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Abstract. The article describes a method combining two widely-used empirical approaches to

learning from examples: rule induction and instance-based learning. In our algorithm (RIONA)

decision is predicted not on the basis of the whole support set of all rules matching a test case, but

the support set restricted to a neighbourhood of a test case. The size of the optimal neighbourhood is

automatically induced during the learning phase. The empirical study shows the interesting fact that

it is enough to consider a small neighbourhood to achieve classification accuracy comparable to an

algorithm considering the whole learning set. The combination of k-NN and a rule-based algorithm

results in a significant acceleration of the algorithm using all minimal rules. Moreover, the presented

classifier has high accuracy for both kinds of domains: more suitable for k-NN classifiers and more

suitable for rule based classifiers.

Keywords: machine learning, instance-based learning, rule induction, nearest neighbour method

1. Introduction

Inductive concept learning is a process of synthesis of concept description from examples. Many tech-

niques of inductive concept learning have been developed so far [25]. They include induction of decision

�Address for correspondence: Institute of Informatics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland
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trees (see e.g. [27]), rule induction (see e.g. [23]), instance-based learning (see e.g. [1]), neural networks

(see e.g. [5]) and others.

Empirical comparison of these approaches shows that each performs well for some, but not all,

domains. A great progress has been made in multistrategy learning to combine these approaches in

order to construct a classifier that has properties of two or more techniques. Although the problem of

inductive generalisation has no general solution (what is known as the conservation law for generalisation

performance [28]), the goal is to increase the average accuracy for the real-world domains at the expense

of accuracy decreasing for the domains that never occur in practice.

There are domains for which instance-based learning [1], [8], [9], [11] and rule induction [7], [24]

achieve significantly different accuracy. Generally, instance-based approach is more accurate for nu-

merical domains, while rule induction is better for domains with symbolic attributes or with attributes

irrelevant with respect to the decision. In the instance-based learning a common approach is the k-nearest

neighbours (k-NN) method.

In this paper we present a multi-strategy learning approach combining the rule induction and the

nearest neighbour technique. There has been a lot of work done in this area (see e.g. [10], [13], [19],

[20]). Our algorithm considers all minimal decision rules, i.e. the most general rules consistent with

training examples. It simulates classification based on the most frequent decision in the support set of

minimal rules covering a test object. The main idea is that the support set is limited to a neighbourhood

of a test example. The neighbourhood consists of either objects within some distance from a test exam-

ple or a number of objects closest to a test example (like in k-NN method). The appropriate size of a

neighbourhood to be taken for classification is automatically induced during the process of learning. The

crucial empirical observation is that taking a neighbourhood much smaller than the whole training set

preserves or even improves accuracy. It enables both to induce optimal neighbourhood during learning

phase and to classify objects effectively.

The notion of the rule defined in the paper realises a new approach to dealing with attribute value

domain. The rules are generated during the classification process and each generated rule relates to a

particular tested object. A rule descriptor is formulated either as an interval inclusion for a real-value

attribute or as an inclusion in a value subset for a symbolic attribute. Each descriptor is generated in the

context of a particular attribute value of a test object and corresponds to local grouping of values.

The paper is organised as follows. Section 2 describes a number of works related to the subject.

Section 3 outlines the main features of two techniques that are the most relevant to this work, i.e. rule

induction and instance based learning exemplified by k-nearest neighbours method. Our algorithm, com-

bining these approaches, is presented in Section 4. Section 5 provides experimental results evaluating

the accuracy and speed of the presented system. Section 6 concludes the paper with a brief summary and

discussion of possible directions for future research.

2. Related Work

In recent literature there has been a number of works combining instance-based and decision rule induc-

tion methods.

RISE system [10] is based on unification of these two methods. The difference between RISE system

and our approach is that RISE selects the decision for a test object on the basis of the closest rule. First,

RISE generates decision rules. At the beginning instances are treated as maximally specific rules and
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these rules are then gradually generalised as long as global leave-one-out accuracy is improving. An

object is classified according to the closest rule. The distance between an object and a rule is measured

with the metric combining normalised Manhattan metric1 for numerical attributes and the Simple Value

Difference Metric (SVDM) for symbolic attributes.

