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Abstract. The paper presents a new generation of Rseslib library - a
collection of rough set and machine learning algorithms and data struc-
tures in Java. It provides algorithms for discretization, discernibility ma-
trix, reducts, decision rules and for other concepts of rough set theory
and other data mining methods. The third version was implemented
from scratch and in contrast to its predecessor it is available as a sepa-
rate open-source library with API and with modular architecture aimed
at high reusability and substitutability of its components. The new ver-
sion can be used within Weka and with a dedicated graphical interface.
Computations in Rseslib 3 can be also distributed over a network of
computers.
Keywords: rough set, discernibility matrix, reduct, k nearest neighbors,
machine learning, Java, Weka, distributed computing, open source.

1 Introduction

Rough set theory [20] was introduced by Pawlak as a methodology for data anal-
ysis based on approximation of concepts in information systems. Discernibility
is a key concept in this methodology, which is the ability to distinguish objects,
based on their attribute values. Along with theoretical research rough sets were
developed in practical directions as well. To facilitate applications software tools
implementing rough set concepts and methods have been developed. This paper
describes one of such tools.

Rseslib 3 is a library of rough set and machine learning algorithms and data
structures implemented in Java [35,36]. It is the successor of Rseslib 2 used
in Rough Set Exploration System (RSES) [2]. The �rst version of the library
started in 1993 and was implemented in C++. It was used as the core of Rosetta
system [19]. Rseslib 2 was the �rst version of the library implemented in Java
and it stands for the core of RSES. The third version of the library was entirely
redesigned and all the methods available in this version were implemented from
scratch. It provides algorithms for discretization, discernibility matrix, reducts,
decision rules and rule-based classi�ers as well as very fast implementation of the
k nearest neighbors method with high accuracy distance measure and many well-
known classical classi�cation methods. The following features are distinguishing
the version 3 from its predecessor:



� available as a library with an API
� open source distributed under GNU GPL license
� modular component-based architecture
� easy-to-reuse data representations and methods
� easy-to-substitute components
� available in Weka

As an open source library of rough set methods in Java Rseslib 3 �lls in an
uncovered gap in the spectrum of rough set software tools. The algorithms in
Rseslib 3 can be used both by users who need to apply ready-to-use rough set
methods in their data analysis tasks as well as by researchers interested in exten-
sion of the existing rough set methods who can use the source code of the library
as the basis for their extended implementations. The library can be used also
within the following external tools: Weka [8], the dedicated graphical interface
Qmak and Simple Grid Manager distributing computations over a network of
computers.

The library is not limited to rough sets, it contains and is open to concepts
and algorithms from other areas of machine learning and data mining. That is
related to another goal of the project which is to provide a universal library of
highly reusable and substitutable components at a very elementary level unmet
in open source data mining Java libraries available today.

The paper is organised as follows. Other software implementing rough set
related methods is discussed in Section 2. The types of data handled by the li-
brary and the data related notation used in the paper are presented in Section 3.
Section 4 describes all discretization methods available in Rseslib. Section 5 dis-
cusses the types of discernibility matrix and indiscernibility relations provided
by the library. Section 6 de�nes the types of reducts available in Rseslib and
describes all the implemented algorithms computing reducts. Section 7 presents
the algorithms computing rules from reducts. Section 8 describes the classi�ca-
tion models implemented in Rseslib including the reduct-based method. Section
9 enumerates other available algorithms. Section 10 introduces to modularity
of the library and discusses reusability and substitutability of its components.
Section 11 presents the tools that can be used with the library: Weka, the ded-
icated graphical interface Qmak and a tool running Rseslib-based experiments
on many computers or cores. Section 12 provides examples of Rseslib usage in
independent research and software projects. Section 13 concludes the paper and
outlines the future plans for the project.

2 Related Work

Looking for analogous open source Java projects one can �nd Modlem3 and
Richard Jensen's programs4.

3 https://sourceforge.net/projects/modlem
4 http://users.aber.ac.uk/rkj/?page_id=79



Modlem is a sequential covering algorithm inducing decision rules that con-
tains some aspects of rough set theory. Numerical values are handled without
discretization. Modlem as a classi�cation method is available as Weka package.

Richard Jensen implemented a number of rough-fuzzy feature selection meth-
ods in Java. That includes a variety of search techniques, e.g. hill-climbing, ant
colony optimization, genetic algorithm, as well as metrics and measures. Jensen
provides also his own version of Weka with some methods included.

There are two useful libraries developed in other programming languages.
RoughSets package [23] implemented in the R programming language pro-

vides rough set and fuzzy rough models and methods. It implements the concepts
of indiscernibility relations, lower and upper approximations, positive region and
discernibility matrix. Using these concepts it provides the algorithms for dis-
cretization, feature selection, instance selection, rule induction, prediction and
classi�cation. RoughSets package was extended with RapidRoughSets [11] �
an extension facilitating the use of the package in RapidMiner, a popular java
platform for data mining, machine learning and predictive analytics.

NRough library [32] implemented in C# provides algorithms computing de-
cision reducts, bireducts, decision reduct ensembles and decision rules. The al-
gorithms can be used as feature selection and classi�cation methods.

There are a number of tools providing rough set methods within graphical
interface.

