IVDM and for the three weighting models: Optimizing
distance, optimizing classification accuracy and without weighting, obtained for the
data set census94

In case of the simpler data sets from Subsection 3.8 the experimental results
do not indicate clearly that one of the two metrics DBVDM or IVDM dominates.
In case of the data set census94 the difference between the DBVDM and the
IVDM metric is more visible in favour of the DBVDM metric: the classification
accuracy of VDM joint with DBVDM is always at least 1% better than the
accuracy of VDM joint with IVDM.

Now, we compare the weighting models. The results for k = 1 and for
the best k are quite different. For k = 1 the method optimizing classifica-
tion accuracy gives the best classification in combination with all the metrics,
whereas for the best k the method optimizing distance gives the best accu-
racy also for all metrics. It is related to the fact that the value of k with
the best accuracy is always large for the data set census94. The table below
presents the average of the best k for all the combinations of the metrics and the
weighting methods:

optimizing distance optimizing accuracy none
Hamming+City-block 43.4 23 45

VDM+City-block 34.2 23 27
VDM+DBVDM 84.2 61 83
VDM+IVDM 41a 31 41

The difference in classification between the method optimizing distance and
the method optimizing accuracy is not large: in all cases it is below 3% of the

Analogy-Based Reasoning in Classifier Construction 315

relative classification error. The advantage of the method optimizing distance
is that in all cases it gives a better result than the model without weighting
whereas the method optimizing accuracy is sometimes worse.

3.10 Summary

In this section we have presented the following new methods:

– a Density Based Value Difference Metric for numerical attributes (Subsection
3.2): as distinguished from other metrics of this type from the literature
[89, 88] the estimation of the decision probability in DBVDM depends on
the density of values,

– an effective method for computing the distance between objects for the met-
rics WVDM [88] and DBVDM (Subsection 3.2),

– the two attribute weighting batch algorithms using performance feedback,
applicable to the whole class of linear metrics: the first one optimizes distance
in a training set (Subsection 3.4) and the second one optimizes classification
accuracy in a training set (Subsection 3.5).

The experimental results presented in Subsections 3.7, 3.8 and 3.9 lead to the
following final conclusions. For nominal attributes the general properties of the
domain of values are poor and the information contained in training data is much
richer and, therefore, it is important for classification accuracy to incorporate
the information from training data into a metric. Hence, a good solution for
nominal attributes is the Value Difference Metric described in Subsection 3.1. For
numerical attributes the situation is different. The natural linear order provided
in the properties of numerical attributes is an important, powerful source of
information about objects and in most cases the city-block metric consistent
with this natural linear order outperforms the metrics that do not regard this
order so strictly. However, the results in Subsection 3.9 show that in cases where
data are difficult and the relation between numerical attributes and a decision
is not immediate the information contained in data can be still important for
the accuracy of a metric. In this case the best classification accuracy has been
obtained with use of the DBVDM metric.

In summary, the combination of the VDM metric for nominal attributes and
the city-blockmetric for numerical attributes gives generally the best accuracy and
we choose this metric to use in further research: on methods accelerating k nearest
neighbors search described in Section 4 and on more advanced metric-based classi-
fication models described in Section 5. Since the DBVDM metric was the best for
the most difficult data set and in a few other cases, in some experiments in Section
5 we use also the combination of the VDM and the DBVDM metric for comparison.

Comparison of the weighting models does not indicate a particular method
to be generally better than others but weighting attributes in a metric usually
improves classification accuracy so we decided to choose one for further ex-
periments. Since both for nominal and numerical data the weighting algorithm
optimizing distance seems to dominate this one is chosen to be always applied
in all further experiments.

316 A. Wojna

Some of the presented metrics and weighting algorithms have been included
in the system RSES [8, 73]. The system provides different tools to analyze data,
in particular the k nearest neighbors classifier. Two of the presented metrics:
the joint VDM and city-block metric and the joint VDM and DBVDM metric
and all the three presented weighting models are available in this classifier. They
are implemented exactly as described in this section and some of the described
parameters of the metrics and the weighting algorithms are available to be set
by a user.

4 Distance-Based Indexing and Searching for k Nearest
Neighbors

Distance-based indexing and the problem of searching for k nearest neighbors is
investigated in this section.

4.1 Problem of Searching for k Nearest Neighbors

In this section we consider the efficiency problem of the k-nn classifier described
in Subsection 2.5. For a long time k-nn was not used in real-life applications
due to its large computational complexity. However, the development of meth-
ods accelerating searching and the technology advance in recent decade made
it possible to apply the method to numerous domains like spatial databases,
text information retrieval, image, audio and video recognition, DNA and pro-
tein sequence matching, planning, and time series matching (e.g., in stock market
prognosis and weather forecasting) [3, 80].

The main time-consuming operation in the k-nn classifier is the distance-
based searching for k nearest neighbors of a given query object. Distance-based
searching is an extension of the exact searching widely used in text and database
applications. It is assumed that a distance measure ρ is defined in a space of
objects X and the problem is to find the set NN(x, k) of k objects from a given
training set Utrn ⊆ X that are nearest to a given query object x.

We restrict our consideration to application of k-nn for object classification.
It requires fast access to data therefore we concentrate on the case when data
are kept in the main memory. With growing size of the main memory in data
servers this case attracts more and more attention of people working in different
application areas.

The basic approach to searching for k nearest neighbors in a training set is
to compute the distance from a query object to each data object in the training
set and to select the objects with the smallest distances. The computational
cost of finding the nearest neighbors from Utrn to all queries in a test set Utst is
O(|Utst| |Utrn|). In many applications the size of a database is large (e.g., several
hundred thousand objects) and the cost O(|Utst| |Utrn|) is not acceptable. This
problem is an important issue in many applications therefore it is the subject
of the great interest among researchers and practitioners and a considerable ef-
fort has been made to accelerate searching techniques and a number of indexing

Analogy-Based Reasoning in Classifier Construction 317

(c)

splitting splitting

splitting

(a) (b)

Fig. 13. Indexing and searching in a data set: (a) the hierarchical structure of data
clusters (b) the indexing tree with the nodes corresponding to data clusters (c) search
pruning in the indexing tree

methods both general and for particular applications have been developed. The
most popular idea of indexing is a top-down scheme introduced by Fukunaga and
Narendra [35]. It splits the whole training set into clusters in such a way that
each cluster contains objects from the same region of a data space (Figure 13a).
Each cluster has a compact representation that allows to check quickly whether
the cluster can contain the nearest neighbors of a query object (Figure 13b).
Instead of comparing a query object directly with each data object first it is
compared against the whole regions. If a region is recognized not to contain the
nearest neighbors it is discarded from searching. In this way the number of dis-
tance computations, and in consequence the performance time, are considerably
reduced (Figure 13c).

In the literature one can find indexing methods based on the bottom-up
scheme like Ward’s clustering [82]. It was recognized that bottom-up construc-
tions lead to a very good performance but instead of reducing the computational
cost those bottom-up methods transfer it only from searching to indexing, i.e.,
searching is much faster but indexing has the O(|Utrn|2) complexity. Hence, this
approach is too expensive for most of applications and the top-down scheme
has remained the most popular in practice. In the dissertation we focus on the
top-down scheme.

An important issue for indexing method construction are the initial assump-
tions made about a data space. Different models are considered in the literature.
The first one assumes that data objects are represented by vectors from a vector
space. This model is applicable to databases with numerical attributes or with
complex multimedia objects transformable to vectors. It makes it possible to
use the algebraic operations on objects in an indexing algorithm: summation
and scaling, and construct new objects, e.g., the mean of a set of objects. How-
ever, not all databases fit to the model of a vector space. In the dissertation
we consider data with both numerical and nominal attributes. The domains of
nominal attributes do not have the structural properties used in the model with
a vector space. The indexing methods for such data use only a small subset of
the properties available in a vector space. Moreover, there are data not based

318 A. Wojna

on feature vectors, e.g., texts with the editing distance, DNA or time dependent
sequences or plans. The structure of such objects is very specific and for such
data the model is limited only by the distance axioms defined in Subsection 2.3.
They are sufficient for the k nearest neighbors classification (see Subsection 2.5)
therefore many indexing methods in the literature assume the distance model
based only on these axioms.

Since a great part of applications is associated with structural databases and
multimedia objects transformed to feature vectors a number of indexing tech-
niques have been developed for vector spaces (e.g.,, quad-trees [29] and k-d trees
[11]). The cost of a distance computing operation between two vectors is usually
low so the methods such as grid-files [62], k-d-b tree [66], R-tree [43] and its
variants R+-tree [71] and R�-tree [9] were focused on optimizing the number of
I/O operations. The above techniques work well for low dimensional problems,
but the performance degrades rapidly with increasing dimensionality. This phe-
nomenon called the dimensional curse have been theoretically substantiated by
Beyer et al. [13]. They proved that under certain reasonable assumptions the
ratio of the distances to the nearest and the farthest neighbor converges to 1
while increasing the dimension of the vector space. To avoid the problem some
specialized methods for high-dimensional spaces have been proposed: X-trees
[12], SR-trees [47], TV-trees [55] and VA-files [83].

All the above tree based methods are based on regions in the shape of hy-
percubes so application of these methods is strictly limited to vector spaces.
However, a large number of databases with other kinds of distance measures
have raised an increase of interest in general distance-based indexing methods.
An exhaustive overview of indexing methods for metric spaces is contained in
[19]. SS-tree [86] uses a more general clustering scheme with spheres instead of
rectangles as bounding regions but it is still limited to vector spaces because
it uses the mean as the center of a cluster. A general distance-based indexing
scheme is used in BST [46] and GHT [78]. Both trees have the same construc-
tion but different search pruning criteria are used. GNAT [18], SS-tree [86] and
M-tree [20] are specialized versions of the BST/GHT tree. To balance the tree
GNAT determines separately the number of child nodes for each node. As the
splitting procedure GNAT uses the algorithm that selects the previously com-
puted number of centers from a sample and assigns the objects from the parent
node to the nearest centers. SS-tree and M-tree are focused on optimizing the
number of I/O operations. They maintain a structure of nodes similar to B-trees
and assume the dynamic growth of the database. Clustering in M-tree is simi-
lar to the clustering algorithm in SS-tree but M-tree uses either a random or a
sampled set of the centers instead of the means. Thus, it uses only the distance
function and is applicable to any metric space.

All the above mentioned indexing structures from the literature use a one-
step clustering procedure to split a node in the tree. Such a procedure selects a
number of cluster centers among objects in the given node and assigns each data
object from the node to the nearest center. Moreover, the described searching
methods use always a single search pruning criterion to accelerate searching in

Analogy-Based Reasoning in Classifier Construction 319

Algorithm 3. The indexing schema
k - the splitting degree of the tree nodes
root - the top node with all the training data objects from Utrn

priorityQueue - the priority queue of leaf nodes used
for the selection of the next node to be split

priorityQueue := {root}
repeat

parent := the next node from priorityQueue to be split
splitCluster(parent,k)
add k child nodes of parent to priorityQueue

until the number of nodes in priorityQueue ≥ 1
5 |Utrn|

an indexing structure. In the next subsections we propose a new method that
uses an iterative clustering procedure to split nodes while indexing instead of
the one-step procedure and combines three search pruning criteria from BST,
GHT and GNAT into one.

We present three versions of this method, depending on the model of data.
The first version is appropriate for the model of a vector space, i.e., for data only
with numerical attributes. The second variant is appropriate for the model of
data considered in the dissertation, i.e., for data with both numerical and nomi-
nal attributes. It depends on the metric used to measure distance between data
object too. Since the joint city-block and the Value Difference Metric provides
the best classification accuracy in the experiments from Section 3 we present the
version of indexing that assumes this metric to be used. As the third solution
we propose the algorithm based on the most general assumption that only a
distance measure is available for indexing.

4.2 Indexing Tree with Center Based Partition of Nodes

Most of the distance based indexing methods reported in the literature [11, 29,
43], [66, 71] and all the methods presented in the paper are based on a tree-like
data structure. Algorithm 3 presents the general indexing scheme introduced by
Fukunaga and Narendra [35]. All indexing algorithms presented in the paper
fit to this scheme. It starts with the whole training data set Utrn and splits
recursively the data objects into a fixed number k of smaller clusters. The main
features that distinguish different indexing trees are the splitting degree of tree
nodes k, the splitting procedure splitCluster and the pruning criteria used in
the search process.

Algorithm 3 assumes that the splitting degree k is the same for all nodes
in the tree. An exception to this assumption is Brin’s method GNAT [18] that
balances the tree by selecting the degree for a node proportional to the number
of data objects contained in the node. However, on the ground of experiments
Brin concluded that a good balance was not crucial for the performance of the
tree. In Subsection 4.4 we present the results that confirm this observation.

320 A. Wojna

Algorithm 4. Theiterativek-centers splittingproceduresplitCluster(objects, k)
objects - a collection of data objects to be split

into k clusters
Cl1, . . . , Clk - partition of data objects from objects

into a set of clusters
centers - the centers of the clusters Cl1, . . . , Clk
prevCenters - the centers of clusters

from the last but one iteration
getCenter(Clj) - the procedure computing

the center of the cluster Clj

repeat
centers := select k initial seeds c1, . . . , ck from objects
for each x ∈ objects

assign x to the cluster Clj
with the nearest center cj ∈ centers

prevCenters := centers
centers := ∅
for each cluster Clj

cj := getCenter(Clj)
add cj to centers

until prevCenters = centers

We have assumed that the algorithm stops when the number of leaf nodes
exceeds 1

5 of the size of the training set |Utrn|, in other words when the average
size of the leaf nodes is 5. It reflects the trade-off between the optimality of
a search process and the memory requirements. To make the search process
effective the splitting procedure splitCluster has the natural property that data
objects that are close each to other are assigned to the same child node. Thus,
small nodes at the bottom layer of the tree have usually very close objects, and
splitting such nodes until singletons are obtained and applying search pruning
criteria to such small nodes do not save many distance comparisons. On the other
hand, in our implementation the memory usage for the node representation is
2-3 times larger than for the data object representation so the model with the
number of leaf nodes equal to 1

5 of the number of data objects does not increase
memory requirements as significantly as the model where nodes are split until
the leafs are singletons and the number of all tree nodes is almost twice as the
size of the training data set Utrn.

Algorithm 4 presents the iterative splitting procedure splitCluster(objects,
k) that generalizes the k-means algorithm. Initially, it selects k objects as the
centers c1, . . . , ck of clusters. Then it assigns each object x to the cluster with
the nearest center and computes the new centers c1, . . . , ck. This assignment
procedure is iterated until the same set of centers is obtained in two subsequent
iterations.

Analogy-Based Reasoning in Classifier Construction 321

The procedure getCenter(·) computes the center of a cluster of objects. Ex-
cept for this procedure the presented indexing structure preserves the generality:
it uses only the notion of distance. The indexing structure is correct for any defi-
nition of the procedure getCenter(·). However, the efficiency of searching in this
structure depends strongly on how the centers of clusters are defined. Therefore
we propose different definitions of the centers, depending on the information
about the type of a space of objects.

In case of a vector space we propose the means as the centers of clusters:

getCenter(Cl) :=
∑

x∈Cl x

|Cl|
In this case Algorithm 4 becomes the well known k-means procedure. Boley and
Savaresi have proved the following property of the 2-means algorithm:

Theorem 5. [70] If a data set is an infinite set of data points uniformly dis-
tributed in a 2-dimensional ellipsoid with the semi-axes of the length 1 and a
(0 < a < 1) the 2-means iterative procedure with random selection of initial cen-
ters has 2 convergence points: one is locally stable and one is locally unstable.
The splitting hyperplanes corresponding to the convergence points pass through
the center of the ellipsoid and are orthogonal to the main axes of the ellipsoid. In
the stable convergence point the splitting hyperplane is orthogonal to the largest
axis (see Figure 14).

This theorem shows that in an infinite theoretical model the 2-means proce-
dure with random selection of initial centers converges in a sense to the optimal

c 1 c 2

Fig. 14. The convergence of the 2-means procedure to the locally stable partition for
data distributed uniformly in an ellipse; the splitting line is orthogonal to the largest
axis of the ellipse

322 A. Wojna

partition of data, which may substantiate good splitting properties of this pro-
cedure in practice and explain the good experimental performance of the tree
based on the 2-means splitting procedure presented in Subsection 4.7.

In the dissertation, we consider data with both numerical and nominal at-
tributes. In Section 3 the joint city-block and VDM metric was proved to provide
the best classification accuracy. Therefore, for data with both types of attributes
we present the definition of the center of a cluster getCenter(Cl) that assumes
this metric to be used for measuring the distance between objects.

The numerical attributes constitute a vector space. Therefore, as in the
first version, we propose the mean to be the center value for each numerical
attribute ai:

getCenter(Cl)i :=
∑

x∈Cl xi

|Cl| .