An approach more similar to our method is presented in DeEPs [19] and DeEPsNN [20]. The first

difference is that DeEPs uses different form of rule conditions and different criteria for rule selection.

DeEPs classifies objects on the basis of all rules that have high frequency-changing rate (a measure

similar to confidence). While classifying a test object the system computes the support set using all

rules with high frequency-changing rate and selects the most frequent decision in the support set. In our

system a computed support set is limited to a certain neighbourhood of a test object. DeEPsNN combines

3-NN and DeEPs: if a certain fixed neighbourhood of a test object covers at least one training object,

3-NN is applied, otherwise DeEPs is used.

In [2] an algorithm with lazy rule induction approach is presented. It computes the whole support set

of the minimal rules covering a test object in the following way. For each training object the algorithm

constructs the local rule containing the conditions common for the test and the training object and checks

whether the training objects supporting the constructed local rule are in the same decision class. Then

the algorithm selects the decision most frequent in the support set. This algorithm treats all attributes as

symbolic. We generalised this algorithm for symbolic attributes and extended it to numerical attributes.

Our approach relates to discretisation of numerical attributes and the methods for grouping attribute

values [15]. It does not require any prior discretisation. A similar approach for numerical attributes

was presented in [18]. However, in our approach discretisation is done implicitly during classification

locally for a test example. Also our approach is parameterised by the choice of a metric for non-ordered

attributes.

A detailed study of k-NN algorithms is presented in [31]. In particular, that paper describes research

on selection of the optimal value of k. The experiments presented in that paper showed that the accuracy

of k-NN is insensitive to the exact choice of k when the optimal k is large enough. Different methods for

adapting the value of k locally within different parts of the input space have also been investigated. The

local selection of k improves accuracy for data that contain noise or irrelevant features.

Our approach combines the idea used in [2] (extended as described above) with k-NN method in such

a way that it considers the local rules only for the training examples from the k-nearest neighbourhood

of a test example. The distance is measured with the metric used in RISE [10]. Moreover, the algo-

rithm searches for the global optimal value k during the learning phase. This combination improves the

accuracy of k-NN classifiers with a fixed value k and helps to reach accuracy comparable to rule-based

classifiers in cases when accuracy of k-NN method is low.

3. Preliminaries and Definitions

We assume that a training set, denoted in the paper trnSet, is a finite set of examples. Each example is

described by a finite set of attributes (features) A [ fdg, i.e. a : trnSet ! V

a

for a 2 A [ fdg, where

d =2 A denotes the decision attribute and V
a

is a value domain of the attribute a. The domain of symbolic

(discrete-valued) attribute is a finite set, while the domain of a numerical (real-valued) attribute is an

1Manhattan metric is also called city metric defined for x = (x
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interval. We denote by Class(v) the subset of all training examples with a decision v. We also assume

that V
d

= f1; :::; jV

d

jg.

3.1. Minimal and Lazy Rule Induction

Rule induction algorithms induce decision rules from a training set. Those rules can be presented in

the form IF (t

1

^ t

2

^ ::: ^ t

k

) THEN (d = v), where t
i

is a condition concerning an attribute a

i

,

i = 1; 2:::; k; d is the decision, and v is its value. The commonly used conditions for symbolic attributes

are equations attribute = value, while for numerical attributes are specified by interval inclusions, e.g.:

IF (a

1

= 2 ^ a

3

2 [3; 7℄ ^ a

6

= 5) THEN (d = 1)

If a problem domain contains some numerical attributes then the appropriate intervals can be obtained by

applying discretisation (see e.g. [26]). The consequent (d = v) denotes a decision value that is assigned

to an object if it satisfies the premise of the rule.