Rosetta [19] is the graphical tool based on the �rst version of Rseslib library.
It provides functions for tabular data analysis supporting the overall data min-
ing and knowledge discovery process. It provides methods computing exact and
approximate reducts and generating if-then rules from computed reducts.

Rough Set Data Explorer (ROSE) [22] is the graphical tool for rough set
based analysis of data. It provides methods for data processing including dis-
cretization, core and reduct computation, decision rule induction from rough
approximations, and rule-based classi�cation. As a distinctive feature ROSE in-
cludes variable precision rough set model.

Rough Set Exploration System (RSES) [2] is the graphical tool based on the
second version of Rseslib library. It provides wide range of methods for data
discretization, reduct compution, rule induction and rule-based classi�cation.

3 Data

The concept of the library is based on classical representation of data in machine
learning. It is assumed that a �nite set of objects U , a �nite set of conditional
attributes A = {a1, . . . , an} and a decision attribute dec are given. Each object
x ∈ U is represented by a vector of values (x1, . . . , xn). The value xi is the
value of the attribute ai on the object x belonging to the domain of values Vi
corresponding to the attribute ai: xi ∈ Vi. The type of a conditional attribute
ai can be either numerical, if its values are comparable and can be represented
by numbers Vi ⊆ R (e.g.: age, temperature, height), or nominal, if its values are
incomparable, i.e., if there is no linear order on Vi (e.g.: color, sex, shape).



The library contains many algorithms implementing various methods of su-
pervised learning. These methods assume that each object x ∈ U is assigned with
a value of the decision attribute dec(x) called a decision class and they learn from
the objects in U a function approximating the real function dec on all objects
outside U . At present the algorithms in the library assume that the domain of
values of the decision attribute dec is discrete and �nite: Vdec = {d1, . . . , dm}.

The library reads data from �les. Three data formats are accepted by the
library:

� ARFF
The format of the popular open source machine learning software WEKA
[8] widely adopted in the machine learning community.

� CSV (Comma Separated Version)
A popular format that can be exchanged between databases, spreadsheet
programs like Microsoft Excel or Libre O�ce and software recognizing this
format like Rseslib. To read this format Rseslib needs the description of
columns called Rseslib header [36]. The header can be provided inside the
�le with data or in a separated �le. The option of the header in a separate
�le enables to use the �le with data by other programs without any extra
conversion and eliminates the inconvenience of editing large �les in case
of very large data sets. Unlike in ARFF listing the values of the decision
attribute is optional. The decisions can be collected directly from data if not
given in the header.

� RSES2
The format of RSES system.

4 Discretizations

Some algorithms require data in form of nominal attributes, e.g. some rule based
algorithms like the rough set based classi�er. Discretization (known also as quan-
tization or binning) is data transformation converting data from numeric at-
tributes into nominal attributes.

The library provides a number of discretization methods. Each method splits
domain of a numerical attribute into a number of disjoint intervals. New nominal
attribute is formed by encoding a numerical value into an identi�er of an interval.

The discretization methods available in Rseslib are described below.

4.1 Equal Width

The range of values of a numerical attribute in a data set is divided into k
intervals of equal length. The number of intervals k is the parameter of the
method.



4.2 Equal Frequency

The range of values of a numerical attribute in a data set is divided into k
intervals containing the same number of objects from a data set. The number of
objects in particular intervals may di�er by one if the size of the data set does
not divide by k. The number of intervals k is the parameter of the method.

4.3 One Rule

Holte's 1R algorithm [9] tries to cut the range of values of a numerical attribute
into intervals containing training objects with the same decision but it avoids
very small intervals. The minimal number n of training objects that must fall
into each interval is the parameter of 1R algorithm. The algorithm executes the
following steps:

1. Sort the objects by the values of a numerical attribute to be discretized
2. Scan the objects in the ascending order adding them to an interval until one

of the decision classes, denote it by d, has n representatives in the interval
3. While the decision of the object next in the ascending order is d add the

object to the interval
4. Start the next interval as empty and go to 2

4.4 Static Entropy Minimization

Static entropy minimization [5] is a top-down local method discretizing a single
numerical attribute. It starts with the whole range of values of the attribute
in a data set and divides it into smaller intervals. At each step the algorithm
remembers which objects from the data set fall into each interval. In a single
step the algorithm searches all possible cuts in all intervals and selects the new
cut c maximizing information gain, i.e. minimizing entropy:

E(ai, c, S) =
|S1|
|S|

Ent(S1) +
|S2|
|S|

Ent(S2) (1)

where

Ent(S) = −
m∑
j=1

|{x ∈ S : dec(x) = dj}|
|S|

log

(
|{x ∈ S : dec(x) = dj}|

|S|

)

ai is the attribute to be discreatized, S is the set of the objects falling into
the interval on ai containing a candidate cut c, S1 = {x ∈ S : xi ≤ c}, S2 =
{x ∈ S : xi > c}.

The method applies the minimum description length prinicple to decide when
to stop the algorithm.



4.5 Dynamic Entropy Minimization

Dynamic entropy minimization method [5] is similar to static entropy minimiza-
tion but it discretizes all numerical attributes at once. It starts with the whole
set of objects and splits it into two subsets with the optimal cut selected from all
numerical attributes. Then the algorithm splits each subset recursively scanning
all possible cuts over all numerical attributes at each split. To select the best cut
the algorithm minimizes the same formula 1 as the static method.

