
Rseslib 3: Open Source Library of Rough Set and

Machine Learning Methods

Arkadiusz Wojna1 and Rafaª Latkowski2

1 Security On-Demand, 12121 Scripps Summit Dr 320, San Diego, CA 92131, USA
2 Loyalty Partner, Zªota 59, 00-120 Warsaw, Poland

{wojna,rlatkows}@mimuw.edu.pl

Abstract. The paper presents a new generation of Rseslib library - a
collection of rough set and machine learning algorithms and data struc-
tures in Java. It provides algorithms for discretization, discernibility ma-
trix, reducts, decision rules and for other concepts of rough set theory
and other data mining methods. The third version was implemented
from scratch and in contrast to its predecessor it is available as a sepa-
rate open-source library with API and with modular architecture aimed
at high reusability and substitutability of its components. The new ver-
sion can be used within Weka and with a dedicated graphical interface.
Computations in Rseslib 3 can be also distributed over a network.

1 Introduction

Rough set theory [15] was introduced by Pawlak as a methodology for data anal-
ysis based on approximation of concepts in information systems. Discernibility
is a key concept in this methodology, which is the ability to distinguish objects,
based on their attribute values. Along with theoretical research rough sets were
developed in practical directions as well. To facilitate applications software tools
implementing rough set concepts and methods have been developed. This paper
describes one of such tools.

Rseslib 3 is a library of rough set and machine learning algorithms and data
structures implemented in Java. It is the successor of Rseslib 2 used in Rough Set
Exploration System (RSES) [2]. The �rst version of the library started in 1993
and was implemented in C++. It was used as the core of Rosetta system [14].
Rseslib 2 was the �rst version of the library implemented in Java and it stands
for the core of RSES. The third version of the library was entirely redesigned
and all the methods available in this version were implemented from scratch.
The following features are distinguishing the version 3 from its predecessor:

� available as a library with an API
� open source distributed under GNU GPL license
� modular component-based architecture
� easy-to-reuse data representations and methods
� easy-to-substitute components
� available in Weka

As open source library of rough set methods in Java Rseslib 3 �lls in an uncovered
gap in the spectrum of rough set software tools. The algorithms in Rseslib 3 can
be used both by users who need to apply ready-to-use rough set methods in
their data analysis tasks as well as by researchers interested in extension of the
existing rough set methods who can use the source code of the library as the
basis for their extended implementations. The library can be used also within the
following external tools: Weka [1], the dedicated graphical interface Qmak and
Simple Grid Manager distributing computations over a network of computers.

The library is not limited to rough sets, it contains and is open to concepts
and algorithms from other areas of machine learning and data mining. That is
related to another goal of the project which is to provide a universal library of
highly reusable and substitutable components at a very elementary level unmet
in open source data mining Java libraries available today.

Looking for analogous open source Java projects one can �nd Modlem3 and
Richard Jensen's programs4. Modlem is a Weka package providing a covering
algorithm inducing decision rules. The algorithm contains some aspects of rough
set theory. Richard Jensen developed a number of programs in Java providing
various rough set methods, some of them are provided with their source code.

There are useful libraries of rough set methods developed in other program-
ming languages: RoughSets [18] in R and NRough [23] in C#. RoughSets package
was extended with RapidRoughSets [8] - an extension facilitating the use of the
package in RapidMiner, a popular java platform for data mining, machine learn-
ing and predictive analytics. There are a number of tools providing rough set
methods within graphical interface like RSES [2], Rosetta [14] or ROSE [17].

2 Data

The concept of the library is based on classical representation of data in machine
learning. It is assumed that a �nite set of objects U , a �nite set of conditional
attributes A = {a1, . . . , an} and a decision attribute dec are given. Each object
x ∈ U is represented by a vector of values (x1, . . . , xn). The value xi is the
value of the attribute ai on the object x belonging to the domain of values Vi
corresponding to the attribute ai: xi ∈ Vi. The type of a conditional attribute
ai can be either numerical, if its values are comparable and can be represented
by numbers Vi ⊆ R (e.g.: age, temperature, height), or nominal, if its values are
incomparable, i.e., if there is no linear order on Vi (e.g.: color, sex, shape).