In case of a nominal attribute the domain of values does not provide the op-
erations of summation and division and the only general property of nominal
values is the equality relation. Therefore, as in the problem of metric definition,
to define the center of a set of nominal values we use the information encoded
in data. Since the centers of clusters are used only by the operation of the
distance computation, it is enough to define how the center of nominal values
is represented in Equation 5 defining the Value Difference Metric. This equa-
tion does not use values directly but it uses the decision probability estimation
PV DM (dec = dj |ai = v) for each nominal value v. Therefore, for each nominal
attribute ai it is enough to define the analogous decision probability estimation
for the center of a set of nominal values:

PV DM (dec = dj |ai = getCenter(Cl)i) :=
∑

x∈Cl PV DM (dec = dj |ai = xi)
|Cl| .

This definition of the decision probability estimation for the centers of clus-
ters is correct, because it satisfies the axioms of probability: PV DM (dec =
dj |getCenter(Cl)i) ≥ 0 and

∑
dj∈Vdec

PV DM (dec = dj |getCenter(Cl)i) = 1.
The indexing and searching algorithm use this definition to compute the VDM
distance between centers and other objects from a space of objects.

The last version of the procedure getCenter(·) is independent of the metric
definition. It is useful in the situation where the model of data does not provide
the information how to construct new objects and training objects in Utrn are the
only objects from a space of objects X available for an indexing method. In this
general case we propose the following approximation of the cluster center. When
a cluster Cl contains one or two data objects it selects any of them as the center
of Cl. Otherwise the algorithm constructs a sample S that contains the center
used to assign objects in the previous iteration of the procedure splitCluster and
randomly selected max(3,

⌊√|Cl|
⌋
) other objects from Cl. Then it computes the

distances among all pairs of objects from S, and selects the object in S that
minimizes the second moment of the distance ρ in S, as the new center of Cl:

getCenter(Cl) := arg min
x∈S

E
(
ρ(x, y)2

)
.

Analogy-Based Reasoning in Classifier Construction 323

In this way it selects the center from S that minimizes the variance of S.
The assumption that the center from the previous iteration is included into
the sample S in the next iteration makes it possible to use the previous cen-
ter in the next center selection. It provides a chance for the stopping con-
dition to be satisfied at each iteration and saves a significant number of
unnecessary iterations.

The choice of the value max(3,
⌊√|Cl|

⌋
)+1 as the size of the sample S in this

center selection algorithm is strictly related to its complexity. A single iteration
of the algorithm requires |S|2 distance computations: it computes the distance
among all pairs of objects in S. Since the size of the sample S is O(|Cl| 1

2) the
computational cost of a single iteration remains linear with respect to the cluster
size |Cl|, and thus, it is comparable to the case of the k-means procedure used
for vector spaces.

The last algorithm selects the approximate centers for clusters among objects
belonging to these clusters. Therefore, in the next subsections we call it the k-
approximate-centers algorithm.

The discussion and experimental analysis related to selection of initial centers
in Algorithm 4 and the degree of nodes of the presented indexing structure are
presented in the next two subsections.

4.3 Selection of Initial Centers

One can consider three general approaches for selection of the initial centers
for clusters in the procedure splitCluster (see Algorithm 4) known from the
literature: random, sampled [18] and exhaustive. The description of BST [46]
and GHT [78] is quite general and either it does not specify any particular
selection of initial centers or it assumes a simple random model. M- [20] and
SS-trees [86] are the dynamic structures and the splitting procedures assume
that they operate on an existing inner node of a tree and they have access only
to the information contained in a node to be split. While splitting a non-leaf
node the algorithm does not have access to all data objects from the subtree of
the node so the splitting procedures from M- and SS-trees are incomparable to
the presented iterative procedures.

To select the initial centers in GNAT [18] a random sample of the size 3k
is drown from a set of data objects to be clustered and the initial k centers
are picked from this sample. First, the algorithm picks one of the sample data
objects at random. Then it picks the sample point that is the farthest from this
one. Next, it picks the sample point that is the farthest from these two, i.e.,
the minimum distance from the two previously picked seeds is the greatest one
among all unpicked sample objects. Finally, it picks the point that is the farthest
from these three and so on until there are k data points picked.

In the dissertation, we propose yet another method for selecting initial k
centers presented in Algorithm 5. It is similar to GNAT’s method but it selects
the first center more carefully and for selection of the others it uses the whole
set to be clustered instead of a sample. Therefore we call this algorithm the

324 A. Wojna

Algorithm 5. The global algorithm for selection of initial centers in the proce-
dure splitCluster

c := getCenter(Cl)
c1 := arg maxx∈Cl ρ(c, x)
for j := 2 to k

cj := arg maxx∈Cl min1≤l≤j−1 ρ(cl, x)

global selection of the farthest objects. First, the algorithm computes the center
c of the whole set to be clustered Cl. As the first seed c1 it picks the object
that is the farthest from the center c of the whole data set. Then it repeats
selection of the farthest objects as in GNAT, but from the whole set Cl instead
of from a sample. The algorithm can be performed in O(|Cl|k) time: it requires
to store the minimal distance to selected centers min1≤l≤j−1 ρ(cl, x) for each
object x ∈ Cl and to update these minimal distances after selection of each next
center. For small values of k this cost is acceptable.

One can consider the exhaustive procedure that checks all k-sets among ob-
jects to be clustered as the sets of k centers and selects the best one according to
a predefined quality measure. However, the computational cost of this method
O(|Cl|k) does not allow us to use it in practice.

Figure 15 presents the performance of the search algorithm for three different
seeding procedures used in the k-means based indexing trees with k = 2, k = 3
and k = 5: a simple random procedure, GNAT’s sampled selection of the farthest
objects and the global selection of the farthest objects described above. The
experiments have been performed for the joint city-block and VDM metric with
the representation of the center of a cluster extended to nominal attributes as
described in the previous subsection, and for the searching algorithm described
in Subsections 4.5 and 4.6. All 12 benchmark data sets presented in Tables 1
and 2 have been tested in the following way: the training part of a data set have
been indexed with the k-means based indexing tree (once for each combination
of k ∈ {2, 3, 5} and the three seeding procedures), and for each object in a test
set the two searches have been performed in each indexing tree: for the 1 nearest
neighbor and for the 100 nearest neighbors of the test object. At each search
the number of distance computations has been counted. The graphs present the
average number of distance computations for the whole test set in the 1-nn and
the 100-nn search.

The results indicate that the indexing trees with all three methods have
comparable performance what may be explained with the good theoretical con-
vergence property of the k-means algorithm formulated in Theorem 5. However,
for a few larger data sets: census94, census94-95, covertype and letter the dif-
ference between the global and the two other selection methods is noticeable. In
particular, the largest difference is for the data set census94-95, e.g., in case of
the 2-means based indexing tree the global method takes only 65% of the time
of the sampled method and 60% of the time of the random method (as presented
at the two upper graphs at Figure 15).

Analogy-Based Reasoning in Classifier Construction 325

0

200

400

600

800

1000

1200

1400

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2means-global

2means-sampled

2means-random

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2means-global

2means-sampled

2means-random

0

200

400

600

800

1000

1200

c94 c945 ches covt lett mush nurs pend sat segm shut spl

3means-global

3means-sampled

3means-random

0

500

1000

1500

2000

2500

3000

3500

4000

4500

c94 c945 ches covt lett mush nurs pend sat segm shut spl

3means-global

3means-sampled

3means-random

0

200

400

600

800

1000

1200

c94 c945 ches covt lett mush nurs pend sat segm shut spl

5means-global

5means-sampled

5means-random

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

5means-global

5means-sampled

5means-random

Fig. 15. The average number of distance computations per single object in 1-nn search
(the left graphs) and 100-nn search (the right graphs) with the use of 2-means based,
3-means based and 5-means based indexing trees, and with the three different methods
of initial center selection: Globally farthest, sampled farthest and random

Summing up, the global method seems to have a little advantage over the
others and we decide to use this one in further experiments described in the
next subsections.

4.4 Degree of the Indexing Tree

In order to analyze the performance of the k-means based indexing trees, in
dependence on the degree of nodes k, we have performed experiments for 8

326 A. Wojna

10

100

1000

10000

2 3 4 5 6 7 8 9

c94

c945

ches

covt

lett

mush

nurs

pend

sat

segm

shut

spl 100

1000

10000

2 3 4 5 6 7 8 9

c94

c945

ches

covt

lett

mush

nurs

pend

sat

segm

shut

spl

Fig. 16. The average number of distance computations per single object in 1-nn search
(the left graph) and 100-nn (the right graph) with the use of the k-means based indexing
trees with k in the range 2 ≤ k ≤ 9

successive values of k ranging from 2 to 9. Figure 16 presents the performance
graphs for particular data sets. As it is shown they are quite stable in the range
of tested values except for the value 2 and different values of k have the best
performance for particular data sets. For the 1-nn search 7 data sets have the
best performance at k = 3, 1 at k = 4 and 2 at k = 5 and k = 8. For 100-nn
search 4 data sets have the best performance at k = 3, 2 at k = 4, 5 and 8 and 1
at k = 7 and 9. These statistics indicate that the best performance is for small
values of k (but greater than 2). Assignment of k to 3, 4 or 5 ensures almost
optimal performance.

In the literature the splitting degree of tree nodes is usually assumed to
be constant over all nodes in a tree. The exception to this rule is the GNAT
structure [18] that attempts to balance the size of branches by choosing different
splitting degrees for nodes. It assumes a fixed k to be the average splitting degree
of nodes and applies the following procedure to construct a tree. The top node
is assigned the degree k. Then each of its child nodes is assigned the degree
proportional to the number of data points contained in this child node (with
a certain minimum and maximum) so that the average degree of all the child
nodes is equal to the global degree k. This process works recursively so that the
child nodes of each node have the average degree equal to k. In his experiments
Brin set the minimum of the degree to 2 and the maximum to min(5k, 200). On
the basis of experiments he reported that good balance was not crucial for the
performance of the tree.

We have implemented this balancing procedure too. In case of k = 2 the value
2 is both the average and the minimal possible value of the splitting degree in the
k-means balanced indexing tree so the balancing procedure assigns the degree 2
to all nodes and it behaves identically as in case of the constant degree 2. Hence,
the comparison of the balanced and the constant degree selections makes sense
for the value of k greater than 2. Figure 17 presents the comparison between the

Analogy-Based Reasoning in Classifier Construction 327

0

200

400

600

800

1000

1200

1400

c94 c945 ches covt lett mush nurs pend sat segm shut spl

5means-constant 5means-balanced
10means-constant 10means-balanced
20means-constant 20means-balanced

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

5means-constant 5means-balanced

10means-constant 10means-balanced

20means-constant 20means-balanced

Fig. 17. The average number of distance computations per single object in 1-nn search
(the upper graph) and in 100-nn search (the lower graph) with the use of the k-means
based indexing trees with constant and with balanced degrees of tree nodes; for each
data set the first pair of columns represents the performance for the constant and for
the balanced degree k = 5, the second pair represents the performance for k = 10 and
the third one for k = 20

k-means based balanced trees where k is the average degree of child nodes and
the corresponding k-means trees with the constant degree k. The results show
that the balancing procedure does not improve performance of the tree with a
constant degree and in many experiments searching in the tree with a constant
degree is even faster. It indicates that in order to make profit from balancing
more sophisticated procedures are required. Up to now it is not known whether
there is a balancing policy with acceptable computational complexity having a
significant advantage over the non-balanced structures.

4.5 Searching in the Indexing Tree

In this subsection we present Algorithm 6 that is a general searching schema
finding a fixed number k of data objects nearest to the query q [35]. The al-
gorithm traverses the indexing tree rooted at root in the depth-first order. In
nearestQueue it stores the nearest data objects, maximally k, from already
visited nodes. At each tree node n the algorithm checks with pruning criteria

328 A. Wojna

Algorithm 6. Searching schema
root - the root node of the indexing tree to be searched
nodeStack - the stack of nodes to be searched
nearestQueue - the queue of the data objects nearest to q

sorted according to the distance ρ
discard(n :node, q :query, rq :range) - the procedure checking whether

pruning criteria apply to a node n while searching
the neighbors of q in the distance less or equal rq

nodeStack := {root}
repeat

n := pull the top node from nodeStack
rq := maxx∈nearestQueue ρ(q, x)
if |nearestQueue| < k or not discard(n, q, rq)

if n is a leaf
for each data object x ∈ n

if |nearestQueue| <k then add x to nearestQueue
else

check x against the farthest
object y ∈ nearestQueue
and replace y with x if ρ(q, x) < ρ(q, y)

else
push the child nodes of n to nodeStack in the decreasing
order of the distance of the the child node centers
to the query q (the nearest on the top)

until nodeStack is empty
return nearestQueue

whether n should be visited, i.e., whether n can contain an object that is closer
to the query q than any previously found nearest neighbor from nearestQueue.
If so and the node n is a leaf, it compares each data object x ∈ n against data
objects in nearestQueue and replaces the farthest object y from nearestQueue
by x, if x is closer to the query q than y. In case where the node n is an inner
node it adds the child nodes of n to nodeStack to be visited in the future.

The important issue for efficiency of the algorithm is the selection of a heuris-
tic procedure determining the order of visiting child nodes. The child nodes of
the same parent node are visited always in the increasing order of the distance
between the center of a child node and the query q, i.e., the child node with
the nearest center is visited first and the child node with the farthest center is
visited last. The closer center of a child node is to the query q the closer objects
to the query are contained in this node. If the nodes with the nearest centers
are visited first, it is more probable to find near neighbors quickly and to limit
the range of search rq to a small radius. Thus, more nodes are discarded during
further search.

In Subsection 4.6 different node pruning criteria for the function discard are
described and compared.

Analogy-Based Reasoning in Classifier Construction 329

4.6 Optimization of Searching in the Indexing Tree

Algorithm 6 presents the searching procedure that uses search pruning criteria
to discard nodes while traversing the indexing tree. If the algorithm finds the
first k objects and inserts them to nearestQueue it starts to check with the
procedure discard(n, q, rq) whether subsequent visited nodes can contain objects
closer to the query q than any previously found neighbor from nearestQueue.
The algorithm does it in the following way: it stores the current search radius
rq defined as the distance ρ(q, y) between the query q and the farthest from q
object y ∈ nearestQueue and for each visited node it checks whether the node
can contain an object x such that ρ(q, x) < rq .

The definition of the k nearest neighbor classification model from Subsection
2.5 does not use the axioms of metric from Subsection 2.3. Those axioms are not
required for the model but they serve two other purposes. In the first place, they
represent mathematically the natural properties of the notion of analogy. Second,
all the metric axioms are necessary for correctness of search pruning rules de-
scribed in the literature [18, 20, 46, 78, 86]. In this subsection we describe all these
pruning rules and we propose a combination of the presented rules into one rule.

The most common search pruning criterion applied in BST [46], SS-tree [86]
and M-tree [20] uses the covering radius (Figure 18a). Each node n of the index-
ing tree keeps the center cn computed with the function getCenter(n) and the
covering radius rn:

rn := max
x∈n

ρ(cn, x).

A node n is discarded from searching if the intersection between the ball around
q containing all nearest neighbors from nearestQueue and the ball containing
all members of the node n is empty:

ρ(cn, q) > rq + rn.

Uhlmann has proposed another criterion for his Generalized-Hyperplane Tree
(GHT) [78]. The important assumption for correctness of this criterion is that
at the end of the splitting procedure (see Algorithm 4) each object from a parent
node is assigned to the child node with the nearest center. It is ensured with
the stopping condition: the splitting procedure stops if the centers from the last
and the last but one iteration are the same. The procedure returns the object
assignment to the centers from the last but one iteration and this stopping
condition makes this assignment appropriate for the final centers too.

Uhlmann’s criterion uses the hyperplanes separating the child nodes of the
same parent (Figure 18b). A node ni is discarded if there is a brother node nj of
ni (another child node of the same parent node as ni) such that the whole query
ball is placed beyond the hyperplane separating ni and nj (midperpendicular
to the segment connecting the centers cni and cnj) on the side of the brother
node nj:

ρ(cni , q) − rq > ρ(cnj , q) + rq.

330 A. Wojna

(c)

c
i

n j
c

qrq

qrq
n j

c

qrq

c
n

nr

n

n

j

j
n

ini
n m

Mi,j

i,j

(a) (b)

n

Fig. 18. The three search pruning criteria: (a) the covering radius from BST (b) the
hyperplane cut from GHT (c) the rings-based from GNAT

The third pruning criterion used in Brin’s GNAT tree [18] is also based on
a mutual relation among brother nodes but it is more complex (Figure 18c).
If the degree of a tree node is k then each child node ni keeps the minimum
mi,1, . . . , mi,k and the maximum Mi,1, . . . , Mi,k distances between its elements
and the centers cn1 , . . . , cnk

of the remaining brother nodes:

mi,j = min
x∈ni

ρ(cnj , x),

Mi,j = max
x∈ni

ρ(cnj , x).