On average the dynamic method is faster than the static method and pro-
duces fewer cuts.

4.6 ChiMerge

ChiMerge [13] ia a bottom-up discretization method using χ2 statistics to test
whether neighbouring intervals have signi�cantly di�erent decision distributions.
If the distributions are similar the algorithm merges the intervals into one inter-
val. The method discretizes each numerical attribute independently.

The method has two parameters. The �rst parameter n is the minimal num-
ber of �nal intervals. The second parameter is the con�dence level (0.0 − 1.0)
used to recognize two neighbouring intervals as di�erent and not to merge them.

First, the algorithm calculates the threshold θ from χ2 distribution with
m−1 degrees of freedom and a given con�dence level and starts with a separate
interval for each value of a numerical attribute occuring in a data set U . At each
step it merges the pair of neighbouring intervals with the minimal χ2 value as
long as this minimal value is less then θ and the number of intervals does not
drop below n. χ2 value is de�ned as:

χ2(S1, S2) =

m∑
j=1

(∣∣∣Sj
1

∣∣∣− ESj
1

)2
ESj

1

+

m∑
j=1

(∣∣∣Sj
2

∣∣∣− ESj
2

)2
ESj

2

where S1, S2 are the sets of objects from U falling into two neighouring intervals,
Sj
k = {x ∈ Sk : dec(x) = dj} and ESj

k is the expected number of objects in Sk

with the decision dj :

ESj
k = |Sk|

|{x ∈ S1 ∪ S2 : dec(x) = dj}|
|S1 ∪ S2|

4.7 Global Maximal Discernibility Heuristic

Global maximal discernibility heuristic method [17] is a top-down dynamic method
discretizing all numerical attributes at once. At each step it evaluates cuts glob-
ally with respect to the whole training set. It starts with the set S∗ of all pairs
of objects with di�erent decisions de�ned as:

S∗ = {{x, y} ⊆ U : dec(x) 6= dec(y)}



At each step the algorithm �nds the cut c that discerns the greatest number
of pairs in the current set S∗, adds the cut c to the result set and removes all
pairs discerned by the cut c from the set S∗. The optimal cut is searched among
all possible cuts on all numerical attributes. The algorithm stops when the set
S∗ is empty.

4.8 Local Maximal Discernibility Heuristic

Local maximal discernibility heuristic method [17] selects the cuts optimizing the
number of pairs of discerned objects like the global method but the procedure
selecting the best cut is applied recursively to the subsets of objects obtained by
splitting the data set by the proviously selected cuts.

It starts with the best cut for the whole training set U splitting it into subsets
U1 and U2. Next the discretization algorithm selects the best cut splitting U1

and recursively the best cuts with respect to the subsets of U1. Next it searches
independently for the best cuts for U2. At each step the best cut is searched over
all attributes.

5 Discernibility Matrix

Computation of reducts is based on the concept of discernibility matrix [27].
The library provides 4 types of discernibility matrix including types handling
inconsistencies in data [21,26]. Each type is |U | × |U | matrix de�ned for all
pairs of objects x, y ∈ U . The �elds of discernibility matrix M(x, y) are de�ned
as the subsets of the set of conditional attributes: M(x, y) ⊆ A. If a data set
contains numerical attributes discernibility matrix can be computed using either
the original or the discretized numerical attributes.

The �rst type of discernibility matrix Mall depends on the values of the
conditional attributes only, it does not take the decision attribute into account:

Mall(x, y) = {ai ∈ A : xi 6= yi}

In many applications, e.g. in object classi�cation, we want to discern objects
only if they have di�erent decisions. The second type of discernibility matrix
Mdec discerns objects from di�erent decision classes:

Mdec(x, y) =

{
{ai ∈ A : xi 6= yi} if dec(x) 6= dec(y)

∅ if dec(x) = dec(y)

If data are inconsistent, i.e. if there are one or more pairs of objects with
di�erent decisions and with equal values on all conditional attributes:

∃x, y ∈ U : ∀ai ∈ A : xi = yi ∧ dec(x) 6= dec(y)

thenMdec(x, y) = ∅ like for pairs of objects with the same decision. To overcome
this inconsistency the concept of generalized decision was introduced [21,26]:

∂(x) = {d ∈ Vdec : ∃y ∈ U : ∀ai ∈ A : xi = yi ∧ dec(y) = d}



If U contains inconsistent objects x, y they have the same generalized deci-
sion. The next type of discernibility matrix Mgen is based on generalized deci-
sion:

Mgen(x, y) =

{
{ai ∈ A : xi 6= yi} if ∂(x) 6= ∂(y)

∅ if ∂(x) = ∂(y)

This type of discernibility matrix removes inconsistencies but discerns pairs
of objects with the same original decision, e.g. an inconsistent object from a con-
sistent object. The fourth type of discernibility matrix M both discerns a pair of
objects only if they have both the original and the generalized decision di�erent:

M both(x, y) =

{
{ai ∈ A : xi 6= yi} if ∂(x) 6= ∂(y) ∧ dec(x) 6= dec(y)

∅ if ∂(x) = ∂(y) ∨ dec(x) = dec(y)

Data can contain missing values. All types of discernibility matrix available
in the library have 3 modes to handle missing values [14,15,29]:

� di�erent value � an attribute ai discerns x, y if the value of one of them
on ai is de�ned and the value of the second one is missing (missing value is
treated as yet another value): ai /∈M(x, y)⇔ xi = yi ∨ (xi = ∗ ∧ yi = ∗)

� symmetric similarity � an attribute ai does not discern x, y if the value of
any of them on ai is missing: ai /∈M(x, y)⇔ xi = yi ∨ xi = ∗ ∨ yi = ∗

� nonsymmetric similarity � asymmetric discernibility relation between x and
y: ai /∈M(x, y)⇔ (xi = yi ∧ yi 6= ∗) ∨ xi = ∗

The �rst mode treating missing value as yet another value keeps indiscernibility
relation transitive but the next two modes make it intransitive. Such a relation is
not an equivalence relation and does not de�ne correctly indiscernibility classes in
the set U . To eliminate that problem the library provides an option to transitively
close an intransitive indiscernibility relation.

6 Reducts

Reduct [27] is a key concept in rough set theory. It can be used to remove some
data without loss of information or to generate decision rules.

De�nition 1. The subset of attributes R ⊆ A is a (global) reduct in relation to
a discernibility matrix M if each pair of objects discernible by M is discerned by
at least one attribute from R and no proper subset of R holds that property:

∀x, y ∈ U : M(x, y) 6= ∅ ⇒ R ∩M(x, y) 6= ∅

∀R′ ( R ∃x, y ∈ U : M(x, y) 6= ∅ ∧R′ ∩M(x, y) = ∅
If M is a decision-dependent discernibility matrix the reducts related to M

are the reducts related to the decision attribute dec.
Reducts de�ned in De�nition 1 called also global reducts are sometimes too

large and generate too speci�c rules. To overcome this problem the notion of
local reducts was introduced [40].



De�nition 2. The subset of attributes R ⊆ A is a local reduct in relation to a
discernibility matrix M and an object x ∈ U if each object y ∈ U discerned from
x by M is discerned from x by at least one attribute from R and no proper subset
of R holds that property:

∀y ∈ U : M(x, y) 6= ∅ ⇒ R ∩M(x, y) 6= ∅

∀R′ ( R ∃y ∈ U : M(x, y) 6= ∅ ∧R′ ∩M(x, y) = ∅
It may happen that local reducts are still too large. In the extreme situation

there is only one global or local reduct equal to the whole set of attributes A.
In such situations partial reducts [16,18] can be helpful.

Let P be the set of all pairs of objects x, y ∈ U discerned by a discernibility
matrix M : P = {{x, y} ⊆ U : M(x, y) 6= ∅} and let α ∈ (0; 1).

De�nition 3. The subset of attributes R ⊆ A is a global α-reduct in relation
to a discernibility matrix M if it discerns at least (1 − α) |P | pairs of objects
discernible by M and no proper subset of R holds that property:

|{{x, y} ⊆ U : R ∩M(x, y) 6= ∅}| ≥ (1− α) |P |

∀R′ ( R : |{{x, y} ⊆ U : R′ ∩M(x, y) 6= ∅}| < (1− α) |P |
Let P (x) be the set of all objects y ∈ U discerned from x ∈ U by a discerni-

bility matrix M : P (x) = {y ∈ U : M(x, y) 6= ∅} and let α ∈ (0; 1).

De�nition 4. The subset of attributes R ⊆ A is a local α-reduct in relation to a
discernibility matrix M and an object x ∈ U if it discerns at least (1−α) |P (x)|
objects discernible from x by M and no proper subset of R holds that property:

|{y ∈ U : R ∩M(x, y) 6= ∅}| ≥ (1− α) |P (x)|

∀R′ ( R : |{y ∈ U : R′ ∩M(x, y) 6= ∅}| < (1− α) |P (x)|
The following algorithms computing reducts are available in Rseslib:

� All Global Reducts
The algorithm computes all global reducts from a data set. The algorithm
is based on the fact that a set of attributes is a reduct if and only if it is a
prime implicant of a boolean CNF formula generated from the discernibility
matrix [25]. First the algorithm calculates the discernibility matrix and then
it transforms the discernibility matrix into a boolean CNF formula. Finally it
applies an e�cient algorithm �nding all prime implicants of the formula using
well-known in the �eld of boolean reasoning advanced techniques accelerating
computations [4]. All found prime implicants are global reducts.

� All Local Reducts
The algorithm computes all local reducts for each object in a data set. Like
the algorithm computing global reducts it uses boolean reasoning. The �rst
step is the same as for global reducts: the discernibility matrix speci�ed by
parameters is calculated. Next for each object x in the data set the row of
the discernibility matrix corresponding to the object x is transformed into a
CNF formula and all local reducts for the object x are computed with the
algorithm �nding prime implicants.



Dataset Attrs Objects All global All local Global partial Local partial

segment 19 1540 0.6 0.9 0.2 0.2

chess 36 2131 4.1 66.1 0.2 0.4

mushroom 22 5416 2.9 4.9 0.8 1.5

pendigits 16 7494 10.4 23.2 2.2 4.3

nursery 8 8640 6.5 6.7 1.5 2.8

letter 16 15000 44.6 179.7 9.7 20.5

adult 13 30162 62.1 70.1 18.0 33.0

shuttle 9 43500 91.8 92.5 22.7 48.4

covtype 12 387342 8591.9 8859.0 903.7 7173.7

Table 1. Time (in seconds) of computing decision-related reducts by Rseslib algorithms
on exemplary data sets.