The library contains many algorithms implementing various methods of su-
pervised learning. These methods assume that each object x ∈ U is assigned with
a value of the decision attribute dec(x) called a decision class and they learn from
the objects in U a function approximating the real function dec on all objects
outside U . At present the algorithms in the library assume that the domain of
values of the decision attribute dec is discrete and �nite: Vdec = {d1, . . . , dm}.

The library reads data from �les in three formats: ARFF, CSV and RSES2.

3 https://sourceforge.net/projects/modlem
4 http://users.aber.ac.uk/rkj/site/?page_id=79

3 Discretizations

Some algorithms require data in form of nominal attributes, e.g. some rule based
algorithms like the rough set based classi�er. Discretization (known also as quan-
tization or binning) is data transformation converting data from numeric at-
tributes into nominal attributes. The library provides a number of discretization
methods. Each method splits domain of a numerical attribute into a number
of disjoint intervals. New nominal attribute is formed by encoding a numerical
value into an identi�er of an interval.

The following discretization methods are available in Rseslib:

� Equal width intervals
� Equal frequency intervals
� Holte's 1R algorithm [7]
� Entropy minimization (static and dynamic) [5]
� ChiMerge algorithm [10]
� Maximal discernibility (MD) heuristic (global and local) [13]

4 Discernibility Matrix

Computation of reducts is based on the concept of discernibility matrix [21].
The library provides 4 types of discernibility matrix. Each type is |U | × |U |
matrix de�ned for all pairs of objects x, y ∈ U . The values of discernibility
matrix M(x, y) are de�ned as the subsets of the set of conditional attributes:
M(x, y) ⊆ A. If a data set contains numerical attributes discernibility matrix
can be computed using either the original or the discretized numerical attributes.

The �rst type of discernibility matrix Mall depends on the values of the
conditional attributes only, it does not take the decision attribute into account:

Mall(x, y) = {ai ∈ A : xi 6= yi}

In many applications, e.g. in object classi�cation, we want to discern objects
only if they have di�erent decisions. The second type of discernibility matrix
Mdec discerns objects from di�erent decision classes:

Mdec(x, y) =

{
{ai ∈ A : xi 6= yi} if dec(x) 6= dec(y)

∅ if dec(x) = dec(y)

If data are inconsistent, i.e. if there are one or more pairs of objects with
di�erent decisions and with equal values on all conditional attributes then
Mdec(x, y) = ∅ like for pairs of objects with the same decision. To overcome
this inconsistency the concept of generalized decision was introduced [16,20]:

∂(x) = {d ∈ Vdec : ∃y ∈ U : ∀ai ∈ A : xi = yi ∧ dec(y) = d}

If U contains inconsistent objects x, y they have the same generalized deci-
sion. The next type of discernibility matrix Mgen is based on generalized deci-
sion:

Mgen(x, y) =

{
{ai ∈ A : xi 6= yi} if ∂(x) 6= ∂(y)

∅ if ∂(x) = ∂(y)

This type of discernibility matrix removes inconsistencies but discerns pairs
of objects with the same original decision, e.g. an inconsistent object from a con-
sistent object. The fourth type of discernibility matrix M both discerns a pair of
objects only if they have both the original and the generalized decision di�erent:

M both(x, y) =

{
{ai ∈ A : xi 6= yi} if ∂(x) 6= ∂(y) ∧ dec(x) 6= dec(y)

∅ if ∂(x) = ∂(y) ∨ dec(x) = dec(y)

Data can contain missing values. All types of discernibility matrix available
in the library have 3 modes to handle missing values [11]:

� di�erent value � an attribute ai discerns x, y if the value of one of them
on ai is de�ned and the value of the second one is missing (missing value is
treated as yet another value): ai /∈M(x, y)⇔ xi = yi ∨ (xi = ∗ ∧ yi = ∗)

� symmetric similarity � an attribute ai does not discern x, y if the value of
any of them on ai is missing: ai /∈M(x, y)⇔ xi = yi ∨ xi = ∗ ∨ yi = ∗

� nonsymmetric similarity � asymmetric discernibility relation between x and
y: ai /∈M(x, y)⇔ (xi = yi ∧ yi 6= ∗) ∨ xi = ∗

The �rst mode treating missing value as yet another value keeps indiscernibility
relation transitive but the next two modes make it intransitive. Such a relation is
not an equivalence relation and does not de�ne correctly indiscernibility classes in
the set U . To eliminate that problem the library provides an option to transitively
close an intransitive indiscernibility relation.