The node ni is discarded if there is a brother node nj such that the query ball is
entirely placed outside the ring around the center of nj containing all members
of ni:

either ρ(cnj , q) + rq < mi,j or ρ(cnj , q) − rq > Mi,j.

The covering radius and the hyperplane criterion require only to store the center
cn and the covering radius rn in each node n. The criterion based on the rings
requires more memory: each node stores the 2(k − 1) distances to the centers of
the brother nodes.

All the three described criteria are based on the notion of the center of a
node. The hyperplane based criterion requires moreover the object assignment
condition to be satisfied but it is ensured with the stopping condition of the
splitting procedure. Hence, all the three criteria can be applied simultaneously
to the indexing structure described in Subsection 4.2, and in this dissertation
we propose their combination as the complex criterion for acceleration of the
nearest neighbors search.

Figure 19 presents the experimental comparison of the performance for all
possible combinations of the three criteria. In a single form the most effective
criterion is the covering radius, the least effective is the hyperplane criterion
and the differences in performance among all three criteria are significant. In
case of the 100-nn search the covering radius alone is almost as powerful as
all the three criteria. Addition of the two remaining criteria does not increase

Analogy-Based Reasoning in Classifier Construction 331

0

500

1000

1500

2000

2500

3000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

radius
hyperplanes
rings
radius+hp
radius+rings
hp+rings
radius+hp+rings

0

1000

2000

3000

4000

5000

6000

7000

8000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

radius
hyperplanes
rings
radius+hp
radius+rings
hp+rings
radius+hp+rings

Fig. 19. The average number of distance computations per single object in 1-nn search
(the upper graph) and 100-nn search (the lower graph) with the use of the 2-means
based indexing tree, and with all the possible combinations of the three search pruning
criteria: The covering radius, the hyperplanes and the rings

the performance. The different behavior is observed in case of the 1-nn search:
none of them is comparable to the case where all the three criteria are applied.
Both the covering radius and the hyperplane cut are crucial for the performance
and only the rings based criterion can be removed with no significance loss in
the performance.

The presented results indicate that the combination of the different cri-
teria improves the performance of the k-nn search with a single criterion at
least for small values of k. On the other hand, in both cases of the 1-nn and
the 100-nn search addition of the memory consuming criterion based on rings
does not improve the combination of the two remaining criteria. This result
may suggest that the covering radius and the hyperplanes provide the optimal
pruning combination and there is no need to search for a more sophisticated
pruning mechanism.

4.7 Analysis of Searching Cost in the Indexing Tree

The most interesting question is how much the search process profits from the
additional cost due to the iterative splitting procedure presented in Algorithm

332 A. Wojna

0

200

400

600

800

1000

1200

1400

1600

1800

c94 c945 ches covt lett mush nurs pend sat segm shut spl

3means-iterative-3criteria

3apx.centers-iterative-3criteria

2centers-onestep-3criteria

2centers-onestep-1criterion

0

1000

2000

3000

4000

5000

6000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

3means-iterative-3criteria

3apx.centers-iterative-3criteria

2centers-onestep-3criteria

2centers-onestep-1criterion

Fig. 20. The average number of distance computations per single object in 1-nn search
(the upper graph) and 100-nn search (the lower graph) with the use of the index-
ing trees with the iterative 3-means, with the iterative 3-approximate-centers, and
with the one-step 2-centers splitting procedure, this last tree in two search variants:
With the combination of the 3 search pruning criteria and with the single covering
radius criterion

4 and the combined search pruning criterion from the previous subsection in
comparison to the case with the one-step procedure and a single pruning cri-
terion. The iterative procedure selects initial centers, assigns the data objects
to be split to the nearest centers and computes new centers of clusters. Then,
the assignment of the data objects to the centers and computation of the new
cluster centers is iterated as long as the same set of the cluster centers is gener-
ated in two subsequent iterations. The one-step procedure works as in the other
indexing trees BST, GHT, GNAT, SS-tree and M-tree. It stops after the first
iteration and uses the initial centers as the final ones. The globally farthest data
objects are used as the set of the initial centers both in the iterative and in the
non-iterative splitting procedure.

Figure 20 presents the cost of searching in the trees with the iterative k-
means, with the iterative k-approximate-centers and with the one-step k-centers
splitting procedure. The results both for the trees with the iterative procedures
and for the first tree with the one-step procedure are obtained with the use of
the combination of all the three search pruning criteria. The fourth column at
each data set presents the performance of the one-step based tree with the single

Analogy-Based Reasoning in Classifier Construction 333

covering radius criterion. We chose this criterion for comparison since it had the
best performance among all the three tested criteria (see Subsection 4.6). Except
for a single case we have observed that the performance of the one-step based
trees deteriorates while increasing k (it has been checked for k = 2, 3, 5 and
7). Then for comparison we have selected the most competitive value k = 2
(the exception was the 100-nn search in the data set splice, the case k = 5 has
provided the best performance, and hence, this case has been presented at the
graph instead of k = 2). In case of both iterative procedures the value k = 3 was
used since it is one of the most optimal values (see Subsection 4.4).

While comparing the performance of the iterative 3-means (the first column)
and the one-step 2-centers (the third column) procedures the profit from applying
the iterative procedure is noticeable. In case of the 1-nn search the savings range
from 20% (satimage) to 50% (nursery), in case of the 100-nn search the savings
are similar to the 1-nn case, except for a single data set splice where the saving
is 5%. These results indicate that replacing the one-step procedure with the
iterative 3-means procedure can improve the performance even twice.

The comparison between the third and the fourth column presents the profit
for the tree with the one-step procedure only from the application of the combined
search pruning criterion instead of the single one. For the 1-nn search the com-
bined criterion outperforms significantly the single one, in particular for the largest
data sets (census94, census94-95, covertype) the acceleration reaches up to several
times. For the 100-nn search the difference is not so large but it is still noticeable.
These results show that for the tree with the one-step splitting procedure the com-
plex criterion is crucial for the performance of the tree. In case of the tree with
the k-means splitting procedure the results are different, i.e., the difference in per-
formance between the single covering radius and the combined criteria is much
smaller (see Subsection 4.6). It indicates that the iterative k-means procedure has
very good splitting properties and the choice of the searchpruning criterion for this
case is not so crucial as for the non-iterative case.

The comparison between the first and the fourth columns shows that the tree
with the 3-means splitting procedure and the complex search pruning criterion
is always at least several tens percent more effective than the tree with the one-
step procedure and a single criterion. In case of the 1-nn search the former tree
is usually even several times more effective than the latter one.

We obtain different conclusions while comparing the iterative k-approximate-
centers (the second column) and the one-step (the third column) procedures. Al-
though for most of data sets the iterative procedure outperforms the non-iterative
one, the differences in the performance are usually insignificant and for the three
large data sets (census94, census94-95, letter) the performance of the iterative pro-
cedure is even worse than the performance of the non-iterative one. These results
indicate that in case of the tree with the k-approximate-centers the profit in the
performance is mainly due to the complex search criterion. Since the only feature
that differentiates the k-means and the k-approximate-centers procedures is how
the algorithm selects and represents the center of a cluster of data objects this fea-
ture seems to be an important issue for the performance of indexing trees.

334 A. Wojna

Uhlmann has introduced another type of an indexing structure: the vantage
point tree [78]. It is the binary tree constructed in such a way that at each node the
data objects are split with the use of the spherical cut. Given a node n the splitting
algorithmpicks an object p ∈ n, called the vantage point, and computes themedian
radius M , i.e., half of the data objects fromn fall inside the ball centered at the van-
tage point p with the radius M and half of them fall outside this ball. The objects
inside the ball {x ∈ n : ρ(p, x) ≤ M} are inserted into the left branch of the node
n and the objects outside the ball {x ∈ n : ρ(p, x) > M} are inserted into the right
branch. The vantage point tree is balanced and the construction takes O(n log n)
time in the worst case. While searching for the nearest neighbors of a query q the
branch with objects inside the ball is pruned if M +ρ(q, xnearest) < ρ(p, q) and the
branch with the objects outside the ball is pruned if M − ρ(q, xnearest) > ρ(p, q).
Yianilos has described an implementation of the vantage point tree with sampled
selection of the vantage point [95]. For the experimental comparison we have im-
plemented this structure as described by Yianilos.

Figure 21 presents the comparison of the performance of the trees with
the 2-means, with the 2-approximate-centers and with the vantage point split-
ting procedure (since the vantage point tree is a binary tree we use k = 2 in
all the tested trees to make them comparable). The result are presented only

0

2000

4000

6000

8000

10000

12000

14000

c94 ches lett mush nurs pend sat segm shut spl

2means

2apx.centers

vantage points

0

2000

4000

6000

8000

10000

12000

14000

c94 ches lett mush nurs pend sat segm shut spl

2means

2apx.centers

vantage points

Fig. 21. The average number of distance computations in 1-nn search (the upper graph)
and 100-nn search (the lower graph) with the use of the indexing trees with the k-means,
with the k-approximate-centers and with the vantage point splitting procedure

Analogy-Based Reasoning in Classifier Construction 335

0,01%

0,10%

1,00%

10,00%

100,00%

1 000 10 000 100 000 1 000 000Database size

D
is

ta
n

ce
 c

o
m

p
u

ta
ti

o
n

s

1-nn
100-nn

Fig. 22. The average reduction of the number of distance computations in relation to
linear search obtained by the 3-means based indexing tree with the 3 search pruning
criteria presented in percentage terms in dependence on the training set size

for 10 data sets because for the 2 largest data sets: census94-95 and cover-
type the experiments with the vantage point tree takes too much time. The
results show a large advantage of the trees based on the centers over the tree
based on the vantage points. It indicates that the center based representation
of tree nodes provides better search pruning properties than the vantage point
based representation.

An interesting question is how much of the searching cost the indexing tree
with the iterative splitting procedure and the three pruning criteria reduces
in relation to the linear scan of a training set. Figure 22 presents the average
reduction of the linear search cost for training sets of the different sizes (for the
six largest data sets from all 12 sets in Tables 1 and 2). A particularly advanced
acceleration level has been reached for the two largest data sets. The size of
the data set covertype is almost 400 thousand, whereas the average number of
distance comparisons per single object (the fourth column set from the left at
Figure 20) is less than 100 for the 1-nn search and close to 1300 for the 100-nn
search. It means that the 3-means based tree reduces the cost of searching 4000
times in case of the 1-nn search and 300 times in case of the 100-nn search.
For the second largest data set census94-95 (the second column set from the
left at Figure 20, the size almost 200 thousand) the reductions in cost are 400

336 A. Wojna

times and 60 times, respectively. This good performance has been reached both
due to the improved splitting procedure and due to the use of the complex
search criterion.

4.8 Comparison of Searching and Indexing Cost

The results from the previous subsection have proved that the k-means based
indexing tree is a good accelerator of searching for the nearest neighbors. The
question arises whether the cost of constructing a tree is not too large in com-
parison to the cost of searching.

Figure 23 presents the comparison between the number of computed distances
per single object in the indexing process (in other words the average cost of
indexing a single object) and the average number of the distances computed in
the 100-nn search.

The results for the k-means and for the k-approximate centers procedure are
similar. For k = 2 they are quite optimistic, for all the tested data sets except
shuttle the average cost of indexing a single object is several times lower than
the average cost of searching for the 100 nearest neighbors of a single object.

0

500

1000

1500

2000

2500

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2means-indexing 2means-search

3means-indexing 3means-search

5means-indexing 5means-search

0

500

1000

1500

2000

2500

3000

3500

4000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2apx.centers-indexing 2apx.centers-search

3apx.centers-indexing 3apx.centers-search

5apx.centers-indexing 5apx.centers-search

Fig. 23. The average number of distance computations per single object in the indexing
algorithm and in 100-nn search, with the use of the indexing trees with the k-means (the
upper graph) and with the k-approximate-centers (the lower graph) splitting procedure.
For each data set the first pair of columns represents the costs of indexing and searching
for k = 2, the second pair represents these costs for k = 3 and the third one for k = 5.

Analogy-Based Reasoning in Classifier Construction 337

It means that if the size of the training and the test set are of the same order
the main workload remains on the side of the search process. For the data sets
shuttle and mushroom the differences in the cost are smaller but it results from
the fact that the search process is more effective for these two data sets than for
the others.

The situation changes to worse while increasing the degree k. In case of
k = 5 the cost of indexing for the five data sets: chess, covertype, mushroom,
segment and shuttle is at least comparable and is sometimes higher than the cost
of searching. It has been mentioned in Subsection 4.4 that the computational
cost of searching is stable for k ≥ 3. On the other hand, the cost of indexing
increases significantly while increasing the degree k. It means that the larger
degree k the lower profit from applying the advanced indexing structure is. The
results from this subsection and Subsection 4.4 indicate that the best trade-off
between the indexing cost and the search performance is obtained for k = 3.
Increasing the value of k more increases the cost of indexing with no profit
from searching.

0

5

10

15

20

25

30

35

40

45

50

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2means 2apx.centers
3means 3apx.centers
5means 5apx.centers

0

5

10

15

20

25

30

35

40

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2means 2apx.centers

3means 3apx.centers

5means 5apx.centers

Fig. 24. The height of the tree (the upper graph) and the average number of itera-
tions in the splitting procedure (the lower graph) in the k-means based and in the
k-approximate-centers based indexing tree. For each data set the first pair of columns
represents the height (at the upper graph) and the iterations (at the lower graph) for
the 2-means based and the 2-approximate-centers based tree, the second pair represents
these quantities for k = 3 and the third one for k = 5.

338 A. Wojna

We have analyzed the case of the 100-nn search. In many application, e.g.,
while searching for the optimal value of k or for some topological properties in a
data set, there is the need to search for a large number of the nearest neighbors.
In this case the presented trees keep the appropriate balance between the costs
of construction and searching. The results for the 1-nn case do not lead to such
an unequivocal conclusion. The usefulness of the presented structures for queries
with a small k depends more on the specific properties of a data set and on the
number of queries to be performed.

The upper graphatFigure 24 provides some information about the shape of the
indexing trees. The fact that the height of the trees, i.e., the distance between the
root and the deepest leaf, exceeds rarely 25, indicates that the shape of the trees
is quite balanced: they do not contain very long thin branches. The lower graph
presents the average number of iterations in the splitting procedures. In many ex-
periments, especially for k = 2, this number does not exceed 5 what indicates that
the construction cost in case of the tree with the iterative splitting procedure is
only a few times larger than in case of the tree with the non-iterative procedure.

4.9 Summary

In this section we analyze the different properties of distance based indexing
algorithms with center based splitting procedures and search for the optimal
parameters of the indexing algorithm. As the result we introduce the following
new methods to be used in construction of an indexing structure and in the
search process:

– the iterative procedure for splitting nodes in an indexing tree (Subsection
4.2) generalizing the k-means algorithm; the procedure has been presented
in two versions: the specific case where the weighted joint city-block and
VDM metric is used and the general case of any metric,

– the method for selection of the initial centers in the node splitting procedure
(Subsection 4.3); in this method, as distinguished from Brin’s method [18],
the initial centers are searched globally among all the objects from a given
tree node instead of in a sample,

– a complex search pruning criterion combining three different single criteria
(Subsection 4.6).

We have compared the three methods for selection of the initial centers in the
iterative splitting procedure: random, sampled and global methods. Savaresi and
Boley have reported that the 2-means algorithm has good convergence properties
[70] so the selection of the initial centers is not very important. This result
has been confirmed by the experimental results for most of the tested data
sets. However, it was obtained for an infinite theoretical model and there are
real-life data sets where the global selection of the initial centers gives a little
better performance than the other two methods. We have also observed that
the performance of the indexing trees of different splitting degrees is comparable
except for the tree of the degree k = 2 that has a little worse performance

Analogy-Based Reasoning in Classifier Construction 339

than the trees of the degrees k ≥ 3. On the other hand, the cost of indexing
increases significantly while increasing the degree k. These observations lead
to the conclusion that the degree k = 3 is the optimal trade-off between the
performance of the search process and the cost of indexing.

We have compared the significance of the three different search pruning cri-
teria using the center based representation of tree nodes. Two of criteria are
based on the covering radius and on the separating hyperplanes, and the third
criterion is based on rings that require more information to be stored at the tree
nodes. The experimental results indicate that the most effective criterion is the
covering radius. In searching for the 100 nearest neighbors this single criterion
is as efficient as all the three criteria combined together. In the case of the 1-nn
search none of the tree criteria alone is comparable to all the three criteria used
simultaneously, but the combination of the two: the covering radius and the hy-
perplane criterion is. These results indicate that the two simple criteria define
the optimal combination and there is no need to search for a more sophisticated
mechanism like the rings based criterion.