From the knowledge discovery perspective, an important problem is to compute the complete set

of consistent and minimal decision rules (see e.g. [29]), i.e. all rules (matched at least by one training

example) that are maximally general and consistent with a training set. In order to obtain an efficient and

accurate classifier many systems compute rule sets satisfying these conditions in an approximate way

(see e.g. [3]). However we consider the rule set defined above and denote it by MinRules. In order to

discover MinRules, rough set methods [29] can be used.

Rules induced from training examples are then used to classify objects. For a given test object the

subset of rules matched by the object is selected. If the object matches only rules with the same decision,

then the decision predicted by those rules is assigned to the example. If the test object matches the rules

corresponding to different decisions, the conflict has to be resolved (see e.g. [24]). A common approach

is to use a measure for conflict resolving and decision with the highest measure value is chosen. In this

paper we focus on commonly used measures that are presented below.

Strength(tst; v) =

�

�

�

�

�

�

[

r2MathRules(tst;v)

supportSet(r)

�

�

�

�

�

�

(1)

NormStrength(tst; v) =

Strength(tst; v)

jClass(v)j

(2)

where v denotes the v-th decision (v = 1; :::; jV

d

j), tst is a test example, supportSet(r) is a set of

training examples matching the rule r, MathRules(tst; v) is a subset of minimal rules MinRules,

whose premise is satisfied by tst and the consequent is a decision v. The measure Strength counts the

number of training examples that were covered by the minimal rules with the decision matching a test

example tst. The second measure is just Strength measure normalised by the decision class size.

Conflict resolving is an intensively studied topic in data mining, the reader is referred to [24] for more

details and other measures. Since now, we use in the paper NormStrength as a measure for conflict

resolving, but in the experiments both measures were compared (see Section 5).

The minimal rule induction classifier based on the measure Strength predicts the decision that is

most frequent in the set of training examples covered by rules matched by a test example, i.e.:

deision

MinRules

(tst) = argmax

v2V

d

NormStrength(tst; v)
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Algorithms for computing all minimal rules (MinRules) are very time-consuming, especially when

the number of training objects or attributes is large. This is due to the fact that the size of the MinRules

set can be exponential with respect to the size of the training set. In practice, as it was mentioned above,

approximation algorithms are often applied to obtain the rule set that is not necessarily complete.

Another approach can be based on construction of algorithms that do not require calculation of the

decision rule set before classification of new objects. These are memory based (lazy concept induction)

algorithms. An example of such an algorithm is presented in [2]. It generates only decision rules relevant

for a new test object and then classifies it like algorithms generating rules in advance. It uses a technique

that computes the measures from Equation (1) and (2) for every test object without computing all minimal

rules (MinRules). Below we describe a version of this algorithm generalised for symbolic attributes

and extended to the case of numerical attributes.

In the original form in [2] the algorithm worked only with symbolic attributes and used the notion of

a rule with the definition of an attribute descriptor based on the Hamming distance:

Definition 3.1. For objects tst, trn we denote by rule

H

tst

(trn) the local rule with the decision d(trn)

and the following conditions t for each symbolic attribute a:

t

i

=

(

a = a(trn) if a(tst) = a(trn)

a = � if a(tst) 6= a(trn)

where * denotes any value (such a condition is always true).

The extended version of the algorithm uses more specific conditions to form a local rule instead of

the ”star” condition in case when attribute values of the examples differ. In the definition above the

star represents the group of all values from the attribute domain. However, we noticed that a proper

subset of all attribute values can be more relevant for the classification. Then, we propose the following

generalisation of Definition 3.1 for both numerical and symbolic attributes:

Definition 3.2. For objects tst, trn we denote by rule

tst

(trn) the local rule with the decision d(trn)

and the following conditions t for each attribute a:

t =

(

a 2 [min(a(tst); a(trn));max(a(tst); a(trn))℄ when a is numerical

a 2 B (a(tst); Æ

a

(a(tst); a(trn))) when a is symbolic

where B(;R) is a ball centered in  with radius R and Æ
a

is a measure of attribute value similarity.