5 Reducts

Reduct [21] is a key concept in rough set theory. It can be used to remove some
data without loss of information or to generate decision rules.

De�nition 1. The subset of attributes R ⊆ A is a (global) reduct in relation to
a discernibility matrix M if each pair of objects discernible by M is discerned by
at least one attribute from R and no proper subset of R holds that property:

∀x, y ∈ U : M(x, y) 6= ∅ ⇒ R ∩M(x, y) 6= ∅

∀R′ (R ∃x, y ∈ U : M(x, y) 6= ∅ ∧R′ ∩M(x, y) = ∅
If M is a decision-dependent discernibility matrix the reducts related to M

are the reducts related to the decision attribute dec.
Reducts de�ned in De�nition 1 called also global reducts are sometimes too

large and generate too speci�c rules. To overcome this problem the notion of
local reducts was introduced [26].

De�nition 2. The subset of attributes R ⊆ A is a local reduct in relation to a
discernibility matrix M and an object x ∈ U if each object y ∈ U discerned from
x by M is discerned from x by at least one attribute from R and no proper subset
of R holds that property:

∀y ∈ U : M(x, y) 6= ∅ ⇒ R ∩M(x, y) 6= ∅

∀R′ (R ∃y ∈ U : M(x, y) 6= ∅ ∧R′ ∩M(x, y) = ∅
It may happen that local reducts are still too large. In the extreme situation

there is only one global or local reduct equal to the whole set of attributes A.
In such situations partial reducts [12] can be helpful.

Let P be the set of all pairs of objects x, y ∈ U discerned by a discernibility
matrix M : P = {{x, y} ⊆ U : M(x, y) 6= ∅} and let α ∈ (0; 1).

De�nition 3. The subset of attributes R ⊆ A is a global α-reduct in relation
to a discernibility matrix M if it discerns at least (1 − α) |P | pairs of objects
discernible by M and no proper subset of R holds that property:

|{{x, y} ⊆ U : R ∩M(x, y) 6= ∅}| ≥ (1− α) |P |

∀R′ (R : |{{x, y} ⊆ U : R′ ∩M(x, y) 6= ∅}| < (1− α) |P |
Let P (x) be the set of all objects y ∈ U discerned from x ∈ U by a discerni-

bility matrix M : P (x) = {y ∈ U : M(x, y) 6= ∅} and let α ∈ (0; 1).

De�nition 4. The subset of attributes R ⊆ A is a local α-reduct in relation to a
discernibility matrix M and an object x ∈ U if it discerns at least (1−α) |P (x)|
objects discernible from x by M and no proper subset of R holds that property:

|{y ∈ U : R ∩M(x, y) 6= ∅}| ≥ (1− α) |P (x)|

∀R′ (R : |{y ∈ U : R′ ∩M(x, y) 6= ∅}| < (1− α) |P (x)|
The following algorithms computing reducts are available in Rseslib:

� All Global Reducts
The algorithm computes all global reducts from a data set. The algorithm
is based on the fact that a set of attributes is a reduct if and only if it is a
prime implicant of a boolean CNF formula generated from the discernibility
matrix [19]. First the algorithm calculates the discernibility matrix and then
it transforms the discernibility matrix into a boolean CNF formula. Finally it
applies an e�cient algorithm �nding all prime implicants of the formula using
well-known in the �eld of boolean reasoning advanced techniques accelerating
computations [4]. All found prime implicants are global reducts.

� All Local Reducts
The algorithm computes all local reducts for each object in a data set. Like
the algorithm computing global reducts it uses boolean reasoning. The �rst
step is the same as for global reducts: the discernibility matrix speci�ed by
parameters is calculated. Next for each object x in the data set the row of
the discernibility matrix corresponding to the object x is transformed into a
CNF formula and all local reducts for the object x are computed with the
algorithm �nding prime implicants.

� One Johnson Reduct
The method computes one reduct with greedy Johnson algorithm [9]. The
algorithm starts with the empty set of attributes called the candidate set
and adds iteratively one attribute maximizing the number of discerned pairs
of objects according to the semantics of a selected discernibility matrix. It
stops when all objects are discerned and checks if any of the attributes in
the candidate set can be removed. The �nal candidate set is a reduct.