The center based indexing trees outperform the vantage point trees. How-
ever, the performance of the center based tree still depends much on how the
center of a set of data objects is constructed or selected. While comparing the
iterative k-means algorithm to the non-iterative one the advantage of the for-
mer one is noticeable but the k-means algorithm is applicable only to vector
spaces. As a general solution we have proposed the approximate centers that
replace the means by centers selected from a sample of objects. Although there
is some evidence that the approximate centers perform a little better than the
non-iterative centers the difference does not seem to be significant. The gap
between the performance of the means and the approximate centers is much
larger. These observations indicate that the representation of the center of a
set of data objects is crucial for the effectiveness of the center based search
pruning and we find the problem of the center selection an important issue for
future research.

The experimental results show that the tree with the iterative 3-means split-
ting procedure and the combined search pruning criteria is up to several times
more effective than the one-step based tree with a single criterion. A particu-
larly advanced acceleration level in comparison to the linear search has been
reached in case of the largest data sets. The presented structure has reduced
the 1-nn search cost 4000 times in case of the data set covertype and 400
times in case of the data set census94-95. During the 100-nn search the re-
ductions of the performance cost are 300 and 60 times, respectively. These
results show the great capability of k-nn based methods in applications to
large databases.

It is known that bottom-up constructions give a very good performance but
such an immediate construction requires O(n2) time. Brin, in conclusions of
[18], has considered the iterative transformation of the tree from a top-down
construction to a bottom-up construction in such a way that at each iteration the
tree is constructed with the use of the structure from the previous iteration. Such

340 A. Wojna

an approach can result in an indexing structure that reflects more topological
properties of a data set than a tree constructed by the top-down method. We
find it interesting to instantiate this idea.

The presented indexing and searching method is also described in [91, 92]. It
was implemented with the programming language Java and it is used to accel-
erate the k nearest neighbors classifier in the system RSES [8, 73].

5 Neighborhood-Based Classification Methods

Neighborhood-based classification methods are investigated in this section.

5.1 Estimating the Optimal Neighborhood Size

In the experiments we noticed that the accuracy of the k-nn classifier depends
significantly on the number k and different k are appropriate for different data
sets. Therefore it is important to estimate the optimal value of k before classifi-
cation and in this subsection we consider this problem.

Since the optimal value k depends on the data set, we present an algorithm
that estimates this optimal value from a training set. The idea is that the leave-
one-out classification is applied to the training set in the range of values 1 ≤ k ≤
kmax and k with the best leave-one-out accuracy is chosen to be used for a test
set. Applying it directly requires repeating the leave-one-out estimation kmax

times. However, we emulate this process in time comparable to the single leave-
one-out test for k equal to the maximum possible value k = kmax. Algorithm 7
implements this idea.

The function getClassificationV ector(x, kmax) returns the decision of the
k-nn classifier for a given object x for the subsequent values of k in the range
1 ≤ k ≤ kmax. After calling this function for all training objects x ∈ Utrn the
algorithm compares the total accuracy of different values k for the whole set
Utrn and it selects the value k with the maximum accuracy.

At the beginning the function getClassificationV ector(x, kmax) finds the
kmax training objects from Utrn \ {x} that are nearest to the object x. This is
the most time-consuming operation in this function and performing it once in-
stead of for each value 1 ≤ k ≤ kmax saves a significant amount of performance
time. Then the function counts the votes for particular decisions for successive
values of k and for each k it stores the most frequent decision as the result
of the classification of the object x. In this way it implements the majority
voting model but by analogy one can implement other voting models of the
k-nn classifier.

To find the kmax nearest training objects from Utrn \ {x} one can use the
indexing and searching method described in Section 4 with the small modifica-
tion: the searching algorithm ignores the object x during search and it does not
add it to the set of the nearest neighbors.

The setting kmax = 100 makes the algorithm efficient enough to apply it to
large data sets and we use this setting in further experiments. The maximum

Analogy-Based Reasoning in Classifier Construction 341

Algorithm 7. The function findOptimalK estimating the optimal value k from
a training set Utrn in the range 1 ≤ k ≤ kmax

function findOptimalK(kmax)
for each x ∈ Utrn

Ax := getClassificationV ector(x, kmax)
return arg max1≤k≤kmax |{x ∈ Utrn : Ax[k] = dec(x)}|

function getClassificationV ector(x, kmax)
n1, . . . , nkmax := the sequence of the kmax nearest neighbors of x

sorted in the increasing order of the distance to x
for each dj ∈ Vdec votes[dj] := 0
mostFrequentDec :=arg maxdj∈Vdec

|{x ∈ Utrn : dec(x) = dj}|
for k := 1 to kmax

votes[dec(nk)] := votes[dec(nk)] + 1
if votes[dec(nk)] > votes[mostFrequentDec]

then mostFrequentDec := dec(nk)
Ax[k] := mostFrequentDec

return Ax

Fig. 25. The classification accuracy for the data set letter in dependence on the para-
meter k

possible value of kmax is the size of the training set |Utrn|. The interesting
question is how much the setting kmax = 100 affects the classification results. To
answer this question the following experiment was performed for the data sets
from Table 1: for the smallest two data sets: chess and splice the k-nn accuracy
was computed for all possible values of k and for the 8 remaining data sets
accuracy was computed for all values k with the maximum value kmax = 500.
For each data set the classification accuracy was measured with the leave-one-out
method applied to the training set.

342 A. Wojna

Fig. 26. The classification accuracy for the data sets census94 and splice in dependence
on the parameter k

For 8 of the tested data sets (all the sets except census94 and splice) the
maximum accuracy was obtained for small values of k (always ≤ 5) and while
increasing k the accuracy was significantly falling down (see, e.g., Figure 25).

The dependence between the accuracy and the value k for the two remaining
data sets is presented at Figure 26. For the data set splice the accuracy remains
stable in a wide range of k, at least for the whole range 1 ≤ k ≤ 1000, and it
starts to fall down for k > 1000. However, the maximum accuracy was obtained
at the beginning of this wide range: for k = 15. In case of the data set census94
accuracy becomes stable for k ≥ 20 and it remains stable to the maximum
tested value k = 500. We observed that the maximum accuracy was obtained for
k = 256 but the difference to the accuracy for the best k in the range 1 ≤ k ≤ 100
was insignificant: accuracy for k = 24 was only 0.04% lower than for k = 256.

The conclusion is that for all the tested data sets the accuracy reaches a value
close to the maximum for a certain small value k. Then either it starts quickly
to fall or it remains stable for a wide range of k, but then the fluctuations in the
accuracy are very small. The conclusion is that accuracy close to the maximum

Analogy-Based Reasoning in Classifier Construction 343

can be always found in the range 1 ≤ k ≤ 100. Therefore, kmax = 100 provides
a good balance between the optimality of the results and the searching time and
we assume this setting in further experiments.

5.2 Voting by k Nearest Neighbors

During the classification of any test object x in the k-nn classifier the k nearest
neighbors of x vote for different decisions and the classifier chooses the best
decision according to a certain voting model.

The most common majority voting model [31] is given in Equation 4. This
model assigns the same weight to each object in the set of the k nearest neighbors
NN(x, k).

In the literature there are a number of other voting models that take into
consideration the distances from the neighbors to the test object x [27, 72]. It
has been argued that for a finite training set Utrn the distance weighted voting
models can outperform the majority voting model [4, 58, 84, 93, 96].

Dudani [27] proposed the inverse distance weight where the weight of a neigh-
bor vote is inversely proportional to the distance from this neighbor to the test
object x. In this way closer neighbors are more important for classification than
farther neighbors. In the dissertation we consider the modified version of Du-
dani’s model, the inverse square distance weights:

decweighted−knn(x) := arg max
dj∈Vdec

∑
y∈NN(x,k):dec(y)=dj

1
ρ(x, y)2

. (7)

In the above model the weight of any neighbor vote is inversely proportional
to the square of the distance from this neighbor to the test object x. It makes
the weights more diversified than in Dudani’s model.

Empirical comparison of the two voting models: with the equal weights and
with the inverse square distance weights is discussed in Subsection 5.5.

5.3 Metric Based Generalization of Lazy Rule Induction

In this subsection we consider another approach to learning from examples based
on rule induction. Rule induction is one of the most popular approaches in
machine learning [7, 21, 42, 60, 74]. Our goal is to combine the k nearest neighbors
method with rule induction.

The k-nn model implements the lazy learning approach [6, 34]. In this ap-
proach the model is assumed to be induced at the moment of classification. For
the k-nn it is implemented in a natural way because the k nearest neighbors
are searched in relation to a test object. In this subsection we consider a lazy
approach to rule based classification. Bazan [6] has proposed an effective lazy
rule induction algorithm for data with nominal attributes. In this subsection,
we make the first step towards combining Bazan’s algorithm with the k near-
est neighbors method: we extend this algorithm to the case of data with both
numerical and nominal attributes. The extension uses the assumption that a

344 A. Wojna

linear weighted metric from Equation 6 is provided for data. We show that the
proposed extension generalizes Bazan’s method.

The main feature of rule based classifiers is the set of rules used for
classifying objects.

Definition 6. A rule consists of a premise and a consequent:

ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj .

The premise is conjunction of attribute conditions and the consequent indicates
a decision value. A rule is said to cover an example x = (x1, . . . , xn), and vice
versa, the example x is said to match the rule, if all the attribute conditions in
the premise of the rule are satisfied by the object values: xi1 = v1, . . . , xip = vp.
The consequent dec = dj denotes the decision value that is assigned to an object
if it matches the rule.

In rule based classifiers a set of rules is induced from a training set. The important
properties of rules are consistency and minimality [74].

Definition 7. A rule ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj is consistent with
a training set Utrn if for each object x ∈ Utrn matching the rule the decision of
the rule is correct, i.e., dec(x) = dj.

The notion of consistency describes the rules that classify correctly all the cov-
ered objects in a given training set.

Definition 8. A consistent rule ai1 = v1 ∧ . . .∧aip = vp ⇒ dec = dj is minimal
in a training set Utrn if for each proper subset of conditions occurring in the
premise of this rule C ⊂ {ai1 = v1, . . . , aip = vp} the rule built from these
conditions, i.e.,

∧
C ⇒ dec = dj is inconsistent with the training set Utrn.

The notion of minimality selects the consistent rules of the minimum length in
terms of the number of conditions in the premise of a rule. These rules maximize
also the set of covered objects in a training set.

The complete set of all minimal consistent rules has good theoretical prop-
erties: it corresponds to the set of all rules generated from all local reducts of
a given training set [94]. However, the number of all minimal consistent rules
can be exponential in relation both to the number of attributes |A| and to the
training set size |Utrn| and computing all minimal consistent rules is often infea-
sible [90]. Therefore many rule induction algorithms are based on a smaller set
of rules [7, 42].

However, in the dissertation we consider a rule based classification model
that allows us to classify objects on the basis of the set of all minimal consistent
rules without computing them explicitly. The decision for each object to be
classified is computed using the rules covering the object. Usually in a given set
of rules they are not mutually exclusive and more than one rule can cover a test
object. Therefore a certain model of voting by rules is applied to resolve conflicts
between the covering rules with different decisions.

Analogy-Based Reasoning in Classifier Construction 345

Algorithm 8. Algorithm decisionlocal−rules(x) classifying a given test object x
based on lazy induction of local rules

for each dj ∈ Vdec support[dj] := ∅
for each y ∈ Utrn

if rlocal(x, y) is consistent with Utrn then
support[dec(y)] := support[dec(y)] ∪ {y}

return arg maxdj∈Vdec
|support[dj]|

Definition 9. The support of a rule ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj in
a training set Utrn is the set of all the objects from Utrn matching the rule and
with the same decision dj:

support(ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj) =
{x = (x1, . . . , xn) ∈ Utrn : xi1 = v1 ∧ . . . ∧ xip = vp ∧ dec(x) = dj}.

In the dissertation, we focus on the commonly used rule based classification
model using the notion of the rule support:

decrules(x, R) := arg max
dj∈Vdec

∣∣∣∣∣∣
⋃

α⇒dec=dj∈R: x satisfies α

support(α ⇒ dec = dj)

∣∣∣∣∣∣ .
(8)

where R is a given set of rules used by the classifier. This model computes the
support set for each rule r ∈ R covering a test object x and then it select the
decision with the greatest total number of the supporting objects.

Algorithm 8 presents Bazan’s lazy rule induction algorithm
decisionlocal−rules [6] that simulates this rule support based classifier decrules

where R is the complete set of all minimal consistent rules. The algorithm was
designed originally only for data with nominal attributes and it is based on the
following notion of a local rule:

Definition 10. The local rule for a given pair of a test object x and a training
object y ∈ Utrn is the rule rlocal(x, y) defined by∧

ai:yi=xi

ai = yi ⇒ dec = dec(y).

The conditions in the premise of the local rule rlocal(x, y) are chosen in such a
way that both the test object x and the training object y match the rule and the
rule is maximally specific relative to the matching condition. This is opposite
to the definition of a minimal consistent rule where the premise of a rule is
minimally specific. However, there is the following relation between minimal
consistent rules and local rules:

Fact 11. [6] The premise of a local rule rlocal(x, y) for a test object x and a
training object y ∈ Utrn implies the premise of a certain minimal consistent rule
if and only if the local rule rlocal(x, y) is consistent with the training set Utrn.

346 A. Wojna

It means that if a local rule is consistent with a training set then it can be
generalized to a certain minimal consistent rule covering both the test and the
training object and this property is used to compute the support set of minimal
consistent rules matched by a test object in Algorithm 8. Instead of computing
all minimal consistent rules covering a given test object x to be classified the
algorithm generates the local rules spanned by the object x and each training
object y ∈ Utrn, and next, it checks the consistency of each local rule against the
training set Utrn. If the local rule rlocal(x, y) is consistent with the training set,
then the object y supports a certain minimal consistent rule and the algorithm
uses y to vote. Hence, the following conclusion can be drawn:

Corollary 12. [6] The classification result of the rule support based classifier
from Equation 8 with the set R of all minimal consistent rules and the lazy local
rule induction classifier (Algorithm 8) is the same for each test object x:

decrules(x, R) = decisionlocal−rules(x).

To check the consistency of a local rule rlocal(x, y) with the training set Utrn

the algorithm checks for each object z ∈ Utrn with the decision different from y:
dec(z) �= dec(y) whether z matches the local rule. Hence, the time complexity
of the lazy rule induction algorithm for a single test object is O(|Utrn|2 |A|) and
the classification of the whole test set Utst has the time complexity O(|Utrn|2
|Utst| |A|). It means that lazy induction of rules reduces the exponential time
complexity of the rule based classifier to the polynomial time. This makes it
possible to apply this algorithm in practice.

The original version of the algorithm was proposed for data only with nominal
attributes and it uses equality as the only form of conditions on attributes in the
premise of a rule (see Definition 6). We generalize this approach to data with
both nominal and numerical attributes and with a metric ρ defined by linear
combination of metrics for particular attributes (see Equation 6). Equality as
the condition in the premise of the rule from Definition 6 represents selection of
attribute values, in this case always a single value. We replace equality conditions
with a more general metric based form of conditions. This form allows us to select
more than one attribute value in a single attribute condition, and thus, to obtain
more general rules.

First, we define the generalized versions of the notions of rule and consistency.

Definition 13. A generalized rule consists of a premise and a consequent:

ρi1(ai1 , v1) ≤ r1 ∧ . . . ∧ ρip(aip , vp) < rp ⇒ dec = dj .

Each condition ρij (aij , vj) ≤ rj or ρij (aij , vj) < rj in the premise of the gener-
alized rule is described as the range of acceptable values of a given attribute aiq

around a given value vq. The range is specified by the distance function ρiq that
is the component of the total distance ρ and by the threshold rq.

The definition of rule consistency with a training set for the generalized rules is
analogous to Definition 7.

Analogy-Based Reasoning in Classifier Construction 347

Definition 14. A consistent generalized rule ρi1(ai1 , v1) < r1 ∧ . . .∧ρip(aip , vp)
< rp ⇒ dec = dj is minimal in a training set Utrn if for each attribute
aiq ∈ {ai1 , . . . , aip} occurring in the premise of the generalized rule the rule
ρi1(ai1 , v1) < r1 ∧ . . . ∧ ρiq (aiq , vq) ≤ rq ∧ . . . ∧ ρip(aip , vp) < rp ⇒ dec = dj with
the enlarged range of acceptable values on this attribute (obtained by replacing
< by ≤ in the condition of the original rule) is inconsistent with the training
set Utrn.

Observe, that each condition in the premise of a minimal consistent gener-
alized rule is always a strict inequality. It results from the assumption that a
training set Utrn is finite.

For the generalized version of the classifier based on the set of all minimal con-
sistent rules we use the notion of a generalized rule center.

Definition 15. An object (x1, . . . , xn) is center of the rule from Definition 13
if for each attribute aij from its premise we have xij = vj.

Observe, that a rule can have many centers if there are attributes that do not
occur in the premise of the rule.