For linearly ordered attributes conditions are represented in the form of interval inclusion, i.e. they

require from a value to lay between the attribute values of the examples tst, trn forming the rule. Non-

ordered attributes are treated differently. For such an attribute a metric that defines distances among

the values of an attribute is required to be defined. The condition selects the group of values that are

distanced from the attribute value of the example tst no more than the attribute value of the example

trn, i.e. they can be represented by a ball centered in the attribute value of tst with the radius equal to

the distance between the attribute values of tst and trn. If Æ
a

in Definition 3.2 is the Kronecker delta2

(Æ
a

(x; y) = 1 if x = y and 0 otherwise) then the conditions for symbolic attributes are equivalent to the

2It relates to the Hamming distance between attribute vector values.
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condition used in Definition 3.1:, i.e. when a(tst) = a(trn) then the condition is a = a(trn); otherwise

the condition is the ”star” condition.

The conditions are chosen in such a way, that both the training and the test example satisfy the rule

and the conditions are maximally specific, it means that making the interval smaller for a numerical

attribute or making the radius smaller for a symbolic attribute will cause the example trn not to satisfy

the rule.

As an example let us consider the following training set:

Object Age Weight Gender BloodGroup (BG) Diagnosis

trn

1

35 90 M A Sick

trn

2

40 65 F AB Sick

trn

3

45 68 F AB Healthy

trn

4

40 70 M AB Healthy

trn

5

45 75 M B Sick

trn

6

35 70 F B Healthy

trn

7

45 70 M 0 Healthy

tst 50 72 F A ?

Age and Weight are numerical attributes while Gender and BG are symbolic non-ordered attributes.

Considering the SVDM metric for the attribute BG we obtain the following distances among the values

of the attribute:

Æ

BG

(A;AB) =

�

�

�

�

1�

1

3

�

�

�

�

+

�

�

�

�

0�

2

3

�

�

�

�

=

4

3

, Æ
BG

(A;B) = 1, Æ
BG

(A; 0) = 2

Then for the training object trn
1

the rule
tst

(trn

1

)

if (Age 2 [35; 50℄ ^Weight 2 [72; 90℄ ^BG = A) then Diagnosis = Sik

is consistent because no other object from the training set satisfies the premise of this rule. But for the

training object trn
2

the rule
tst

(trn

2

)

if (Age 2 [40; 50℄ ^Weight 2 [65; 72℄ ^Gender = F ^BG 2 fA;AB;Bg) then Diagnosis = Sik

is inconsistent because the object trn
3

satisfies the premise of the rule and has a different decision.

We have the following relation between MinRules and local rules.

Proposition 3.1. The premise of the rule
tst

(trn) implies the premise of a rule from the set MinRules

if and only if the rule
tst

(trn) is consistent with the training set.

This is a version of a proposition from [2] for the generalised local rules presented in this paper

and follows from the construction of local rules and MinRules. This proposition shows that instead of

computing the support sets for rules from MinRules covering a new test case, it is sufficient to generate

the local rules for all training examples and then check their consistency with the training set. It is done

by the lazy rule induction algorithm (RIA) presented below.
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Algorithm 3.1. isConsistent(�) (d = v); verifySet)

for each trn 2 verifySet

if d(trn) 6= v and trn satisfies � then return false

return true

Algorithm 3.2. RIA(tst)

1.for each decision v 2 V

d

2. supportSet(v) = ;

3. for each trn 2 trnSet with d(trn) = v

4. if isConsistent(rule
tst

(trn); trnSet) then

5. supportSet(v) = supportSet(v) [ ftrng

6.RIA = argmax

v2V

d

jsupportSet(v)j

The function isConsistent(r; verifySet) checks if a local rule r is consistent with a verifySet.

For every decision class the algorithm 3.2 computes the whole support set of the minimal rules covering

a test object tst in the following way. For every training object trn it constructs the local rule
tst

(trn)

based on the examples tst and trn. Then it checks whether the local rule
tst

(trn) is consistent with the

remaining training examples, i.e. if all the training examples satisfing the rule
tst

(trn) are labeled with

the same decision as the considered training example trn. If the local rule
tst

(trn) is consistent then

the training example trn is added to the support set of the appropriate decision. Finally, the algorithm

selects the decision with the support set of the highest cardinality.