� All Johnson Reducts
A version of the greedy Johnson algorithm in which the algorithm branches
and traverses all possibilities rather than selecting one of them arbitrarily
when more than one attribute cover the maximal number of uncovered �elds
of the discernibility matrix. The result is the set of the reducts found in all
branches of the algorithm.

� Global Partial Reducts
The algorithm �nding global α-reducts described in [12]. The value α is the
parameter of the algorithm.

� Local Partial Reducts
The algorithm �nding local α-reducts described in [12]. The value α is the
parameter of the algorithm.

The table below presents time (in seconds) of computing decision-related reducts
by particular algorithms on some data sets. Numerical attributes were discretized
with the local maximal discernibility method. The experiments were run on Intel
Core i7-4790 3.60GHz processor.

Dataset Attributes Objects All global All local Global partial Local partial

segment 19 1540 0.6 0.9 0.2 0.2

chess 36 2131 4.1 66.1 0.2 0.4

mushroom 22 5416 2.9 4.9 0.8 1.5

pendigits 16 7494 10.4 23.2 2.2 4.3

nursery 8 8640 6.5 6.7 1.5 2.8

letter 16 15000 44.6 179.7 9.7 20.5

adult 13 30162 62.1 70.1 18.0 33.0

shuttle 9 43500 91.8 92.5 22.7 48.4

covtype 12 387342 8591.9 8859.0 903.7 7173.7

6 Rules Generated from Reducts

Reducts described in the previous section can be used in Rseslib to generate
decision rules. As reducts can be generated from a discernibility matrix using
generalized decision Rseslib uses generalized decision rules:

De�nition 5. A decision rule indicates the probabilities of the decision classes
at given values of some conditional attributes:

ai1 = v1 ∧ . . . ∧ aip = vp ⇒ (p1, . . . , pm)

where pj is de�ned as pj =
|{x∈U : xi1=v1∧...xip=vp∧dec(x)=dj}|

|{x∈U : xi1=v1∧...xip=vp}| .

A data object x is said to match a rule if the premise of the rule is satis�ed
by the attribute values of x: xi1 = v1, . . . , xip = vp. Rseslib provides the option
to allow the values vk in the descriptors of a rule to be missing values: aik = ∗.
An object x satis�es a descriptor with missing value aik = ∗ if the value of the
attribute aik on x is missing: xik = ∗.

Each decision rule r: ai1 = v1 ∧ . . . ∧ aip = vp ⇒ (p1, . . . , pm) in Rseslib is
assigned with its support in the data set U used to generate rules:

support(r) =
∣∣{x ∈ U : xi1 = v1 ∧ . . . xip = vp

}∣∣
Rseslib provides two algorithms generating decision rules from reducts:

� Rules from global reducts (Johnson reducts are global reducts). Given a
set of global reducts GR the algorithm �nds all templates in the data set:

Templates(GR) =

{ ∧
ai∈R

ai = xi : R ∈ GR, x ∈ U

}

For each template the algorithm generates one rule with the decision prob-
abilities pj as de�ned in De�nition 5:

Rules(GR) = {t⇒ (p1, . . . , pm) : t ∈ Templates(GR)}

� Rules from local reducts. For each object x ∈ U the algorithm applies
the selected algorithm LR : U 7→ P(A) computing local reducts LR(x) for
x and generates the set of templates as the union of the sets of templates
from all objects in U :

Templates(LR) =

{ ∧
ai∈R

ai = xi : R ∈ LR(x), x ∈ U

}

The set of decision rules is obtained from the set of templates in the same
way as in case of global reducts:

Rules(LR) = {t⇒ (p1, . . . , pm) : t ∈ Templates(LR)}

7 Classi�cation

7.1 Rough Set Classi�er

Rough set classi�er provided in Rseslib uses the algorithms computing discerni-
bility matrix, reducts and rules generated from reducts described in the previous
sections. It enables to apply any of the discretization methods listed in Section 3
to transform numerical attributes into nominal attributes. A user of the classi�er
selects a discretization method, a type of discernibility matrix and an algorithm
generating reducts. The classi�er computes a set of decision rules and the sup-
port of each rule in the training set.