In the generalized rule support based classification model the support is
counted using the set R equal to the set of all generalized minimal consistent
rules centered at a test object x:

decisiongen−rules(x, R) :=

arg max
dj∈Vdec

∣∣∣∣∣∣
⋃

α⇒dec=dj∈R: xis a center of α⇒dec=dj

support(α ⇒ dec = dj)

∣∣∣∣∣∣ .(9)

Although in the generalized version we consider only minimal consistent rules
centered at a test object the number of these rules can be exponential as in the
non-generalized version:

Fact 16. For arbitrary large set of attributes A there is a training set Utrn and
a test object x such that the number of minimal consistent rules centered at x is
exponential with respect both to the number of attributes |A| and to the size of
the training set |Utrn|.
Proof. We assume that the number of attributes n = |A| is even and the decision
is binary: Vdec = {0, 1}. In the proof we use any linear metric from Equation
6 to define distance between attribute values and we assume only that each
attribute has at least two different values, let us assume that {0, 1} ⊆ Vi. We
define the training set Utrn consisting of n

2 + 1 objects. The first object x0 has
all the attribute values and the decision value equal to 0: x0

i = 0, dec(x0) = 0.
Any object xj from the remaining n

2 objects x1, . . . , x
n
2 has the two values of

neighboring attributes and the decision value equal to 1: xj
2j−1 = xj

2j = 1,
dec(xj) = 1 and the remaining attributes have the value equal to 0: xj

i = 0
(i �= 2j−1, 2j). Consider the object x = x0 and minimal consistent rules centered

348 A. Wojna

at x. To exclude each of the training object xj a minimal consistent rule contains
the condition with exactly one of the two attributes that have the value 1 in
the object xj . On the other hand the rule can contain the condition with any
attribute from each pair a2j−1, a2j . It means the for each selection function
sel : {1, . . . , n

2 } → {0, 1} there is the corresponding minimal consistent rule:
∧

1≤j≤ n
2

ρ2j−sel(j)(a2j−sel(j) , x
0
2j−sel(j)) < ρ2j−sel(j)(0, 1) ⇒ dec = 0.

Each of the above rules is unique. Hence, the number of minimal consistent rules
centered at x is 2

n
2 and we obtain the following exponential relation between this

number of minimal consistent rules denoted by Rx and the number of attributes
and the training set size:

Rx = 2|Utrn|−1 = (
√

2)|A|.
�
Since it is impossible to enumerate all generalized minimal consistent rules in
practice we propose to simulate the generalized rule support based classification
model from Equation 9 by analogy to Algorithm 8. First, we introduce the
definition of a generalized local rule analogous to Definition 10. The conditions
in a generalized local rule are chosen in such a way that both the test and the
training object match the rule and the conditions are maximally specific.

Definition 17. The generalized local rule for a given pair of a test object x and
a training object y ∈ Utrn is the rule rgen−local(x, y):∧

ai∈A

ρi(ai, xi) ≤ ρi(yi, xi) ⇒ dec = dec(y).

For each attribute ai the range of acceptable values in the corresponding condition
of the generalized local rule is defined as the set of values whose distance to the
attribute value xi in the test object is less or equal to the distance from the
attribute value yi in the training object to xi.

First, we identify the relation between the original and the generalized notion
of a local rule. Let us consider the case where to define the generalized rules the
Hamming metric described in Subsection 2.4 is used for all the attributes, both
the nominal and the numerical ones.

Fact 18. For the Hamming metric the notion of the generalized local rule
rgen−local(x, y) in Definition 17 is equivalent to the notion of the local rule
rlocal(x, y) in Definition 10.

Proof. Consider a single attribute ai. If the values of x and y on this attribute
are equal xi = yi the corresponding condition in the local rule rlocal(x, y) has the
form of equality ai = yi. The attribute distance in the Hamming metric between
two equal values is 0 so the corresponding condition in the generalized local rule
has the form ρi(ai, xi) ≤ 0. The distance between two attribute values in the

Analogy-Based Reasoning in Classifier Construction 349

Hamming metric is 0 if and only if these two value are equal. Hence, in case of
xi = yi the corresponding conditions ai = yi and ρi(ai, xi) ≤ 0 in the local and
in the generalized local rule, respectively, are equivalent.

If the values of x and y on the attribute ai are different xi �= yi the condition
corresponding to the attribute ai does not occur in the local rule rlocal(x, y). This
means that the local rule accepts all values on this attribute. In the generalized
local rule rgen−local(x, y) the corresponding condition has the form ρi(ai, xi) ≤ 1.
But in the Hamming metric the attribute distance between two values is always
either 0 or 1 so the condition ρi(ai, xi) ≤ 1 is satisfied for all the values of the
attribute ai too.

Hence, for each attribute the corresponding conditions in the local rule
rlocal(x, y) and in the generalized rule rgen−local(x, y) with the Hamming metric
are equivalent so the whole premises of these two rules are equivalent too.
�
Now we present an example how the presented generalization works for the case
of a non-trivial metric. We consider the joint city-block and VDM metric defined
in Subsection 3.1. Let us assume that the following training set is provided:

Object Age (A) Weight (W) Sex (S) BloodGroup (BG) Diagnosis

y1 35 90 M A Sick
y2 40 65 F AB Sick
y3 45 68 F AB Healthy
y4 40 70 M AB Healthy
y5 45 75 M B Sick
y6 35 70 F B Healthy
y7 45 70 M 0 Healthy

Age and Weight are the numerical attributes and Sex and BloodGroup are
the nominal attributes. We consider the following test object:

Object Age (A) Weight (W) Sex (S) BloodGroup (BG) Diagnosis

x1 50 72 F A ?

For the attribute BloodGroup there are 4 possible values: A, AB, B and 0.
To construct the generalized local rules for x1 we need to compute the attribute
distance from A to each other value:

ρBG(A, A) = 0,

ρBG(A, AB) = |P (Diagn = Healthy|A) − P (Diagn = Healthy|AB)| −
− |P (Diagn = Sick|A) − P (Diagn = Sick|AB)| =

=
∣∣∣∣0 − 2

3

∣∣∣∣−
∣∣∣∣1 − 1

3

∣∣∣∣ = 4
3
,

ρBG(A, B) = |P (Diagn = Healthy|A) − P (Diagn = Healthy|B)| −
− |P (Diagn = Sick|A) − P (Diagn = Sick|B)| =

=
∣∣∣∣0 − 1

2

∣∣∣∣−
∣∣∣∣1 − 1

2

∣∣∣∣ = 1,

350 A. Wojna

ρBG(A, 0) = |P (Diagn = Healthy|A) − P (Diagn = Healthy|0)| −
− |P (Diagn = Sick|A) − P (Diagn = Sick|0)| =
= |0 − 1| − |1 − 0| = 2.

Consider the generalized local rule rgen−local(x1, y1). Since the objects x1 and
y1have the same value A on the attribute BloodGroup, the local rule accepts
only this value on the attribute BloodGroup:

A ∈ [35; 65] ∧ W ∈ [54; 90] ∧ BG = A ⇒ Diagn = Sick.

No other training object except for y1 satisfies the premise of this rule so it is
consistent and it can be extended to a minimal consistent rule, e.g.,

BG = A ⇒ Diagn = Sick.

If we consider the generalized local rule rgen−local(x1, y2) for the objects x1
and y2, the distance between the values of x1 and y2 on the attribute BloodGroup
is ρBG(A, AB) = 4

3 . It makes the three values A, AB and B be accepted in the
rule rgen−local(x1, y2) on the attribute BloodGroup:

A ∈ [40; 60] ∧ W ∈ [65; 79] ∧ S = F ∧ BG ∈ {A, AB, B} ⇒ Diagn = Sick.

Now we obtain the inconsistent rule because, e.g., the object y3 satisfies the
premise of this rule and it has the inconsistent decision Diagn = Healthy.

The most important property of the presented generalization is the relation
between generalized minimal consistent rules and generalized local rules analo-
gous to Fact 11.

Theorem 19. The premise of the generalized local rule rgen−local(x, y) for a
test object x and a training object y ∈ Utrn implies the premise of a certain
generalized minimal consistent rule centered at x if and only if the generalized
local rule rlocal(x, y) is consistent with the training set Utrn.

Proof. First, we show that if the generalized local rule rgen−local(x, y) is consis-
tent with the training set Utrn it can be extended to the generalized minimal
rule centered at x. We define the sequence of rules r0, . . . , rn in the following
way. The first rule in th sequence is the local rule r0 = rgen−local(x,y). To define
each next rule ri we assume that the previous rule ri−1:∧

1≤j<i

ρj(aj , xj) < Mj

∧
i≤j≤n

ρj(aj , xj) ≤ ρj(yj , xj) ⇒ dec = dec(y).

is consistent with th training set Utrn and the first i−1 conditions of the rule ri−1
are maximally general, i.e., replacing any strong inequality ρj(aj , xj) < Mj for
j < i by the weak makes this rule inconsistent. Let Si be the set of all the object
that satisfy the premise of the rule ri−1 with the condition on the attribute ai

removed:

Si = {z ∈ Utrn : z satisfies
∧

1≤j<i

ρj(aj , xj) < Mj

∧
i<j≤n

ρj(aj , xj) ≤ ρj(yj , xj)}.

Analogy-Based Reasoning in Classifier Construction 351

In the rule ri the i-th condition is maximally extended in such way that the
rule remains consistent. It means that the range of acceptable values for the
attribute ai in the rule ri has to be not larger than the attribute distance from x
to any object in Si with a decision different from dec(y). If Si does not contain
an object with a decision different from dec(y) the range remains unlimited:

Mi =
{∞ if ∀z ∈ Si dec(z) = dec(y)

min{ρi(zi, xi) : z ∈ Si ∧ dec(z) �= dec(y)} otherwise.
(10)

If we limit the range of values on the attribute ai in the rule ri by the Mi with
the strong inequality in the condition:∧
1≤j<i

ρj(aj , xj) < Mj∧ρi(ai, xi)<Mi

∧
i<j≤n

ρj(aj , xj) ≤ ρj(yj , xj) ⇒ dec=dec(y)

then it ensures that the rule ri remains consistent. On the other hand, the value
of Mi in Equation 10 has been chosen in such a way that replacing the strong
inequality by the weak inequality or replacing the range by a value larger than
Mi causes the situation where a certain object with a decision different from
dec(y) satisfies the condition on the attribute ai and the whole premise of the
rule ri, i.e., the rule ri becomes inconsistent.

Since ri−1 was consistent the range Mi is greater than the range for the
attribute ai in the rule ri−1: Mi > ρ(yi, xi). Hence, the ranges for the previous
attributes M1, . . . , Mi−1 remain maximal in the rule ri: widening of one of these
ranges in the rule ri−1 makes an inconsistent object match ri−1 and the same
happens for the rule ri.

By induction the last rule rn :
∧

1≤j≤n ρj(aj , xj) < Mj ⇒ dec = dec(y) in the
defined sequence is consistent too and all the conditions are maximally general.
Then rn is consistent and minimal. Since the premise of each rule ri−1 implies
the premise of the next rule ri in the sequence and the relation of implication
is transitive the first rule r0 that is the generalized local rule rgen−local(x, y)
of the objects x, y implies the last rule rn that is a minimal consistent rule.
Thus we have proved the theorem for the case when the generalized local rule is
consistent.

In case where the generalized local rule rgen−local(x, y) is inconsistent each
rule centered at x implied by rgen−local(x, y) covers all objects covered by
rgen−local(x, y), in particular it covers an object causing inconsistency. Hence,
each rule implied by rgen−local(x, y) is inconsistent too.
�

The above theorem allows to define an effective generalized version of the
local rule based algorithm simulating the rule support based classifier (see Al-
gorithm 8). Algorithm 9 works in the same way as the non-generalized version.
Instead of computing all the generalized minimal consistent rules centered at a
given test object x to be classified the algorithm generates the generalized local
rules spanned by the object x and each training object y ∈ Utrn and then checks
consistency of each local rule against the training set Utrn. The time complexity
of the generalized lazy rule induction algorithm is the same as the complexity of

352 A. Wojna

Algorithm 9. Algorithm decisiongen−local−rules(x) classifying a given test ob-
ject x based on lazy induction of the generalized local rules

for each dj ∈ Vdec support[dj] := ∅
for each y ∈ Utrn

if rgen−local(x, y) is consistent with Utrn then
support[dec(y)] := support[dec(y)] ∪ {y}

return arg maxdj∈Vdec
|support[dj]|

the non-generalized version: O(|Utrn|2 |Utst| |A|). Theorem 19 ensures that the
algorithm counts only those objects that are covered by a certain generalized
minimal consistent rule centered at x. Hence, we obtain the final conclusion.

Corollary 20. The classification result of the generalized rule support based
classifier from Equation 9 with the set R of all the generalized minimal con-
sistent rules centered at x and the generalized lazy local rule induction classifier
(Algorithm 9) is the same for each each test object x:

decisiongen−rules(x, R) = decisiongen−local−rules(x).

In this way we extended the effective lazy rule induction algorithm for data
with nominal attributes to the case of data with both nominal and numerical
attributes and with linear weighted distance provided.

5.4 Combination of k Nearest Neighbors with Generalized Lazy
Rule Induction

In this subsection we consider an approach from multistrategy learning, i.e., a
method combining more than one different approaches. We examine the combi-
nation of the k nearest neighbors method with rule induction. In the literature
there is a number of different solutions combining these two methods [25, 37, 54].
Contrary to the other solutions combining k-nn with rule induction we propose
the algorithm that preserves lazy learning, i.e., rules are constructed in lazy way
at the moment of classification like the nearest neighbors. The proposed com-
bination uses the metric based generalization of rules described in the previous
subsection.

For each test object x Algorithm 9 looks over all the training examples y ∈
Utrn during construction of the support sets support[dj]. Instead of that we can
limit the set of the considered examples to the set of the k nearest neighbors of x.
The intuition is that training examples far from a test object x are less relevant
for classification than closer objects. Therefore in the algorithm combining the
two approaches we use the modified definition of the rule support, depending on
a test object x:

Definition 21. The k-support of the generalized rule α ⇒ dec = dj for a test
object x is the set:

k − support(x, α ⇒ dec = dj) = {y ∈ NN(x, k) : y matches α ∧ dec(x) = dj}.

Analogy-Based Reasoning in Classifier Construction 353

The k-support of the rule contains only those objects from the original support
set that belong to the set of the k nearest neighbors.

Now, we define the classification model that combines the k-nn method with
rule induction by using the k-supports of the rules:

decisionknn−rules(x, R) :=arg max
dj∈Vdec

∣∣∣∣∣∣
⋃

r∈R: r centered in x

k−support(x, r)

∣∣∣∣∣∣ . (11)

In the above model R is the set of all generalized minimal consistent rules. The
difference between the generalized rule support based classifier decisiongen−rules

from Equation 9 and the combined classifier decisionknn−rules is that the com-
bined classifier counts only those objects supporting minimal consistent rules
that belong to the set of the k nearest neighbors.

The form of the definition of the combined classifier decisionknn−rules in
Equation 11 presents the difference between the combined classifier and the pure
rule based classifiers described in the previous subsection. Now, we consider the
combined classifier from the point of view of the k nearest neighbors method.

Fact 22. The combined classifier decisionknn−rules can be defined by the equiv-
alent formula:

decisionknn−rules(x, R) := arg max
di∈Vdec

∑
y∈NN(x,k):dec(y)=di

δ(y, R) (12)

where the value of δ(y) is defined by

δ(y) :=
{

1 if ∃r ∈ R centered in x supported by y
0 otherwise

and R is the set of all generalized minimal consistent rules for the training set
Utrn.

The above fact shows that the combined classifier presented in this subsection
can be considered as a special sort of the k nearest neighbors method: it can be
viewed as the k-nn classifier with the specific rule based zero-one voting model.
Such a zero-one voting model is a sort of filtering: it excludes some of the k
nearest neighbors from voting. Such a voting model can be easily combined with
other voting models, e.g., with the inverse square distance weights defined in
Equation 7:

decweighted−knn−rules(x, R) := arg max
di∈Vdec

∑
y∈NN(x,k):dec(y)=di

δ(y, R)
ρ(x, y)2

. (13)

As for the generalized rule support classifier we propose an effective algo-
rithm simulating the combined classifier decisionknn−rules based on the gener-
alized local rules. The operation of consistency checking for a single local rule

354 A. Wojna

Algorithm 10. Algorithm decisiongen−local−knn−rules(x) simulating the classi-
fier decisionknn−rules(x) with lazy induction of the generalized local rules

for each dj ∈ Vdec support[dj] := ∅
neighbor1, . . . , neighbork := the k nearest neighbors of x

sorted from the nearest to the farthest object
for each i := 1 to k

if rgen−local(x,neighbori) is consistent
with neighbor1, . . . , neighbori−1 then

support[dec(neighbori)] :=support[dec(neighbori)]∪{neighbori}
return arg maxdj∈Vdec

|support[dj]|

in Algorithm 9 takes O(|Utrn| |A|) time. If the linear weighted distance from
Equation 6 is used we can use the following fact to accelerate the consistency
checking operation in the local rule based algorithm for the combined classifier
decisionknn−rules:

Fact 23. For each training object z ∈ Utrn matching a generalized local rule
rgen−local(x, y) based on a linear weighted distance ρ the distance between the
objects x and z is not greater than the distance between the objects x and y:

ρ(x, z) ≤ ρ(x, y).