� One Johnson Reduct
The method computes one reduct with greedy Johnson algorithm [12]. The
algorithm starts with the empty set of attributes called the candidate set
and adds iteratively one attribute maximizing the number of discerned pairs
of objects according to the semantics of a selected discernibility matrix. It
stops when all objects are discerned and checks if any of the attributes in
the candidate set can be removed. The �nal candidate set is a reduct.

� All Johnson Reducts
A version of the greedy Johnson algorithm in which the algorithm branches
and traverses all possibilities rather than selecting one of them arbitrarily
when more than one attribute cover the maximal number of uncovered �elds
of the discernibility matrix. The result is the set of the reducts found in all
branches of the algorithm.

� Global Partial Reducts
The algorithm �nding global α-reducts described in [16]. The value α is the
parameter of the algorithm.

� Local Partial Reducts
The algorithm �nding local α-reducts described in [16]. The value α is the
parameter of the algorithm.

Algorithms computing reducts are the most time-consuming among rough
set algorithms, the time cost of other steps in the overall knowledge discovery
process is often negligible when compared to reduct computations. Hence it is
important to provide an e�cient implementation of the algorithms computing
reducts. Table 1 presents the time of computing decision-related reducts by the
algorithms available in Rseslib on data sets from UCI machine learning reposi-
tory5. Numerical attributes were discretized with the local maximal discernibility
method. The experiments were run on Intel Core i7-4790 3.60GHz processor.
5 https://archive.ics.uci.edu/ml



7 Rules Generated from Reducts

Reducts described in the previous section can be used in Rseslib to generate
decision rules. As reducts can be generated from a discernibility matrix using
generalized decision Rseslib uses generalized decision rules:

De�nition 5. A decision rule indicates the probabilities of the decision classes
at given values of some conditional attributes:

ai1 = v1 ∧ . . . ∧ aip = vp ⇒ (p1, . . . , pm)

where pj is de�ned as:

pj =

∣∣{x ∈ U : xi1 = v1 ∧ . . . ∧ xip = vp ∧ dec(x) = dj
}∣∣∣∣{x ∈ U : xi1 = v1 ∧ . . . ∧ xip = vp

}∣∣ (2)

A data object x is said to match a rule if the premise of the rule is satis�ed
by the attribute values of x: xi1 = v1, . . . , xip = vp.

Rseslib provides new functionality regarding the semantics of missing de-
scriptor values and missing attribute values. If rules were induced with use of a
discernibility matrix then this matrix speci�es similarity measure between ob-
jects (c.f. Section 5). This similarity relation is used for rule matching in such a
way that a rule matches an object if the description of the rule is similar to the
object with respect to the used similarity relation. In case of the di�erent-value
similarity relation implemented in the classic discernibility matrix the behaviour
of rule matching is exactly as descibed above and compatibile with all other im-
plementations not using special missing attribute value handling. If other simil-
iarity relations and other discernibility matrices are used then di�erent semantics
of missing attribute values can be used. In such circumstances rule matching is
de�ned according to a speci�ed similarity relation (c.f. [15]).

Each decision rule r: ai1 = v1 ∧ . . . ∧ aip = vp ⇒ (p1, . . . , pm) in Rseslib is
assigned with its support in the data set U used to generate rules:

support(r) =
∣∣{x ∈ U : xi1 = v1 ∧ . . . xip = vp

}∣∣
Rseslib provides two algorithms generating decision rules from reducts:

� Rules from global reducts (Johnson reducts are global reducts). Given a
set of global reducts GR the algorithm �nds all templates in the data set:

Templates(GR) =

{ ∧
ai∈R

ai = xi : R ∈ GR, x ∈ U

}

For each template the algorithm generates one rule with the decision prob-
abilities pj as de�ned in Formula 2:

Rules(GR) = {t⇒ (p1, . . . , pm) : t ∈ Templates(GR)}



� Rules from local reducts. For each object x ∈ U the algorithm applies
the selected algorithm LR : U 7→ P(A) computing local reducts LR(x) for
x and generates the set of templates as the union of the sets of templates
from all objects in U :

Templates(LR) =

{ ∧
ai∈R

ai = xi : R ∈ LR(x), x ∈ U

}

The set of decision rules is obtained from the set of templates in the same
way as in case of global reducts:

Rules(LR) = {t⇒ (p1, . . . , pm) : t ∈ Templates(LR)}

8 Classi�cation

8.1 Rough Set Classi�er

Rough set classi�er provided in Rseslib uses the algorithms computing discerni-
bility matrix, reducts and rules generated from reducts described in the previous
sections. It enables to apply any of the discretization methods described in Sec-
tion 4 to transform numerical attributes into nominal attributes. A user of the
classi�er selects a discretization method, a type of discernibility matrix and an
algorithm generating reducts. The classi�er computes a set of decision rules and
the support of each rule in the training set.