Let Rules denote the computed set of decision rules. The rules are used in
classi�cation to determine a decision value when provided with an object x to be
classi�ed. First, the classi�er calculates the vote of each decision class dj ∈ Vdec
for the object x:

votej(x) =
∑

{t⇒(p1,...,pm)∈Rules: xmatches t}

pj · support(t⇒ (p1, . . . , pm))

Then the classi�er assigns to x the decision with the greatest vote:

decroughset(x) = max
dj∈Vdec

votej(x)

7.2 K Nearest Neighbors / RIONA

Rseslib provides an originally extended version of the k nearest neighbors (k-nn)
classi�er [24]. It can work with data containing both numerical and nominal
attributes and implements fast neighbor search that make the classi�er work in
reasonable time for large data sets.

In the learning phase the algorithm induces a distance measure from a train-
ing set and constructs an indexing tree used for fast neighbor search. Optionally,
the algorithm can learn the optimal number k of nearest neighbors from the
training set. The distance measure is the weighted sum of distances between
values of two objects on all conditional attributes. The classi�er provides two
metrics for nominal attributes: Hamming metric and Value Di�erence Metric
(VDM), and three metrics for numerical attributes: the city-block Manhattan
metric, Interpolated Value Di�erence Metric (IVDM) and Density-Based Value
Di�erence Metric (DBVDM). IVDM and DBVDM metrics are adaptations of
VDM metric to numerical attributes. For computation of the weights in the dis-
tance measure three methods are available: distance-based method, accuracy-
based method and a method using perceptron.

While classifying an object the classi�er �nds k nearest neighbors in the
training set according to the induced distance measure and it applies one of three
methods of voting for the decision by the found neighbors: equally weighted, with
inverse distance weights or with inverse square distance weights.

The algorithm has also the mode to work as RIONA algorithm [6]. This mode
implements a classi�er combining the k-nn method with rule induction where
the nearest neighbors not validated by additional rules are excluded from voting.

7.3 K Nearest Neighbors with Local Metric Induction

K nearest neighbors with local metric induction is the k nearest neighbors
method extended with an extra step - the classi�er computes a local metric
for each classi�ed object [22]. While classifying an object, �rst the classi�er
�nds a large set of the nearest neighbors (according to a global metric). Then
it generates a new, local metric from this large set of neighbors. At last, the k

nearest neighbors are selected from this larger set of neighbors according to the
locally induced metric and used to vote for the decision.

In comparison to the standard k-nn algorithm this method improves classi-
�cation accuracy particularly for the case of data with nominal attributes. It is
reasonable to use this method rather for large data sets (2000 training objects
or more).

7.4 Classical Classi�ers

Rseslib delivers also implementations of classi�ers well-known in the machine
learning community (see [25] for more details):
C4.5 - decision tree developed by Quinlan
AQ15 - rule-based classi�er with a covering algorithm
Neural network - classical backpropagation algorithm
Naive Bayes - simple Bayesian network
Support vector machine
PCA - classi�er using principal component analysis
Local PCA - classi�er using local principal component analysis
Bagging - metaclassi�er combining a number of �weak� classi�ers
AdaBoost - another popular metaclassi�er

8 Other Algorithms

Beside rough set and classi�cation methods Rseslib provides many other machine
learning and data mining algorithms. Each algorithm is available as separate
class or method and easy to use as an independent component. That includes:
Data transformation: discretizations, missing value completion (non-invasive
data imputation by Gediga and Duentsch), attribute selection, numerical at-
tribute scaling, new attributes (radial, linear and arithmetic transformations)
Data �ltering: missing values �lter, Wilson's editing, Minimal Consistent Sub-
set (MSC) by Dasarathy, universal boolean function based �lter
Data sampling: with repetitions, without repetitions, with given class distri-
bution
Data clustering: k approximate centers algorithm
Data sorting: attribute value related, distance related
Rule induction: from global reducts, from local reducts, AQ15 algorithm
Metric induction: Hamming and Value Di�erence Metric (VDM) for nominal
attributes, city-block Manhattan, Interpolated Value Di�erence Metric (IVDM)
and Density-Based Value Di�erence Metric (DBVDM) for numerical attributes,
attribute weighting (distance-based, accuracy-based, perceptron)
Principal Component Analysis (PCA): OjaRLS algorithm
Boolean reasoning: two di�erent algorithms generating prime implicant from
a CNF boolean formula
Genetic algorithm scheme: a user provides cross-over operation, mutation
operation and �tness function only