Proof. The generalized local rule rgen−local(x, y) for a test object x = (x1, . . . ,
xn) and a training object y = (y1, . . . , yn) has the form∧

ai∈A

ρi(ai, xi) ≤ ρi(yi, xi) ⇒ dec = dec(y).

If z = (z1, . . . , zn) matches the rule then it satisfies the premise of this rule. It
means that for each attribute ai ∈ A the attribute value zi satisfies the following
condition: ρi(zi, xi) ≤ ρi(yi, xi). Hence, we obtain that the distance between the
objects x and z is not greater than the distance between the objects x and y:

ρ(x, z) =
∑
ai∈A

wiρi(zi, xi) ≤
∑
ai∈A

wiρi(yi, xi) = ρ(x, y).
�

The above fact proves that to check consistency of a local rule rgen−local(x, y)
with a training set Utrn it is enough to check only those objects from the training
set Utrn that are closer to x than the object y.

Algorithm 10 presents the lazy algorithm simulating the classifier
decisionknn−rules(x, R) combining the k nearest neighbors method with rule
induction. The algorithm follows the scheme of the generalized local rule based
algorithm described in the previous subsection (see Algorithm 9). There are two
differences. First, only the k nearest neighbors of a test object x are allowed
to vote for decisions. Second, the consistency checking operation for each local
rule rgen−local(x, y) checks only those objects from the training set Utrn that

Analogy-Based Reasoning in Classifier Construction 355

are closer to x than the object y. Thus the time complexity of the consistency
checking operation for a single neighbor is O(k |A|). For a single test object
the consistency checking operation is performed once for each of the k nearest
neighbors. Hence, the cost of consistency checking in the whole procedure test-
ing a single object is O(k2 |A|). In practice, it takes less time than searching for
the k nearest neighbors. In this way we have obtained an important property
of the proposed combination: addition of the rule induction to the k nearest
neighbors algorithm does not lengthen significantly the performance time of the
k-nn method.

Algorithm 10 simulates the classifier decisionknn−rules(x, R) correctly only
if the distances from a test object x to training objects are different. To omit
this assumption the algorithm requires two small changes. First, the procedure
searching for the k nearest neighbors of x returns all objects that are equally
distant from x as the k-th nearest neighbor of x. It means that sometimes the
algorithm considers more than k nearest neighbors of x. Second, in the procedure
checking consistency of a rule rgen−local(x, neighbori) the algorithm checks also
all the neighbors neighbori+1, . . . , neighbori+l that are equally distant from x
as the neighbor neighbori.

5.5 Experimental Results for Different Voting Models

In this subsection we compare the performance of the k-nn method with different
voting models described in the previous subsections. Four voting models are
compared: the majority voting model with equal weights defined in Equation 4,
the inverse square distance weights (see Equation 7), the zero-one voting model
using generalized minimal consistent rules to filter objects (see Equation 12) and
the combination of the last two methods, i.e., the inverse square distance weights
with rule based filtering (see Equation 13).

On the basis of the results from Section 3 we choose two most effective
metrics to be used in the experiments. The first tested metric is the joint city-
block and VDM metric (see Subsection 3.1) with the attribute weighting method
optimizing distance (see Subsection 3.4) and the second tested metric is the
joint DBVDM and VDM metric (see Subsection 3.2) with the same attribute
weighting method.

To compare the voting models we performed a number of experiments for the
10 benchmark data sets presented in Table 1. Each data set was partitioned into a
training and a test set as described in Subsection 2.7. For each data set and for each
votingmodel the k nearest neighborsmethod was trained and tested 5 times for the
same partition of the data set and the average classification error was calculated
for comparison. In each test first the metric was induced from the training set, then
the optimal value of k was estimated from the training set in the range 1 ≤ k ≤ 200
withAlgorithm7 andfinally, the test part of a data setwas testedwith thek nearest
neighbor method for the previously estimated value of k.

Both in case of the joint city-block and VDM metric and in case of the joint
DBVDM and VDM metric all the tests for the data set mushroom gave the error
0% and all the tests for the data set shuttle gave an error not greater than 0.1%.

356 A. Wojna

Since the classification error for these two data sets is always very small it does
not provide reliable results to compare different voting models and we focus on
the 8 remaining data sets: census94, chess, letter, nursery, pendigits, satimage,
segment and splice.

First, we consider the weighted joint city-block and VDM metric. The table
below presents the average value of the estimation of the optimal k for particular
voting models with this metric:

Data set equal sqr. inv. equal weights sqr. inv. dist. weights
weights dist. weights & rule based filter. & rule based filter.

census94 30.6 119.4 88.8 181
chess 1 1 1.4 49.2
letter 1 4 1 5.6

nursery 5.4 15.4 19.4 16.8
pendigits 2.2 3.6 2.2 4.2
satimage 2 5.2 2 5.6
segment 1 2.4 1 5.6
splice 1.8 3 2.6 3.6

The estimation of the optimal k for the models with the inverse square dis-
tance weights is usually larger than for the models with equal weights. It indicates
that the most important objects for classification of a test object are the nearest
neighbors but a number of farther objects can provide useful information too.
The information from farther objects should only be considered less important
than information from the nearest objects.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

census94 chess letter nursery pendigi satimag segment splice

equal weights

squerely inverse
distance weights

equal weights & rule
based filtering

squerely inverse
distance weights &
rule based filtering

Fig. 27. The average classification error of the k-nn with the optimal k estimated from
the training set for the joint city-block and VDM metric with the attribute weighting
method optimizing distance

Analogy-Based Reasoning in Classifier Construction 357

Figure 27 presents the average classification error of the k nearest neighbor
method for the weighted joint city-block and VDM metric. The table below
presents the best voting model for this metric and the confidence level of the
differences between the best voting model and the others (see Subsection 2.7)
for particular data sets:

The data set The winning voting model The confidence level
census94 equal weights 99.5%

chess sqr. inv. distance weights 99.5%
& rule based filtering

letter sqr. inv. distance weights 90% (from sqr. inv. dist.)
& rule based filtering 99.5% (from the two remaining)

nursery sqr. inv. distance weights 99.5%
& rule based filtering

pendigits sqr. inv. distance weights ¡90% (from sqr. inv. dist.)
& rule based filtering 90% (from the two remaining)

satimage sqr. inv. distance weights 90% (from sqr. inv. dist.)
& rule based filtering 99.5% (from the two remaining)

segment equal weights ¡90% (from sqr. inv. dist.)
both with and without 95% (from sqr. inv. dist.

rule based filtering & rule based filter.)
splice sqr. inv. distance weights 90% (from sqr. inv. dist.)

& rule based filtering 99.5% (from the two remaining)

Figure 27 and the above table indicate that the voting model combining the
inverse square distance weights with rule based filtering is the best: it gives the
smallest error for six of the eight data sets: chess, letter, nursery, pendigits,
satimage and splice. The most noticeable reduction in error is obtained for the
two data sets: in case of the data set nursery the combined voting model gives
the 0.3% error in comparison to the 1.57% error of the pure majority voting
model with equal weights and in case of the data set chess the combined model
gives the 1.46% error in comparison to the 2.24% error of the majority model.

While comparing the second and the third column in Figure 27 for each of the
six data sets where the combined model is the best the model with the inverse
square distance weights alone provides always a smaller error than the model
with the equal weights and rule based filtering. This observation indicates that
the inverse square distance weights are a more important component for the
accuracy of the combined voting model than the rule based filtering. It is also
confirmed by the fact that the difference between the combined voting model
and the two models with equal weights (with and without rule based filtering)
has almost always the maximum confidence level whereas the difference between
the inverse square distance weights with and without rule based filtering has
often a low confidence level. However, in case of the data sets nursery and chess,
where the reductions in error by the combined voting model are largest, both
components of this model contribute significantly to such good results.

358 A. Wojna

Now, we consider the second metric: the weighted joint DBVDM and VDM
metric. Since for data with nominal attributes this metric is equivalent to the
weighted joint city-block and VDM metric we present the result only for data
that contain numerical attributes. The table below presents the average value of
the estimation of the optimal k for particular voting models with the weighted
joint DBVDM and VDM metric:

Data set equal sqr. inv. equal weights sqr. inv. dist. weights
weights dist. weights & rule based filter. & rule based filter.

census94 40.2 168.4 128.2 183
letter 1 4.4 1 6

pendigits 1 3.8 1 5.2
satimage 3.6 4 3.6 3.8
segment 1 1 1 4.8

We can make the same observation as in case of the weighted joint city-block
and VDM metric: the voting models with the inverse square distance weights
make use of the distance-dependent weights and they use more objects to vote
than the models with equal weights.

0%

2%

4%

6%

8%

10%

12%

14%

16%

census94 letter pendigi satimag segment

equal weights

squerely inverse
distance weights

equal weights & rule
based filtering

squerely inverse
distance weights &
rule based filtering

Fig. 28. The average classification error of the k-nn with the optimal k estimated from
the training set for the joint DBVDM and VDM metric with the attribute weighting
method optimizing distance

Figure 28 presents the average classification error of the k nearest neigh-
bor method for the weighted joint DBVDM and VDM metric. The table below
presents the best voting model for this metric and the confidence level of the
difference between the best voting model and the others, for particular data sets:

Analogy-Based Reasoning in Classifier Construction 359

The data set The winning voting model The confidence level
census94 equal weights 97.5% (from eq. weights

(with rule based filter.)
99.5% (from the two remaining)

letter inv. sqr. distance weights 99.5%
& rule based filtering

pendigits sqr. inv. distance weights 99.5%
& rule based filtering

satimage sqr. inv. distance weights 95% (from sqr. inv. dist.)
& rule based filtering 99.5% (from the two remaining)

segment sqr. inv. distance weights 90%
& rule based filtering

As in case of the weighted joint city-block and VDM metric the results indi-
cate that the voting model combining the inverse square distance weights with
rule based filtering is the best: it gives the smallest error for all the data sets
except for census94. The results are usually worse than for the weighted joint
city-block and VDM metric. An interesting observation is that each of the two
components of the combined metric: the inverse square distance weights and rule
based filtering alone gives very small improvement (compare the second and the
third column for each data set in Figure 28) and only the combination of these
two components gives more noticeable reduction of the classification error.

The final conclusion from the presented results is that the voting model
combining the inverse square distance weights with rule based filtering gives
generally the best classification accuracy. It indicates that the significance of
the information for a test object provided by the nearest neighbors correlates
with the distance of the nearest neighbors to the test object and it is helpful
to use this correlation. Distance measure and grouping of objects by rules are
the two different sorts of similarity models and the application of rule based
filtering to the nearest neighbors is a sort of combination of these two models.
The neighbors selected for voting in such a combined method are similar to
a test object according to both models, which gives more certainty that these
neighbors are appropriate for decision making.

The above general conclusion does not fit to the results for the data set
census94. This is related with the specificity of this data set. The estimated
value of the optimal k for the data set census94 is always much larger than
for the other data sets. In case of such a large neighborhood the models with
the inverse square distance weights are not enough accurate to improve the
classification results and more accurate voting model should be searched.

5.6 K Nearest Neighbors with Local Metric Induction

All the variants of the k nearest neighbors method presented in the dissertation
up to now and all other machine learning methods based on inductive concept
learning: rule based systems, decision trees, neural networks, bayesian networks

360 A. Wojna

object

Local metric

Test

Global metric

Global metric

Training set

??
K−nn

classificationinduction
Local metric

induction

?

Nearest neighbors
selection

Fig. 29. K-nn classification with local metrics

and rough sets [59, 61, 63] induce a mathematical model from training data and
apply this model to reasoning about test objects. The induced model of data
remains invariant for different test objects. For many real-life data it is not
possible to induce relevant global models. This fact has been recently observed
by researches from different areas like data mining, statistics, multiagent systems
[17, 75, 79]. The main reason is that phenomena described by real-life data are
often too complex and we do not have sufficient knowledge to induce global
models or a parameterized class of such models together with feasible searching
methods for the relevant global model in such a class. Developing methods for
dealing with such real-life data is a challenge.

In this subsection we propose a step toward developing of such methods. We
propose a classification model that is composed of two steps. For a given test
object x, first, a local model dependent on x is induced, and next, this model is
used to classify x.

To apply this idea we extend the classical k-nn classification model described
in Subsection 2.5. The classical k-nn induces a global metric ρ from the training
set Utrn, and next, for each test object x it uses this induced metric ρ to find
the k nearest neighbors of x and it computes a decision from the decisions of
these k neighbors. We propose a new algorithm extending the classical k-nn
with one additional intermediate step (see Figure 29). First, it induces a global
metric ρ like in the classical k-nn method but this global metric ρ is used only
in preliminary elimination of objects not relevant for classifying x. For each
test object x the extended algorithm selects a neighborhood of x according to
the global metric ρ and it induces a local metric ρx based only on the selected
neighborhood. Local metric induction is a step to build a model that depends
locally on the properties of the test object x. The final k nearest neighbors that
are used to make a decision for the test object x are selected according to the
locally induced metric.

A local approach to the k-nn method has been already considered in the lit-
erature. However, all the methods described in the literature apply only to data
with numerical attributes and they assume always a specific metric to be defined.

Friedman proposed a method that combines the k-nn method with recursive
partitioning used in decision trees [32]. For each test object the method starts

Analogy-Based Reasoning in Classifier Construction 361

with the whole training set and it constructs a sequence of partitions. Each parti-
tion eliminates a number of training objects. In this way after the last partition a
small set of k objects remains to be used for classification. To make a single par-
tition the algorithm selects the partition with the greatest decision discernibility.

The algorithm proposed by Hastie and Tibshirani [44] starts with the Euclid-
ean metric and for each test object it iteratively changes the weights of attributes.
At each iteration it selects a neighborhood of a test object and it applies local dis-
criminant analysis to shrink the distance in the direction parallel to the boundary
between decision classes. Finally, it selects the k nearest neighbors according to
the locally transformed metric.

Domeniconi and Gunopulos use a similar idea but they use support vector
machines instead of local discriminant analysis to determine class boundaries
and to shrink the distance [24]. Support vectors can be computed during the
learning phase what makes this approach much more efficient in comparison to
local discriminant analysis.

As opposed to the above three methods our method proposed in this subsec-
tion is general: it assumes only that a procedure for metric induction from a set
of objects is provided.

Algorithm 11. The k nearest neighbors algorithm decisionlocal−knn(x) with
local metric induction

ρ - the global metric induced once
from the whole training set Utrn

l - the size of the neighborhood
used for local metric induction

kopt - the optimal value of k estimated
from the training set Utrn (kopt ≤ l)

NN(x, l) := the set of l nearest neighbors of x from Utrn

according to the global metric ρ
ρx := the local metric induced from the neighborhood NN(x, l)
NNlocal(x, kopt) := the set of kopt nearest neighbors of x

from NN(x, l) according to the local metric ρx

return arg maxdj∈Vdec
|{y ∈ NNlocal(x, kopt) : dec(y) = dj}|

In the learning phase our extended method induces a global metric ρ and
estimates the optimal value kopt of nearest neighbors to be used for classification.
This phase is analogous to the classical k-nn.

Algorithm 11 presents the classification of a single query object x by the
method extended with local metric induction. First, the algorithm selects the l
nearest neighbors NN(x, l) of x from the training set Utrn according to the global
metric ρ. Next, it induces a local metric ρx using only the selected neighborhood
NN(x, l). After that the algorithm selects the set NNlocal(x, kopt) of the nearest
neighbors of x from the previously selected neighborhood NN(x, l) according to

362 A. Wojna

this local metric ρx . Then, the selected set NNlocal(x, kopt) is used to compute
the decision decisionlocal−knn(x) that is returned as the final result for the query
object x.

Both for the global and for the local metric definition the algorithm can use
any metric induction procedure. Moreover, different metrics can be used in the
global and in the local step.

The neighborhood size l is the parameter of the extended method. To improve
classification accuracy this value should be large, usually at least of an order of
several hundred objects. To accelerate the selection of a large number of nearest
neighbors from a training set we use the indexing tree with the iterative 3-
means splitting procedure and the combined search pruning criteria described in
Section 4.

The optimal value kopt is estimated from a training set within the range
1 ≤ k ≤ l with the use of the same efficient procedure as in case of the classical
k-nn presented in Algorithm 7 in Subsection 5.1. However, the estimation process
uses Algorithm 11 as the classification procedure instead of the classical k-nn
classification procedure from Equation 4. This is the only difference between the
learning phases of the classical and the extended method.