From Proposition 3.1 it can be concluded that algorithm RIA computes measure Strength and thus

the results of the mentioned algorithm are equivalent to the results of the algorithm based on calculating

MinRules and using the measure Strength as a strategy for conflict resolving (see [2]).

Corollary 3.1. For any test object tst, RIA(tst) = deision

MinRules

(tst).

If one compares RIA to the minimal rule induction algorithm it considers only the decision rules that

can be involved in the classification of a given test object.

The time complexity of the algorithm RIA for a single test object is O(n

2

), where n is the number

of objects in training data. This gives us a classification algorithm working in time O(mn

2

), where m is

the number of test cases, which is far more efficient than generating MinRules. However, for problem

domains with quite a large number of examples (like letter or satimage) this time complexity is still too

high to be used in practice. One of the motivations behind our work is to reduce this complexity. As a

result we apply some modifications to this algorithm. This will be described in Section 4.

For more details related to the original version of this algorithm the reader is referred to [2].

3.2. Instance-Based Learning

Reasoning and learning from cases is based on the concept of similarity. Given a number of examples

the decision class for a new test case is inferred from the nearest stored example (or k nearest examples)
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in a sense of a similarity measure. The performance of instance based learning depends critically on the

similarity measure used, which is often estimated by a distance (a metric). For numerical domains (i.e.,

domains where all the features are real-valued), Manhattan and Euclidean distances are natural candi-

dates. For symbolic attributes many instance based learning systems use Hamming distance, measuring

number of attributes for which objects differ. For domains with both numerical and symbolic attributes

a combination of these approaches may be used.

Below we present a metric that combines normalised Manhattan metric for numerical attributes with

SVDM metric for symbolic attributes [10]. If there are m attributes, the distance between two instances

x = (a

1

(x); a

2

(x); :::; a

jAj

(x); d(x)) and y = (a

1

(y); a

2

(y); :::; a

jAj

(y); d(y)) can be defined by:

%(x; y) =

X

a2A

Æ

a

(x; y)

where Æ
a

(�; �) is a measure of attribute value similarity. For numerical attributes a commonly used ap-

proach for attribute value similarity is to normalise the value difference by its largest observed value

difference:

Æ

a

(x; y) =

�

�

�

�

a(x)� a(y)

a

max

� a

min

�

�

�

�

(3)

where amax and amin are the maximal and the minimal value for an attribute a among training examples.

For symbolic attributes a more informative alternative than Hamming distance is SVDM metric:

Æ

a

(x; y) =

X

v2V

d

jP (Class(v)ja(x)) � P (Class(v)ja(y))j (4)

SVDM (see e.g. [10]) considers two symbolic values to be similar if they have similar decision

distribution, i.e. if they correlate similarly with the decision. Different variants of this metric have been

successfully used previously (see e.g. [30], [8], [4]). In the presented paper we consider the metric that

combines the presented similarity measures: (3) for numerical attributes and (4) for symbolic attributes.

The commonly used instance-based algorithm is the k nearest neighbours classification algorithm

(k-NN). It is based on the assumption that examples that are closer in the instance space have the same

decision. Hence, test examples are classified with the decision class like the decision most common in

the set of k nearest neighbours from the training set.

4. Rule Induction with Optimal Neighbourhood Algorithm (RIONA)

Instead of considering all training examples in building a support set, like in the algorithm RIA, we can

limit it to a certain neighbourhood of a test example. The intuition behind it is that training examples far

from a test object are less relevant for classification than closer examples.

We consider two classes of neighbourhoods defined below.

Definition 4.1. For each test example tst we define S(tst; k) as the set of k training examples that are

most similar to tst according to similarity measure %3.

3In case when more than one example has an equal distance from the object tst to the k-th nearest example, all of them are

added to S(tst; k) (then the set S(tst; k) contains more than k examples).
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Definition 4.2. For each test example tst we define B(tst; R) = ftrn 2 trnSet : %(tst; trn) � Rg.