Classi�er evaluation: single train-and-classify test, cross-validation, multiple
test with random train-and-classify split, multiple cross-validation (all types of
tests can be executed on many classi�ers)

9 Modular Component-Based Architecture

Providing a collection of rough set and machine learning algorithms is not the
only goal of Rseslib. It is designed also to assure maximum reusability and sub-
stitutability of the existing components in new components of the library. Hence
a strong emphasis is put on its modularity. The code is separated into loosely
related elements as small as possible so that each element can be used inde-
pendently of other elements. For each group of the elements of the same type a
standardizing interface is de�ned so that each element used in an algorithm can
be easily substituted by any other element of the same type. Code separation
and standardization is applied both to the algorithms and to the objects.

The previous sections presented the range of algorithms available in Rseslib.
Below there is a list of the objects in the library implementing various data-
related mathematical concepts that can be used as isolated components:
Basic: attribute, data header, data object, boolean data object, numbered data
object, data table, nominal attribute histogram, numeric attribute histogram,
decision distribution
Boolean functions/operators: attribute value equality, numerical attribute
interval, nominal attribute value subset, binary discrimination, metric cube,
negation, conjunction, disjunction
Real functions/operators: scaling, perceptron, radius function, multiplica-
tion, addition
Integer functions: discrimination (discretization, 3-value cut)
Decision distribution functions: nominal value to decision distribution, nu-
meric value to vicinity-based decision distribution, numeric value to interpolated
decision distribution
Vector space: vector, linear subspace, principal components subspace, vector
function
Linear order
Indiscernibility relations
Distance measures: Hamming, Value Di�erence Metric, city-block Manhat-
tan, Interpolated Value Di�erence Metric, Density-Based Value Di�erence Met-
ric, metric-based indexing tree
Rules: boolean function based, equality descriptors rule, partial matching rule
Probability: gaussian kernel function, hypercube kernel function, m-estimate

The structure of rough set algorithms in Rseslib is one of the examples of the
component-based architecture. Each of the six modules: Discretization, Logic,
Discernibility, Reducts, Rules and Rough Set Classi�er provides well-abstracted
algorithms with clearly de�ned interfaces that allow algorithms from other mod-
ules to use them as their components. It is easy to extend each module with

implementation of a new method and to add the new method as an alternative
in all components using the module.

The component-based architecture of Rseslib makes it possible to implement
unconventional combinations of data mining methods. For example, perceptron
learning is used as one of the attribute weighting methods in the algorithm
computing a distance measure between data objects. Estimation of value proba-
bility at given decision is another example of such combination: it uses k nearest
neighbors voting as one of the methods de�ning conditional value probability.

10 Tools

10.1 Rseslib classi�ers in Weka

Weka [1] is a very popular machine learning and data mining software equipped
with the system of packages updated independently of Weka core allowing people
all over the world to contribute to Weka and maintain easily their extensions.

Rseslib is such an o�cial Weka package available from Weka repository. Rs-
eslib version 3.1.2 (the latest at the moment of preparing this paper) provides
three Rseslib classi�ers with full con�guration in Weka: rough set classi�er, k
nearest neighbors / RIONA and k nearest neighbors with local metric induction.
These three classi�ers can be used, tested and compared with other classi�ers
within all Weka interfaces.

10.2 Graphical Interface Qmak

Qmak is a graphical user interface dedicated to Rseslib library. It is a tool for data
analysis, data classi�cation, classi�er evaluation and interaction with classi�ers.
Qmak provides the following features:

� visualization of data, classi�ers and single object classi�cation
� interactive classi�er modi�cation by a user
� classi�cation of test data with presentation of misclassi�ed objects
� experiments on many classi�ers: single train-and-classify test, cross-validation,
multiple test with random train-and-classify split, multiple cross-validation

Qmak 1.0.0 (the latest at the moment of preparing this paper) with Rseslib 3.1.2
provides visualization of 5 classi�ers: rough set classi�er, k nearest neighbors,
C4.5 decision tree, neural network and principal component analysis classi�er.
Visualization of a rough set classi�er presents the decision rules of the classi�er
(see Figure 1). The rules can be �ltered and sorted by attribute occurrence,
attribute values, length, support and accuracy. Visualization of classi�cation by
rough set classi�er shows the decision rules matching a classi�ed object enabling
the same types of �ltering and sorting criteria as visualization of the classi�er.