In Algorithm 11 we use the most popular majority voting model with equal
weights. However, as in the classical k-nn method any voting model can be used
in the method with local metric induction.

The classical k-nn is a lazy method: it induces a global metric and it per-
forms the rest of computation at the moment of classification. The algorithm
proposed in this subsection extends this idea: it repeats the metric induction at
the moment of classification. The proposed extension allows us to use the local
properties of data topology in the neighborhood of a test object and to adjust
the metric definition to these local properties.

5.7 Comparison of k-nn with Global and with Local Metric

In this subsection we compare the performance of the k nearest neighbors method
with the local metric induction described in the previous subsection and the
performance of the classical k-nn method. We compare the classical k-nn and
the extended k-nn with the three different values of the neighborhood size l: 100,
200 and 500.

To compare the methods we tested the 10 benchmark data sets presented in
Table 1. As in all the previous experiments described in the dissertation each
data set was partitioned into a training and a test set as described in Subsection
2.7. Then training and testing for each data set and for each classification method
was performed 5 times for the same partition of the data set and the average
classification error was calculated for comparison. For the classical k-nn method
the optimal value kopt was estimated in the range 1 ≤ kopt ≤ 200 and for the
extended method for each of the values of l: 100, 200 and 500 the optimal value
kopt was estimated in the range 1 ≤ kopt ≤ l.

The two most effective global metrics were tested: the joint city-block and
VDM metric (see Subsection 3.1) with the attribute weighting method optimiz-

Analogy-Based Reasoning in Classifier Construction 363

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

census94-
cityvdm

census94-
dbvdm

satimage-
cityvdm

satimage-dbvdm splice-vdm

C
la

ss
if

ic
at

io
n

 e
rr

o
r

classical knn

local knn, l=100

local knn, l=200

local knn, l=500

Fig. 30. The average classification error of the classical and the extended k-nn with
the two metrics: The weighted joint city-block and VDM metric and the weighted joint
DBVDM and VDM metric as the global metric, and with the weighted joint city-block
and VDM metric as the local metric, obtained for the three different neighborhood
sizes: 100, 200 and 500

ing distance (see Subsection 3.4) and the joint DBVDM and VDM metric (see
Subsection 3.2) with the same attribute weighting method. Using the weighted
joint DBVDM and VDM metric as the local metric makes the k nearest neigh-
bors impractical: the performance time of k-nn with this metric becomes too
long. Therefore the weighted joint city-block and VDM metric was always used
as the local metric. Since the voting model combining the inverse square dis-
tance weights with rule based filtering provides generally the best classification
accuracy (see Subsection 5.5) we apply this voting model in the experiment.

For the seven of the 10 tested data sets: chess, letter, mushroom, nursery,
pendigits, segment and shuttle the classical k-nn method with the combined vot-
ing model obtained the classification accuracy over 97% (see Subsection 5.5).
Such a good accuracy is hard to improve and for these seven data sets the k
nearest neighbors with local metric induction does not provide better results or
the improvement in accuracy is insignificant. Therefore we focus on the three
most difficult data sets: census94 (16.44% error by the weighted joint city-block
and VDM metric and 15.54% error by the weighted joint DBVDM and VDM
metric), satimage (9.33% error by the weighted city-block metric and 9.6% er-
ror by the weighted DBVDM metric) and splice (5.77% error by the weighted
VDM metric).

Figure 30 presents the average classification errors of the classical and the
extended k-nn method with the two types of the global metric. For the three
presented data sets the extended method provides always better classification
accuracy than the classical method. The table below presents the confidence

364 A. Wojna

level of the difference between each of the extended method and the classical
k-nn (see Subsection 2.7) for each data set:

Data set local k-nn (l=100) local k-nn (l=200) local k-nn (l=500)
Global metric vs. classical k-nn vs. classical k-nn vs. classical k-nn

census94 99.5% 99.5% 99.5%
city-block & VDM

census94 99.5% 99.5% 99.5%
DBVDM & VDM

satimage 95% 99% ¡90%
city-block
satimage ¡90% ¡90% ¡90%
DBVDM

splice 99.5% 99.5% 99.5%
VDM

The best improvement was obtained for the data set splice. The difference
between the extended and the classical k-nn has always the maximum confidence
level and in the best case of l = 500 the extended method reduced the classi-
fication error from 5.77% to 3.86%. This result is particularly noteworthy: the
author has never met such a good result in the literature for this data set. For
the data set census94 the difference between the extended and the classical k-nn
has always the maximum confidence level too. For this data set the improvement
by the extended method is not so large but it is still noticeable: in the best case
of l = 500 for the weighted joint DBVDM and VDM metric the classification
error was reduced from 15.54% to 14.74%. The least effect of applying local met-
ric induction one can observed for the data set satimage: only in one case the
statistical significance of the difference between the extended and the classical
method is trustworthy: in case of l = 200 for the weighted city-block metric the
classification error was reduced from 9.33% to 9.07%.

An interesting observation is that the largest improvement was obtained for
data only with nominal attributes and the smallest improvement was obtained for
data only with numerical attributes. It correlates with the fact that the general
properties of the domain of values of nominal attributes are poor and the methods
for data with nominal attributes learn mainly from the information encoded in
data. Hence, a metric induced globally from the whole training set and a metric
induced locally from a neighborhood of a test object can differ significantly, the
localmetric can adapt strongly to local properties of the neighborhood and thus the
possibility of improving accuracy by the local metric is large. In case of numerical
attributes there are a structure of linear order and a distance measure defined in
the set of values. In many cases this structure corresponds well with the properties
of objects important for the decision attribute. The weighted city-block metric is
consistent with this structure and it is often enough to apply this metric in order to
obtain almost optimal classification accuracy. Therefore improving a global metric
by local metric induction in case of data with numerical attributes is much more
difficult than in case of data with nominal attributes.

Analogy-Based Reasoning in Classifier Construction 365

An interesting issue is the dependence between the classification accuracy
and the neighborhood size l used to induce a local metric. For the two data
sets: census94 and splice where the improvement by local metric induction is
significant the best results was obtained for the maximum tested neighborhood
size l = 500. It indicates that an important factor for the quality of a local
metric is the representativeness of the sample used for metric induction and it
is important to balance between the locality and the representativeness of the
neighborhood used to induce a local metric.

5.8 Summary

In this section we have introduced two new classification models based on the k
nearest neighbors:

– k nearest neighbors method combined with rule based filtering of the nearest
neighbors,

– k nearest neighbors method based on a locally induced metric.

In the beginning, we have presented the algorithm estimating the optimal
value of k from training data. The algorithm allows us to set automatically an
appropriate value of k.

Then we have considered different voting models known from the literature.
The most popular is the majority voting model where all the k nearest neighbors
are weighted with equal weights. The distance based voting model replaces equal
weights by the inverse square distance weights. The classification accuracy of
the distance based voting model is better than the majority voting model what
reflects the fact that the significance of the information for a test object provided
by the nearest neighbors correlates with the distance of the nearest neighbors to
the test object and it is helpful to use this correlation.

The first new model introduced in this section adds rule based filtering of
the k nearest neighbors to the classical k-nn method. As the origin we took
Bazan’s lazy algorithm simulating effectively the classification model based on
all minimal consistent rules for data with nominal attributes and we generalized
the equality based model of minimal consistent rules to the metric based model.
Next, we adapted Bazan’s algorithm to the metric based model of minimal con-
sistent rules, and finally, we attached this generalized rule based classification
model to the k nearest neighbors in the form of rule based filtering of the k
nearest neighbors. An important property of the proposed combination is that
the addition of rule based filtering does not change essentially the performance
time of the k nearest neighbors method. The experimental results show that the
application of rule based filtering improves the classification accuracy especially
when combined with the voting model with the inverse square distance weights.
It indicates that rule based filtering improves selection of objects for reasoning
about a test object.

The estimation of the optimal value of k and all the described voting models
are available in the k nearest neighbors classifier in the system RSES [8, 73].

366 A. Wojna

The classifier makes it possible to choose between the model with equal weights
and the model with the inverse square distance weights, and optionally, it allows
us to apply rule based filtering to the k nearest neighbors for each test object.

As the second method we proposed a new classification model that is an
extension of the classical k-nn classification algorithm. The extended method
induces a different metric for each test object using local information in the
neighborhood of an object. The k-nn model with a local metric corresponds to
the idea of transductive reasoning [79]. The transductive approach assumes that a
classification model should depend on the objects to be classified and it should be
adapted according to the properties of these objects. The presented extension of
the k-nn algorithm implements transduction: the local metric induction adapts
the metric definition to the local topology of data in the neighborhood of an
object to be classified.

The experimental results show that the local approach is particularly useful
in the case of hard problems. If the classification error of the methods based on
global models remains large a significant improvement can be obtained with the
local approach.

An important problem related to the k nearest neighbors method with lo-
cal metric induction is that the local metric induction for each test object is a
time-consuming step. As a future work we consider the extension of data rep-
resentation in such a way that the algorithm can use the same local metric for
similar test objects.

6 Conclusions

In the dissertation we have developed different classification models based on
the k-nn method and we have evaluated them against real-life data sets.

Among the k-nn voting models based on the global metric the most accurate
model can be obtained by the method combining the inverse square distance
weights with the nearest neighbors filtering performed by means of the set of
minimal consistent rules. The assignment of the inverse square distance weights
to the nearest neighbors votes reflects the fact that the more similar a test
object is to a training object, the more significant is for the test object the
information provided by the training object. The rule-based filtering method
introduced in the dissertation makes it possible to construct an alternative model
that combined with the k-nn method enables verification of objects recognized
by the k-nn as similar and the rejection of the objects that are not confirmed
to be similar by the rule based model. The proposed rule-based extension is
independent of the metric and does not increase the performance time of the
classical k-nn method. Therefore it can be applied whenever the classical k-nn
is applicable.

We compared different metrics in the k-nn classification model. In general,
the best metrics are the normalized city-block metric for numerical attributes
and the Value Difference Metric for nominal attributes, both combined with at-
tribute weighting. For nominal attributes there is no mathematical structure in

Analogy-Based Reasoning in Classifier Construction 367

the domain of values, therefore the Value Difference Metric uses the information
encoded in the training data to measure similarity between nominal values. Do-
mains with numerical values have the structure of linear order and a distance
measure consistent with this linear order. These properties reflect usually the
natural relationship among the values of the numerical attribute and this infor-
mation is often sufficient to define an accurate similarity measure for the values
of a numerical attribute. However, there are decision problems where the nat-
ural metric on numerical values does not reflect directly the differences between
decision values. For such data the correlation between the attribute values and
the decision encoded in training objects is the information more useful than the
general structure of numerical values. Hence, solutions analogous to the Value
Difference Metric for nominal attributes are more accurate. We have analyzed
three numerical metrics of this type: IVDM, WVDM, and DBVDM. They esti-
mate decision probabilities for particular numerical values in the training set and
use these estimations to define distance between values. In DBVDM the sample
for decision probability estimation is chosen more carefully than in IVDM and
WVDM and it gives the most accurate classification among these three metrics.

There are hard classification problems where the relationship between at-
tributes and the decision is complex and it is impossible to induce a sufficiently
accurate global model from data. For such data the method with local model
induction is a better solution. The algorithm yields a separate local decision
model for each test object. This approach allows us to adapt each local model to
the properties of a test object and thus to obtain a more accurate classification
than in the case of the global approach.

To apply metric-based classification models to large databases a method that
would speed up the nearest neighbors search is indispensable. The extension of
the indexing and searching methods described in literature, i.e., the iterative
splitting based tree with three search pruning criteria, as proposed in the dis-
sertation, allows us to use the k-nn method to data sets with several hundred
thousand objects.

The results presented in the dissertation do not exhaust all the aspects of
case-based reasoning from data. The following extensions can be considered.

Experiments with different metrics for numerical data have proved that the
city-block metric is more accurate than metrics that do not preserve consistency
with the natural linear order of the real numbers. However, such a metric uses
the natural metric of real numbers and the training set is used marginally to
modify this natural metric. An interesting issue is to construct and investigate
metrics preserving the natural order of numerical values and to use training data
to differentiate the value of the distance in dependence on the range of values to
be compared.

A more general problem related to metric construction is that the induction
of an accurate metric only from data without additional knowledge is impossible
for more complex decision problems. Therefore the development of methods for
inducing similarity models based on interaction with a human expert acquires
particular importance.

368 A. Wojna

Another possible continuation is related to the induction of local classification
models. The method presented in the dissertation induces a separate model for
each test object. Such a solution is computationally much more expensive than
methods based on the global model. Another possible solution is to use the
common sense assumption that a local model can be relevant for a fragment
of a space of objects. Such an approach has been already used in data mining
[49] where transactions are partitioned into groups and a specific optimization
function is defined for each group. By analogy, one can partition training objects
into groups of similar objects and construct one local classification model for each
group. This approach integrated with an indexing structure could be comparable
to the global k-nn method in terms of efficiency.

Acknowledgments

The paper is the full version of my phd dissertation supervised by Andrzej
Skowron, approved in May 2005 by Warsaw University, Faculty of Mathematics,
Informatics and Mechanics.

I wish to express my gratitude to my supervisor Professor Andrzej Skowron
for leading me towards important research issues and for his guidance in my
research work. His attitude to me has been invariably kind and gentle, and
Professor has always enabled me to pursue my own research endeavors. I am
also indebted to him for making such great efforts to thoroughly revise this
dissertation. I am happy that I have been given the opportunity to work with
Professor Andrzej Skowron.

I thank my wife, Ewa. Her sincere love, support and forbearance helped me
very much in writing this dissertation.

I am also grateful to many other people who contributed to my PhD disser-
tation. Dr Marcin Szczuka has supported me with hardware and software nec-
essary for performing experiments. The pleasant and fruitful cooperation with
Grzegorz Góra helped me determine my research objectives. Long discussions
with dr Jan Bazan, Rafal Latkowski, and Michal Mikolajczyk, on the design and
implementation of the programming library rseslib allowed me to make it use-
ful for other researchers. Professor James Peters, dr Wiktor Bartol and Joanna
Kuźnicka revised thoroughly the language of the dissertation.

Financial support for this research has been provided by the grants 8 T11C
009 19, 8 T11C 025 19, 4 T11C 040 24 and 3 T11C 002 26 from Ministry of
Scientific Research and Information Technology of the Republic of Poland.

References

1. Ch. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behaviour of
distance metrics in high dimensional space. In Proceedings of the Eighth Internati-
nal Conference on Database Theory, pages 420–434, London, UK, 2001.

2. D. W. Aha. Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithms. International Journal of Man-Machine Studies, 36:267–
287, 1992.

Analogy-Based Reasoning in Classifier Construction 369

3. D. W. Aha. The omnipresence of case-based reasoning in science and applications.
Knowledge-Based Systems, 11(5-6):261–273, 1998.

4. D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms.
Machine Learning, 6:37–66, 1991.

5. K. Ajdukiewicz. Logika Pragmatyczna. PWN, Warszawa, 1974.
6. J. G. Bazan. Discovery of decision rules by matching new objects against data

tables. In Proceedings of the First International Conference on Rough Sets and
Current Trends in Computing, volume 1424 of Lectures Notes in Artificial Intelli-
gence, pages 521–528, Warsaw, Poland, 1998. Springer-Verlag.

7. J. G. Bazan and M. Szczuka. RSES and RSESlib - a collection of tools for rough
set computations. In Proceedings of the Second International Conference on Rough
Sets and Current Trends in Computing, volume 2005 of Lectures Notes in Artificial
Intelligence, pages 106–113, Banff, Canada, 2000. Springer-Verlag.

8. J. G. Bazan, M. Szczuka, A. G. Wojna, and M. Wojnarski. On the evolution
of Rough Set Exploration System. In Proceedings of the Fourth International
Conference on Rough Sets and Current Trends in Computing, volume 3066 of
Lectures Notes in Artificial Intelligence, pages 592–601, Uppsala, Sweden, 2004.
Springer-Verlag.

9. N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R�-tree: an efficient
and robust access method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, pages 322–331,
Atlantic City, NJ, 1990.

10. R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
New Jersey, 1957.

11. J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

12. S. Berchtold, D. Keim, and H. P. Kriegel. The X-tree: an index structure for high
dimensional data. In Proceedings of the Twenty Second International Conference
on Very Large Databases, pages 28–39, 1996.

13. K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest
neighbor” meaningful? In Proceedings of the Seventh International Conference on
Database Theory, pages 217–235, Jerusalem, Israel, 1999.

14. Y. Biberman. A context similarity measure. In Proceedings of the Ninth European
Conference on Machine Learning, pages 49–63, Catania, Italy, 1994.

15. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, England, 1996.