The former neighbourhood is similar to the one used in the k-NN algorithm. The latter neighbourhood

is a set of objects distanced from tst no more than R according to a distance measure %. From now on,

we use in the paper S(tst; k) neighbourhood, but B(tst; R) neighbourhood can be used as well. We

studied both classes of a neighbourhood in parallel and the empirical difference between them will be

discussed in Section 5 presenting experimental results.

Now we are ready to present an approach to induction that is a kind of combination of case-based

learning (see Section 3.2) and lazy minimal rule induction (see Section 3.1). The main idea is that we

apply strategy for conflict resolving with measures (1) and (2) slightly changed in the following way:

NStrength(tst; v) =

�

�

�

�

�

�

[

r2MathRules(v)

supportSet(r) \ S(tst; k)

�

�

�

�

�

�

(5)

NormNStrength(tst; v) =

NStrength(tst; v)

jClass(v)j

(6)

where notation is the same as in equations (1), (2). The difference is that we consider only those examples

covered by the rules matching a test object that are in a specified neighbourhood of the test example. As

it was mentioned above we considered also the neighbourhood B(tst; R). The appropriate measures

related to this neighbourhood could be obtained by substituting S(tst; k) with B(tst; R) in equation 5.

In the classification process we assume that parameter of the neighbourhood is fixed, i.e. a number

k for S(tst; k) neighbourhood and a value R for B(tst; R) neighbourhood. The proper size of the

neighbourhood (the parameter k or R) is found in the learning phase (see Section 4.1).

Given a set MinRules the above measures can be calculated by limiting the support sets of the

rules matching a test example to the specified neighbourhood of a test example. Thus the minimal rule

induction algorithm with the modified measure can be used here. Again, we used the lazy minimal rule

induction methodology.

To implement this approach we used a modified version of Algorithm 3.2. First, in the line 3 of

the algorithm only examples trn 2 S(tst; k) should be considered. Furthermore, it is not necessary to

consider all the examples from the training set to check the consistency of the rule
tst

(trn). Please note

that from Definition 3.2 we have that:

Proposition 4.1. If trn0 satisfies rule
tst

(trn) then %(tst; trn0) � %(tst; trn):

Hence, the examples that are distanced from the test example tst more than the training example trn

can not cause inconsistency of rule
tst

(trn).

The resulting classification algorithm is presented below. It predicts the most common class among

the training examples that are covered by the rules satisfied by a test example and are in the specified

neighbourhood.
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Algorithm 4.1. RIONA(tst)

neighbourSet = S(tst; k)

for each decision v 2 V

d

supportSet(v) = ;

for each trn 2 neighbourSet with d(trn) = v

if isConsistent(rule
tst

(trn); neighbourSet)

then supportSet(v) = supportSet(v) [ ftrng

RIONA(tst) = argmax

v2V

d

jsupportSet(v)j

For every decision class the algorithm RIONA computes not the whole support set of the minimal

rules covering a test object (as the algorithm RIA), but restricted to the neighbourhood S(tst; k) in the

following way. For every training object trn that belongs to the neighbourhood S(tst; k) the algorithm

constructs the local rule
tst

(trn) based on the considered example trn and the test example tst. Then,

it checks whether the local rule
tst

(trn) is consistent with the remaining training examples from the

neighbourhood S(tst; k). If the local rule is consistent then the training example trn that was used to

construct the rule is added to the support set of the appropriate decision. Finally, the algorithm selects

the decision with the support set of the highest cardinality.

We have the following dependencies between RIONA, RIA and the nearest neighbour algorithm.

Proposition 4.2. For each test object tst

RIONA(tst) =

(

RIA(tst) = deision

MinRules

(tst) for k =1

1-NN(tst) for k = 1

where 1-NN is the nearest neighbour algorithm.