Let Rules denote the computed set of decision rules. The rules are used in
classi�cation to determine a decision value when provided with an object x to be
classi�ed. First, the classi�er calculates the vote of each decision class dj ∈ Vdec
for the object x:

votej(x) =
∑

{t⇒(p1,...,pm)∈Rules: xmatches t}

pj · support(t⇒ (p1, . . . , pm))

Then the classi�er assigns to x the decision with the greatest vote:

decroughset(x) = max
dj∈Vdec

votej(x)

8.2 K Nearest Neighbors / RIONA

Rseslib provides an originally extended version of the k nearest neighbors (k-nn)
classi�er [34]. It can work with data containing both numerical and nominal
attributes and implements very fast neighbor search [33] that make the classi�er
work in reasonable time for large data sets.

In the learning phase the algorithm induces a distance measure from a train-
ing set and constructs an indexing tree used for fast neighbor search. Optionally,
the algorithm can learn the optimal number k of nearest neighbors from the
training set. The distance measure is the weighted sum of distances between



Classi�er Search method Training time
(sec)

Classi�cation
time (sec)

Accuracy

Weka IBk linear search 0.63 2674.86 93.9%
Weka IBk KDTree 120.32 20.54 93.9%
Rseslib KNN Rseslib KNN 27.64 3.06 96.5%

Table 2. Comparison of the nearest neighbor (k = 1) search methods from Rseslib
and Weka for the covtype dataset (387342 training instances, 193670 test instances).
The BallTree and CoverTree search methods available for Weka IBk were also used in
the test but they failed reporting errors.

values of two objects on all conditional attributes. The classi�er provides two
metrics for nominal attributes: Hamming metric and Value Di�erence Metric
(VDM), and three metrics for numerical attributes: the city-block Manhattan
metric, Interpolated Value Di�erence Metric (IVDM) and Density-Based Value
Di�erence Metric (DBVDM). IVDM and DBVDM metrics are adaptations of
VDM metric to numerical attributes. For computation of the weights in the dis-
tance measure three methods are available: distance-based method, accuracy-
based method and a method using perceptron.

While classifying an object the classi�er �nds k nearest neighbors in the
training set according to the induced distance measure and it applies one of three
methods of voting for the decision by the found neighbors: equally weighted, with
inverse distance weights or with inverse square distance weights.

The classi�er has also the mode to work as RIONA algorithm [6]. This mode
implements a classi�er combining the k-nn method with rule induction where
the nearest neighbors not validated by additional rules are excluded from voting.

K nereast neighbors method in Rseslib implements very fast nearest neigh-
bors search algorithm based on center-based indexing of training instances and
using double criterion to prune searching. Table 2 presents time comparison be-
tween 1-nn search methods from Rseslib and Weka on an exemplary large data
set. The training time of the Rseslib method is over 4 times shorter than the
training time of the Weka method and the classi�cation time is almost 7 times
shorter. It is worth mentioning that at the same time the distance measure in-
duced by the Rseslib method gives a signi�cantly higher classi�cation accuracy
than the distance measure of the Weka method.

8.3 K Nearest Neighbors with Local Metric Induction

K nearest neighbors with local metric induction is the k nearest neighbors
method extended with an extra step - the classi�er computes a local metric
for each classi�ed object [28]. While classifying an object, �rst the classi�er
�nds a large set of the nearest neighbors (according to a global metric). Then
it generates a new, local metric from this large set of neighbors. At last, the k
nearest neighbors are selected from this larger set of neighbors according to the
locally induced metric and used to vote for the decision.



In comparison to the standard k-nn algorithm this method improves classi-
�cation accuracy particularly for the case of data with nominal attributes. It is
reasonable to use this method rather for large data sets (2000 training objects
or more).

8.4 Classical Classi�ers

Rseslib delivers also implementations of classi�ers well-known in the machine
learning community (see [36] for more details):

� C4.5 - decision tree developed by Quinlan
� AQ15 - rule-based classi�er with a covering algorithm
� Neural network - classical backpropagation algorithm
� Naive Bayes - simple Bayesian network
� SVM - support vector machine
� PCA - classi�er using principal component analysis
� Local PCA - classi�er using local principal component analysis
� Bagging - metaclassi�er combining a number of �weak� classi�ers
� AdaBoost - another popular metaclassi�er

9 Other Algorithms

Beside rough set and classi�cation methods Rseslib provides many other machine
learning and data mining algorithms. Each algorithm is available as separate
class or method and easy to use as an independent component. That includes:

� Data transformation: missing value completion (non-invasive data im-
putation by Gediga and Duentsch), attribute selection, numerical attribute
scaling, new attributes (radial, linear and arithmetic transformations)

� Data �ltering: missing values �lter, Wilson's editing, Minimal Consistent
Subset (MSC) by Dasarathy, universal boolean function based �lter

� Data sampling: with repetitions, without repetitions, with given class dis-
tribution

� Data clustering: k approximate centers algorithm
� Data sorting: attribute value related, distance related
� Rule induction: from global reducts, from local reducts, AQ15 algorithm
� Metric induction: Hamming and Value Di�erence Metric (VDM) for nom-
inal attributes, city-block Manhattan, Interpolated Value Di�erence Metric
(IVDM) and Density-Based Value Di�erence Metric (DBVDM) for numerical
attributes, attribute weighting (distance-based, accuracy-based, perceptron)

� Principal Component Analysis (PCA): OjaRLS algorithm
� Boolean reasoning: two di�erent algorithms generating prime implicant
from a CNF boolean formula

� Genetic algorithm scheme: a user provides cross-over operation, muta-
tion operation and �tness function only

� Classi�er evaluation: single train-and-classify test, cross-validation, mul-
tiple test with random train-and-classify split, multiple cross-validation (all
types of tests can be executed on many classi�ers)



10 Extensible Modular Component-Based Architecture

Providing a collection of rough set and machine learning algorithms is not the
only goal of Rseslib. It is designed also to assure maximum reusability and sub-
stitutability of the existing components in new components of the library. Hence
a strong emphasis is put on its modularity. The code is separated into loosely
related elements as small as possible so that each element can be used inde-
pendently of other elements. For each group of the elements of the same type a
standardizing interface is de�ned so that each element used in an algorithm can
be easily substituted by any other element of the same type. Code separation
and standardization is applied both to the algorithms and to the objects.