16. C. L. Blake and C. J. Merz. UCI repository of machine learning databases.
http://www.ics.uci.edu/˜mlearn/MLRepository.html, Department of Information
and Computer Science, University of California, Irvine, CA, 1998.

17. L. Breiman. Statistical modeling - the two cultures. Statistical Science, 16(3):199–
231, 2001.

18. S. Brin. Near neighbor search in large metric spaces. In Proceedings of the Twenty
First International Conference on Very Large Databases, pages 574–584, 1995.

19. E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin. Searching in met-
ric spaces. Technical Report TR/DCC-99-3, Department of Computer Science,
University of Chile, 1999.

20. P. Ciaccia, M. Patella, and P. Zezula. M-tree: an efficient access method for sim-
ilarity search in metric spaces. In Proceedings of the Twenty Third International
Conference on Very Large Databases, pages 426–435, 1997.

21. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261–
284, 1989.

370 A. Wojna

22. S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning, 10:57–78, 1993.

23. T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13:21–27, 1967.

24. C. Domeniconi and D. Gunopulos. Efficient local flexible nearest neighbor clas-
sification. In Proceedings of the Second SIAM International Conference on Data
Mining, 2002.

25. P. Domingos. Unifying instance-based and rule-based induction. Machine Learning,
24(2):141–168, 1996.

26. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New
York, NY, 1973.

27. S. Dudani. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on
Systems, Man and Cybernetics, 6:325–327, 1976.

28. R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

29. R. Finkel and J. Bentley. Quad-trees: a data structure for retrieval and composite
keys. ACTA Informatica, 4(1):1–9, 1974.

30. R. A. Fisher. Applications of “student”s’ distribution. Metron, 5:3–17, 1925.
31. E. Fix and J. L. Hodges. Discriminatory analysis, non-parametric discrimination:

Consistency properties. Technical Report 4, USAF School of Aviation and Medi-
cine, Randolph Air Field, 1951.

32. J. Friedman. Flexible metric nearest neighbor classification. Technical Report 113,
Department of Statistics, Stanford University, CA, 1994.

33. J. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical Learning.
Springer, New York, NY, 2001.

34. J. H. Friedman, R. Kohavi, and Y. Yun. Lazy decision trees. In Proceedings
of the Thirteenth National Conference on Artificial Intelligence, pages 717–724,
Cambridge, 1996.

35. K. Fukunaga and P. M. Narendra. A branch and bound algorithm for computing
k-nearest neighbors. IEEE Transactions on Computers, 24(7):750–753, 1975.

36. V. Gaede and O. Gunther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, 1998.

37. A. R. Golding and P. S. Rosenbloom. Improving accuracy by combining rule-based
and case-based reasoning. Artificial Intelligence, 87(1-2):215–254, 1996.

38. G. Góra and A. G. Wojna. Local attribute value grouping for lazy rule induction.
In Proceedings of the Third International Conference on Rough Sets and Current
Trends in Computing, volume 2475 of Lectures Notes in Artificial Intelligence,
pages 405–412, Penn State Great Valley, PA, 2002. Springer-Verlag.

39. G. Góra and A. G. Wojna. RIONA: a classifier combining rule induction and k-nn
method with automated selection of optimal neighbourhood. In Proceedings of the
Thirteenth European Conference on Machine Learning, volume 2430 of Lectures
Notes in Artificial Intelligence, pages 111–123, Helsinki, Finland, 2002. Springer-
Verlag.

40. G. Góra and A. G. Wojna. RIONA: a new classification system combining rule
induction and instance-based learning. Fundamenta Informaticae, 51(4):369–390,
2002.

41. “Student” (W. S. Gosset). The probable error of a mean. Biometrika, 6:1–25, 1908.
42. J. W. Grzymala-Busse. LERS - a system for learning from examples based on rough

sets. In R. Slowinski, editor, Intelligent Decision Support, Handbook of Applications
and Advances of the Rough Sets Theory, pages 3–18. Kluwer Academic Publishers,
Dordrecht, Boston, London, 1992.

Analogy-Based Reasoning in Classifier Construction 371

43. A. Guttman. R-trees: a dynamic index structure for spatial searching. In Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, pages 47–57, Boston, MA, 1984.

44. T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(6):607–616,
1996.

45. F. V. Jensen. An Introduction to Bayesian Networks. Springer Verlag, New York,
1996.

46. I. Kalantari and G. McDonald. A data structure and an algorithm for the nearest
point problem. IEEE Transactions on Software Engineering, 9(5):631–634, 1983.

47. N. Katayama and S. Satoh. The SR-tree: an index structure for high dimensional
nearest neighbor queries. In Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, pages 369–380, Tucson, Arizona, 1997.

48. K. Kira and L. A. Rendell. A practical approach to feature selection. In Proceed-
ings of the Ninth International Conference on Machine Learning, pages 249–256,
Aberdeen, Scotland, 1992. Morgan Kaufmann.

49. J. Kleinberg, Ch. Papadimitriou, and P. Raghavan. Segmentation problems. Jour-
nal of the ACM, 51(2):263–280, 2004.

50. W. Klösgen and J. M. Żytkow, editors. Handbook of Data Mining and Knowledge
Discovery. Oxford University Press, Inc., New York, NY, USA, 2002.

51. I. Kononenko. Estimating attributes: Analysis and extensions of RELIEF. In
Proceedings of the Seventh European Conference on Machine Learning, volume
784 of Lectures Notes in Artificial Intelligence, pages 171–182, Catania, Italy, 1994.
Springer-Verlag.

52. D. B. Leake, editor. Case-Based Reasoning: Experiences, Lessons and Future Di-
rections. AAAI Press/MIT Press, 1996.

53. J. Li, G. Dong, K. Ramamohanarao, and L. Wong. DeEPs: a new instance-based
discovery and classification system. Machine Learning, 2003. to appear.

54. J. Li, K. Ramamohanarao, and G. Dong. Combining the strength of pattern fre-
quency and distance for classification. In Proceedings of the Fifth Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages 455–466, Hong Kong,
2001.

55. K. I. Lin, H. V. Jagadish, and C. Faloustos. The TV-tree: an index structure for
high dimensional data. VLDB Journal, 3(4):517–542, 1994.

56. D. Lowe. Similarity metric learning for a variable kernel classifier. Neural Compu-
tation, 7:72–85, 1995.

57. D. R. Luce and H. Raiffa. Games and Decisions. Wiley, New York, 1957.
58. J. E. S. Macleod, A. Luk, and D. M. Titterington. A re-examination of the distance-

weighted k-nearest-neighbor classification rule. IEEE Transactions on Systems,
Man and Cybernetics, 17(4):689–696, 1987.

59. R. S. Michalski. A theory and methodology of inductive learning. Artificial Intel-
ligence, 20:111–161, 1983.

60. R. S. Michalski, I. Mozetic, J. Hong, and H. Lavrac. The multi-purpose incremental
learning system AQ15 and its testing application to three medical domains. In
Proceedings of the Fifth National Conference on Artificial Intelligence, pages 1041–
1045, 1986.

61. T. M. Mitchell. Machine Learning. McGraw-Hill, Portland, 1997.
62. J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file: an adaptable symmetric

multikey file structure. ACM Transactions on Database Systems, 9(1):38–71, 1984.
63. Z. Pawlak. Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer

Academic Publishers, Dordrecht, 1991.

372 A. Wojna

64. L. Polkowski and A. Skowron. Synthesis of decision systems from data tables.
In T. Y. Lin and N. Cercone, editors, Rough Sets and Data Mining: Analysis of
Imprecise Data, pages 259–299. Kluwer Academic Publishers, Dordrecht, 1997.

65. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

66. J. Robinson. The K-D-B-tree: a search structure for large multi-dimensional dy-
namic indexes. In Proceedings of the 1981 ACM SIGMOD International Conference
on Management of Data, pages 10–18, New York, 1981.

67. A. Rosenblueth, N. Wiener, and J. Bigelow. Behavior, purpose, and teleology.
Philosophy of Science, 10:18–24, 1943.

68. S. J. Russell. Use of Knowledge in Analogy and Induction. Morgan Kaufmann,
1989.

69. S. Salzberg. A nearest hyperrectangle learning method. Machine Learning, 2:229–
246, 1991.

70. S. M. Savaresi and D. L. Boley. On the performance of bisecting K-means and
PDDP. In Proceedings of the First SIAM International Conference on Data Mining,
pages 1–14, Chicago, USA, 2001.

71. T. Sellis, N. Roussopoulos, and C. Faloustos. The R+-tree: a dynamic index for
multi-dimensional objects. In Proceedings of the Thirteenth International Confer-
ence on Very Large Databases, pages 574–584, 1987.

72. R. N. Shepard. Toward a universal law of generalization for psychological science.
Science, 237:1317–1323, 1987.

73. A. Skowron et al. Rough set exploration system. http://logic.mimuw.edu.pl/˜rses,
Institute of Mathematics, Warsaw University, Poland.

74. A. Skowron and C. Rauszer. The discernibility matrices and functions in infor-
mation systems. In R. Slowinski, editor, Intelligent Decision Support, Handbook
of Applications and Advances of the Rough Sets Theory, pages 331–362. Kluwer
Academic Publishers, Dordrecht, 1992.

75. A. Skowron and J. Stepaniuk. Information granules and rough-neural computing.
In Rough-Neural Computing: Techniques for Computing with Words, Cognitive
Technologies, pages 43–84. Springer-Verlag, Heidelberg, Germany, 2003.

76. A. Skowron and A. G. Wojna. K nearest neighbors classification with local induc-
tion of the simple value difference metric. In Proceedings of the Fourth Interna-
tional Conference on Rough Sets and Current Trends in Computing, volume 3066
of Lectures Notes in Artificial Intelligence, pages 229–234, Uppsala, Sweden, 2004.
Springer-Verlag.

77. C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of
the ACM, 29(12):1213–1228, 1986.

78. J. Uhlmann. Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters, 40(4):175–179, 1991.

79. V. Vapnik. Statistical Learning Theory. Wiley, Chichester, GB, 1998.
80. M. Veloso. Planning and Learning by Analogical Reasoning. Springer, 1994.
81. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.

Princeton University Press, Princeton, New Jersey, 1944.
82. J. Ward, Jr. Hierarchical grouping to optimize an objective function. Journal of

the American Statistical Association, 58:236–244, 1963.
83. R. Weber, H. J. Schek, and S. Blott. A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces. In Proceedings
of the Twenty Fourth International Conference on Very Large Databases, pages
194–205, 1998.

Analogy-Based Reasoning in Classifier Construction 373

84. D. Wettschereck. A Study of Distance-Based Machine Learning Algorithms. PhD
thesis, Oregon State University, 1994.

85. D. Wettschereck, D. W. Aha, and T. Mohri. A review and empirical evaluation
of feature weighting methods for a class of lazy learning algorithms. Artificial
Intelligence Review, 11:273–314, 1997.

86. D. A. White and R. Jain. Similarity indexing with the SS-tree. In Proceedings
of the Twelve International Conference on Data Engineering, pages 516–523, New
Orleans, USA, 1996.

87. N. Wiener. Cybernetics. Wiley, New York, 1948.
88. D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions.

Journal of Artificial Intelligence Research, 6:1–34, 1997.
89. D. R. Wilson and T. R. Martinez. An integrated instance-based learning algorithm.

Computational Intelligence, 16(1):1–28, 2000.
90. A. G. Wojna. Adaptacyjne definiowanie funkcji boolowskich z przykladow. Mas-

ter’s thesis, Warsaw University, 2000.
91. A. G. Wojna. Center-based indexing for nearest neighbors search. In Proceed-

ings of the Third IEEE International Conference on Data Mining, pages 681–684,
Melbourne, Florida, USA, 2003. IEEE Computer Society Press.

92. A. G. Wojna. Center-based indexing in vector and metric spaces. Fundamenta
Informaticae, 56(3):285–310, 2003.

93. D. Wolpert. Constructing a generalizer superior to NETtalk via meithematical
theory of generalization. Neural Networks, 3:445–452, 1989.

94. J. Wróblewski. Covering with reducts - a fast algorithm for rule generation. In Pro-
ceedings of the First International Conference on Rough Sets and Current Trends
in Computing, volume 1424 of Lectures Notes in Artificial Intelligence, pages 402–
407, Warsaw, Poland, 1998. Springer-Verlag.

95. P. N. Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In Proceedings of the Fourth Annual ACM/SIGACT-SIAM
Symposium on Discrete Algorithms, pages 311–321, Austin, Texas, 1993.

96. J. Zavrel. An empirical re-examination of weighted voting for k-nn. In Proceedings
of the Seventh Belgian-Dutch Conference on Machine Learning, pages 139–148,
Tilburg, The Netherlands, 1997.

Appendix. List of Symbols Used in the Dissertation

|. . .| — size of a set
‖. . .‖p — norm of a vector in the space lp
µi — mean of a numerical attribute ai in a training set Utrn

ρ — distance function X
2 → R

ρi — distance function R
2 → R defined for the values of an attribute ai

σi — standard deviation of a numerical attribute ai in a training set Utrn

σ(X) — standard deviation of a continuous variable X
ai — single attribute
A — set of attributes
cj — center of the j-th cluster Clj in a node splitting procedure
Clj — j-th cluster of data objects in a node splitting procedure
dec — decision function X → Vdec to be learnt by classifiers
df — degree of freedom in the Student’s t-test

374 A. Wojna

dj — single decision value
E(X) — expected value of a continuous variable X
Ip — p-th interval at discretization of a numerical attribute for the IVDM metric
I(v) — index of the upper neighboring interval of a value v for the IVDM metric
I(v) — index of the lower neighboring interval of a value v for the IVDM metric
k — number of nearest neighbors in the k-nn classifier
kmax — upper limit of the range of values examined by the procedure estimating
the optimal k
l — number of iterations in attribute weighting algorithms
maxi — maximum value of an attribute ai in a training set Utrn

midp — midpoint of the interval Ip

mini — minimum value of an attribute ai in a training set Utrn

MR — global misclassification ratio
MR(ai) — misclassification ratio for an attribute ai

NN(x, k) — set of the k nearest neighbors of a data object x in a training set
Utrn

P (dec = dj |ai = v) — conditional decision probability given a value v of an
attribute ai

P (dec = dj |ai ∈ I) — conditional decision probability given an interval of values
I of an attribute ai

PDBV DM (dec = dj |ai = v) — estimated conditional decision probability in the
DBVDM metric
PIV DM(dec = dj |ai = v) — estimated conditional decision probability in the
IVDM metric
PV DM (dec = dj |ai = v) — estimated conditional decision probability in the
VDM metric
PWV DM (dec = dj |ai = v) — estimated conditional decision probability in the
WVDM metric
rlocal(x,y) — local rule for a pair of a test object x and a training object y ∈ Utrn

rgen−local(x,y) — generalized local rule for a pair of a test object x and a training
object y ∈ Utrn

Rx — number of generalized minimal consistent rules centered at x
R — set of real numbers
s — number of intervals at discretization of a numerical attribute for the IVDM
metric
support(r) — set of all objects in Utrn matching the rule r
t — value t in the Student’s t-test
Utrn — training set
Utst — test set
Vdec — set of decision values
Vi — domain of values of the attribute ai

xi — value of an attribute ai in a data object x ∈ X

X — space of data objects, domain of learning

	Introduction
	Results Presented in This Thesis
	Organization of the Thesis

	Basic Notions
	Learning a Concept from Examples
	Learning as Concept Approximation in Rough Set Theory
	Metric in the Space of Objects
	City-Block and Hamming Metric
	K Nearest Neighbors as Analogy-Based Reasoning
	Data Sets
	Experimental Evaluation of Learning Algorithms

	Metrics Induced from Examples
	Joint City-Block and Value Difference Metric
	Extensions of Value Difference Metric for Numerical Attributes
	Weighting Attributes in Metrics
	Attribute Weighting Method Optimizing Distance
	Attribute Weighting Method Optimizing Classification Accuracy
	Experiments
	Results for Data with Nominal Attributes Only
	Results for Data with Numerical Attributes Only
	Results for Data with Numerical and Nominal Attributes
	Summary

	Distance-Based Indexing and Searching for k Nearest Neighbors
	Problem of Searching for k Nearest Neighbors
	Indexing Tree with Center Based Partition of Nodes
	Selection of Initial Centers
	Degree of the Indexing Tree
	Searching in the Indexing Tree
	Optimization of Searching in the Indexing Tree
	Analysis of Searching Cost in the Indexing Tree
	Comparison of Searching and Indexing Cost
	Summary

	Neighborhood-Based Classification Methods
	Estimating the Optimal Neighborhood Size
	Voting by k Nearest Neighbors
	Metric Based Generalization of Lazy Rule Induction
	Combination of k-nn with Generalized Lazy Rule Induction
	Experimental Results for Different Voting Models
	K Nearest Neighbors with Local Metric Induction
	Comparison of k-nn with Global and with Local Metric
	Summary

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