Users can implement new classi�ers and their visualization and add them
easily to Qmak. It does not require any change in Qmak itself. A new classi�er
can be added using GUI or in the con�guration �le.

Qmak is available from Rseslib homepage. Help on Qmak can be found in
the main menu of the application.

Fig. 1. Qmak project panel with instance of rough set classi�er displayed

10.3 Computing in Cluster

Simple Grid Manager is a tool for running massive Rseslib-based experiments
on all available computers. It is the successor of the previous version of software
dedicated to Rseslib 2 [3]. Using SGM a user can create an ad-hoc cluster of
computers by running server part on one machine and client part on all machines
designated to run the experiments. The server reads experiment lists from script
�les, distributes tasks between all available client machines, collects results of
executed tasks and stores them in a result �le. The main features of the tool are:

� Executes train-and-test experiments with any set of classi�ers from Rseslib
library (or user written classi�ers compatible with Rseslib standards)

� Allows ad-hoc cluster creation without any con�guration and maintenance
� Automatically resumes failed jobs and skips completed jobs in case of restart
� Uses robust communication that allows creation of a cluster over non-reliable
networks

� Enables utilizing multi-core architectures by executing many client instances
on one machine

Simple Grid Manager is available from Rseslib homepage. The guide on how to
run the distributed experiments can be found in [25].

11 Conclusions and Future Work

The paper presents the contents of Rseslib 3 library that is designed to be used
both by users who need to apply ready-to-use rough set or other data mining

methods in their data analysis tasks as well as by researchers interested in ex-
tension of the existing methods. More information on Rseslib 3 and its tools can
be found on the home page5 and in the user guide [25].

The development of Rseslib 3 is continued. The repository of the library6

is maintained by GitHub and is open to new contributions from all researchers
and developers willing to extend the library. There is ongoing work on a classi�er
specialized in imbalanced data. The algorithms computing reducts are planned
to be added to Weka package as attribute selection methods. Discretizations
are also to be added to Weka package as separate algorithms. We are going to
add Rseslib to Maven repository and to investigate the possibility of connecting
Rseslib to RapidMiner.

Acknowledgment. We would like to thank Professor Andrzej Skowron for
his mentorship over the project and for his advice on the development and Pro-
fessor Dominik �l¦zak for his remarks to this paper. It must be emphasized that
the library is the result of joint e�ort of many people and we express our grati-
tude to all the contributors: Jan Bazan, Rafaª Falkowski, Grzegorz Góra, Wiktor
Gromniak, Marcin Jaªmu»na, �ukasz Kosson, �ukasz Kowalski, Michaª Kurzy-
dªowski, �ukasz Ligowski, Michaª Mikoªajczyk, Krzysztof Niemkiewicz, Dariusz
Ogórek, Marcin Piliszczuk, Maciej Próchniak, Jakub Sakowicz, Sebastian Staw-
icki, Cezary Tkaczyk, Witold Wojtyra, Damian Wójcik and Beata Zielosko.

References

1. Weka 3: Data mining software in java. http://www.cs.waikato.ac.nz/ml/weka
2. Bazan, J.G., Szczuka, M.: The rough set exploration system. LNCS Transactions

on Rough Sets III 3400, 37�56 (2005)
3. Bazan, J.G., Latkowski, R., Szczuka, M.: DIXER - distributed executor for rough

set exploration system. In: �l¦zak, D., Yao, J., Peters, J., Ziarko, W., Hu, X. (eds.)
Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data
Mining, and Granular Computing. LNCS, vol. 3642, pp. 39�47. Springer (2005)

4. Brown, F.M.: Boolean Reasoning: The Logic of Boolean Equations. Kluwer Aca-
demic Publishers, Dordrecht (1990)

5. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes
for classi�cation learning. In: Proceedings of the 13th International Joint Confer-
ence on Arti�cial Intelligence. pp. 1022�1027. Morgan Kaufmann (1993)