The previous sections presented the range of algorithms available in Rseslib.
Below there is a list of the objects in the library implementing various data-
related mathematical concepts that can be used as isolated components:

� Basic: attribute, data header, data object, boolean data object, numbered
data object, data table, nominal attribute histogram, numeric attribute his-
togram, decision distribution

� Boolean functions/operators: attribute value equality, numerical attri-
bute interval, nominal attribute value subset, binary discrimination, metric
cube, negation, conjunction, disjunction

� Real functions/operators: scaling, perceptron, radius function, multipli-
cation, addition

� Integer functions: discrimination (discretization, 3-value cut)
� Decision distribution functions: nominal value to decision distribution,
numeric value to vicinity-based decision distribution, numeric value to inter-
polated decision distribution

� Vector space: vector, linear subspace, principal components subspace, vec-
tor function

� Linear order
� Indiscernibility relations
� Distance measures: Hamming, Value Di�erence Metric, city-block Man-
hattan, Interpolated Value Di�erence Metric, Density-Based Value Di�er-
ence Metric, metric-based indexing tree

� Rules: boolean function based rule, equality descriptors rule, partial match-
ing rule

� Probability: gaussian kernel function, hypercube kernel function, m-esti-
mate

The structure of rough set algorithms in Rseslib is one of the examples of
the component-based architecture (see Figure 1). Each of the six modules: Dis-
cretization, Logic, Discernibility, Reducts, Rules and Rough Set Classi�er pro-
vides well-abstracted algorithms with clearly de�ned interfaces that allow algo-
rithms from other modules to use them as their components. For example, the
algorithms computing reducts from the Reducts module use a discernibility ma-
trix from the Discernibility module and one of the methods computing prime
implicants of a CNF boolean formula from the Logic module. It is easy to extend
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Fig. 1. Examples of relations between Rseslib modules containing rough set algorithms
on simpli�ed UML diagram

each module with implementation of a new method and to add the new method
as an alternative in all components using the module.

The component-based architecture of Rseslib makes it possible to implement
unconventional combinations of data mining methods. For example, perceptron
learning is used as one of the attribute weighting methods in the algorithm
computing a distance measure between data objects. Estimation of value proba-
bility at given decision is another example of such combination: it uses k nearest
neighbors voting as one of the methods de�ning conditional value probability.

11 Tools

11.1 Rseslib classi�ers in Weka

Weka [8] is a non-commercial suite of open source machine learning and data
mining software written in Java. It is one of the most popular platforms used by
data scientists and researchers for data analysis and predictive modeling with
downloads counted in millions per year. It provides four graphical interfaces
and one command line interface for its users. Weka has the system of external
packages updated independently of the core of Weka that allows people all over
the world to contribute to Weka and maintain easily their Weka extensions. Such
extensions can be easily dowloaded and installed in each Weka installation.

Rseslib is such an o�cial Weka package available from Weka repository. Rs-
eslib version 3.1.2 (the latest at the moment of preparing this paper) provides
three Rseslib classi�ers with full con�guration in Weka:

� Rough set classi�er
� K nearest neighbours / RIONA
� K nearest neighbours with local metric induction

These three classi�ers can be used, tested and compared with other classi�ers
within all Weka interfaces.



Fig. 2. Graphical user interface Qmak dedicated to Rseslib library

11.2 Graphical Interface Qmak

Qmak is a graphical user interface dedicated to Rseslib library (see Figure 2). It
is a tool for data analysis, data classi�cation, classi�er evaluation and interaction
with classi�ers. Qmak provides the following features:

� visualization of data, classi�ers and single object classi�cation
� interactive classi�er modi�cation by a user
� classi�cation of test data with presentation of misclassi�ed objects
� experiments on many classi�ers: single train-and-classify test, cross-validation,
multiple test with random train-and-classify split, multiple cross-validation

Qmak 1.0.0 (the latest at the moment of preparing this paper) with Rseslib
version 3.1.2 provides visualization of 5 classi�ers: rough set classi�er, k nearest
neighbors, C4.5 decision tree, neural network and principal component analy-
sis classi�er. Visualization of a rough set classi�er presents the decision rules of
the classi�er (see Figure 3). The rules can be �ltered and sorted by attribute
occurrence, attribute values, length, support and accuracy. Visualization of clas-
si�cation by rough set classi�er shows the decision rules matching a classi�ed
object enabling the same types of �ltering and sorting criteria as visualization
of the classi�er.

Users can implement new classi�ers and their visualization and add them
easily to Qmak. It does not require any change in Qmak itself. A new classi�er
can be added using GUI or in the con�guration �le.

Qmak is available from Rseslib homepage. Help on Qmak can be found in
the main menu of the application.



Fig. 3. Visualization of the rough set classi�er presenting the rules computed from the
iris data set sorted by rule support

11.3 Computing in Cluster

Simple Grid Manager is a tool for running massive Rseslib-based experiments
on all available computers. It allows to create ad-hoc cluster with no prior con�g-
uration or additional cluster resource manager. SGM is the successor of DIXER
� the previous version of software dedicated to Rseslib 2 [3]. Using SGM a user
can create an ad-hoc cluster of computers by running the server module on one
machine and the client module on all machines assigned to run the experiments
(the elements of the cluster, see Figure 4).

The server reads experiment lists from script �les, distributes tasks between
all available client machines, collects results of executed tasks and stores them
in a result �le. The main features of the tool are:

� Executes train-and-test experiments with any set of classi�ers from Rseslib
library (or user written classi�ers compatible with Rseslib standards)

� Allows ad-hoc cluster creation without any con�guration and maintenance
� Automatically resumes failed jobs and skips completed jobs in case of restart
� Uses robust communication and allows relying by nodes launched on
NAT/Firewall knots

� Enables utilizing multi-core architectures by executing many client instances
on one machine

In order to use Simple Grid Manager a user needs only to create a list of
experiments in a text �le. Each experiment is speci�ed with the name of a
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Fig. 4. Simpe Grid Manager allows running experiments on many computers by cre-
ating ad-hoc cluster with no prerequsites on cluster con�guration.

classi�er class, training data �le name, test data �le name and a list of options
for the classi�er. SGM executes the experiments on the cluster in such way that
each experiment is executed on one node. The classi�cation results are stored
in the result �le. SGM can execute experiments with any class (i.e. also user-
written) that extends the interface Classi�er.

Simple Grid Manager is available from Rseslib homepage. The guide on how
to run the distributed experiments can be found in [36].

12 Rseslib Usage Examples

Rseslib has been successfully used in various independent research projects and
software tools.

Hu [10] used the rough set classi�er from Rseslib to build a classi�er that
uses a decision table obtained by pairwise comparisons between training objects
based on the preference relation from the PROMETHEE method.

Adamczyk [1] used the rough set classi�er to evaluate the candidate attribute
sets generated in subsequent populations in the parallel algorithm for feature
selection based on asynchronous particle swarm optimization.

K nearest neighbors method from Rseslib was successfully applied to envi-
ronmental sound recognition [7] that can be used, for example, in an intruder
detection system. The Rseslib classi�er gave the best accuracy winning with 8
other Weka classi�ers including Support Vector Machine and Random Forest.
The classi�ers were tested with 8 di�erent sets of features, the classi�cation ac-
curacy of the method from Rseslib was close to perfect (in the range 99.6% -
99.79%) regardless of the number of features used in the tests. Moreover, the
best accuracy of K-NN was not paid by the computational time - the classi�er
ranked also as one of the fastest among the tested methods.

The e�ectiveness of the Rseslib classi�er in sound recognition was con�rmed
by another study conducted for the problem of context awareness of a service
robot [24]. K-NN method was selected among 8 classi�cation algorithms as one
of the two methods giving satisfactory classi�cation accuracy. Further tests were
carried out to �nd the optimal parameter values of the K-NN method for the
problem of context awareness of a service robot [30].

K nearest neighbors method with local metric induction from Rseslib was
applied to the problem of liver cancer diagnosis and compared with the IBkLG
method from Weka and the K-NN method from Rseslib [31]. K-NN with local



metric induction gave the best accuracy 98.8% and the best recall 99.3% among
the three tested lazy classi�ers.

Rseslib, along with Weka and RapidMiner, is supported also as the pro-
gramming framework on two platforms used to run and test data mining and
machine learning algorithms. The �rst one, Debellor, is an open source platform
with stream-oriented architecture for scalable data mining [37,38]. The second
one, TunedIT, is the platform for automated evaluation, benchmarking and com-
parison of machine learning algorithms [39]. In particular, the existing Rseslib
algorithms can be run and tested both on Debellor and on TunedIT.

Rseslib was used also as the programming framework for discretization and
computation of reducts in mahout-extensions6, a library extending Mahout with
atttribute selection methods. Mahout is an extensible programming environ-
ment and framework for building scalable algorithms in machine learning. The
mahout-extensions library uses also some algorithms from Rseslib, e.g. the algo-
rithm computing a discernibility matrix and the ChiMerge discretization method.

13 Conclusions and Future Work

The paper presents the contents of Rseslib 3 library that is designed to be used
both by users who need to apply ready-to-use rough set or other data mining
methods in their data analysis tasks as well as by researchers interested in ex-
tension of the existing methods. More information on Rseslib 3 and its tools can
be found on the home page7 and in the user guide [36].

The development of Rseslib 3 is continued. The repository of the library8

is maintained by GitHub and is open to new contributions from all researchers
and developers willing to extend the library. There is ongoing work on a classi�er
specialized in imbalanced data. The algorithms computing reducts are planned
to be added to Weka package as attribute selection methods. Discretizations
are also to be added to Weka package as separate algorithms. We are going to
add Rseslib to Maven repository and to investigate the possibility of connecting
Rseslib to RapidMiner.
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