6. Góra, G., Wojna, A.: RIONA: a new classi�cation system combining rule induction
and instance-based learning. Fundamenta Informaticae 51(4), 369�390 (2002)

7. Holte, R.C.: Very simple classi�cation rules perform well on most commonly used
datasets. Machine learning 11(1), 63�90 (1993)

8. Janusz, A., Stawicki, S., Szczuka, M., �l¦zak, D.: Rough set tools for practical data
exploration. In: Proceedings of the 10th International Conference on Rough Sets
and Knowledge Technology. LNCS, vol. 9436, pp. 77�86. Springer (2015)

9. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
computer and system sciences 9(3), 256�278 (1974)

5 http://rseslib.mimuw.edu.pl
6 https://github.com/awojna/Rseslib

10. Kerber, R.: Chimerge: Discretization of numeric attributes. In: Proceedings of the
10th National Conference on Arti�cial Intelligence. pp. 123�128. Aaai Press (1992)

11. Latkowski, R.: Flexible indiscernibility relations for missing attribute values. Fun-
damenta Informaticae 67(1-3), 131�147 (2005)

12. Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial covers, reducts and decision rules
in rough sets: Theory and applications. Studies in Computational Intelligence 145
(2008)

13. Nguyen, H.S.: Discretization of Real Value Attributes: A Boolean Reasoning Ap-
proach. Ph.D. thesis, Warsaw University (1997)

14. Øhrn, A., Komorowski, J., Skowron, A., Synak, P.: The design and implementa-
tion of a knowledge discovery toolkit based on rough sets - the rosetta system. In:
Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2: Applica-
tions, Case Studies and Software Systems, pp. 376�399. Physica-Verlag (1998)

15. Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991)

16. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information sciences 177(1),
3�27 (2007)

17. Pr¦dki, B., Wilk, S.: Rough set based data exploration using rose system. In: Ra±,
Z.W., Skowron, A. (eds.) Foundations of Intelligent Systems, LNCS, vol. 1609, pp.
172�180. Springer-Verlag, Berlin (1999)

18. Riza, L.S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., �l¦zak, D., Benitez,
J.M.: Implementing algorithms of rough set theory and fuzzy rough set theory in
the R package "RoughSets". Information sciences 287, 68�89 (2014)

19. Skowron, A.: Boolean reasoning for decision rules generation. In: Komorowski, J.,
Ra±, Z.W. (eds.) Proceedings of the 7th International Symposium on Methodologies
for Intelligent Systems. LNCS, vol. 689, pp. 295�305. Springer (1993)

20. Skowron, A., Grzymaªa-Busse, J.W.: From rough set theory to evidence theory. In:
Yager, R.R., Kacprzyk, J., Fedrizzi, M. (eds.) Advances in the Dempster-Shafer
Theory of Evidence, pp. 193�236. Wiley, New York (1994)

21. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information
systems. In: Slowinski, R. (ed.) Intelligent Decision Support, Handbook of Appli-
cations and Advances of the Rough Sets Theory, pp. 331�362. Kluwer Academic
Publishers, Dordrecht (1992)

22. Skowron, A., Wojna, A.: K nearest neighbors classi�cation with local induction of
the simple value di�erence metric. In: Proceedings of the 4th International Con-
ference on Rough Sets and Current Trends in Computing. LNCS, vol. 3066, pp.
229�234. Springer-Verlag (2004)

23. Widz, S.: Introducing NRough framework. In: Proceedings of the International
Joint Conference on Rough Sets. LNCS, vol. 10314, pp. 669�689. Springer (2017)

24. Wojna, A.: Analogy-based reasoning in classi�er construction (phd thesis). LNCS
Transactions on Rough Sets IV 3700, 277�374 (2005)

25. Wojna, A., Latkowski, R., Kowalski, �.: RSESLIB: User Guide,
http://rseslib.mimuw.edu.pl/rseslib.pdf

26. Wróblewski, J.: Covering with reducts - a fast algorithm for rule generation. In:
Proceedings of the 1st International Conference on Rough Sets and Current Trends
in Computing. LNCS, vol. 1424, pp. 402�407. Springer-Verlag (1998)