For the maximal neighbourhood the algorithm RIONA works exactly as RIA algorithm (and minimal

rule induction algorithm with Strength as a strategy for conflict resolving). On the other hand taking

a neighbourhood as the single nearest training example we obtain the nearest neighbour algorithm. In

this sense RIONA belongs between the nearest neighbour and the minimal rule induction classifier. The

choice of a small neighbourhood causes the algorithm to behave more like k-NN classifier and the choice

of a large neighbourhood causes the algorithm to behave more like a common minimal rule induction

classifier. Taking a larger, but not the maximal, neighbourhood can be seen as considering more specific

rules instead of maximally general rules consistent with the training examples.

4.1. Selection of Optimal Neighbourhood

During the experiments (see Section 5) we found that performance of the algorithm can significantly

depend on the size of the chosen neighbourhood and a different size is appropriate for different problem

domains. Therefore, in terms of accuracy of the algorithm, it is important to find the optimal neighbour-

hood. In fact, it is possible to estimate both the optimal value k and the optimal radius R for S(tst; k)

and B(tst; R) neighbourhood respectively.

Below we describe the algorithm for estimating the optimal value k for S(tst; k) neighbourhood. It

would be similar if the optimal value k for k-NN method was estimated. The leave-one-out method is
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used on a training set to estimate the accuracy of the classifier for different values of k (1 � k � k

max

)

and the value k for which the estimation is the greatest is chosen. Applying it directly would require

repeating leave-one-out estimation k
max

times. However, we emulate this process in time comparable to

the single leave-one-out test for k equal to the maximal possible value k = k

max

. Below we present the

algorithm that implements this idea.

Algorithm 4.2. getClassifiationV etor(trn; k
max

)

NN = vector of k
max

training examples NN

1

; : : : ; NN

k

max

nearest to trn sorted according to the distance %(trn; �)

for each decision v 2 V

d

deStrength[v℄ = 0

urrentDe = the most frequent decision in trnSet

for k = 1; 2; :::; k

max

if isConsistent(rule
trn

(NN

k

); NN) then

v = d(NN

k

)

deStrength[v℄ = deStrength[v℄ + 1

if deStrength[v℄ > deStrength[urrentDe℄ then urrentDe = v

A[k℄ = urrentDe

return A

Algorithm 4.3. findOptimalK(k

max

)

for each trn 2 trnSet A

trn

= getClassifiationV etor(trn; k

max

)

return argmax

k

jftrn 2 trnSet : d(trn) = A

trn

[k℄gj

For a test example tst the function getClassifiationV etor(tst; k
max

) finds k
max

examples near-

est to the example tst on average in linear time and sorts them according to the distance %(tst; �). Next

it returns the vector of decisions that RIONA classifier would return for successive values of k. Algo-

rithm 4.3 calls this routine for every training object and then it selects the value k for which the global

estimation of accuracy is maximal.

Note that by ignoring the consistency checking in the function getClassifiationV etor(tst; k
max

)

we obtain the k nearest neighbours algorithm with selection of the optimal k: We call this classification

algorithm ONN and we used it in experiments for comparison with RIONA and other algorithms (see Sec-

tion 5). A new test object tst is classified by ONN with the most frequent decision in the set S(tst; k),

where the number k is selected as in the algorithm described above.

In the case of B(tst; R) neighbourhood we applied a similar idea. Instead of considering k

max

successive values in the for loop, appropriate intervals for radius R were considered. The experiments

presented in the next section show that S(tst; k) neighbourhood has better performance in terms of

accuracy (see Section 5).
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Table 1. The average optimal k, the average accuracy (%) and the standard deviation for RIONA with the optimal

k-best neighbourhood and the average accuracy (%) for the other systems: RIA, ONN, 3-NN, RIONA with the

optimal B(tst; R) neighbourhood, C5.0, DeEPs and DeEPsNN. The superscripts denote the confidence levels: 5

is 99.9%, 4 is 99%, 3 is 97.5%, 2 is 95%, 1 is 90%, and 0 is below 90%. Plus indicates that the average accuracy

of an algorithm is higher than in RIONA and minus otherwise

Domain (size, attr, classes) k

opt

RIONA RIA ONN 3-NN RIONA(B) C5.0 DeEPs DeEPsNN

australian (690, 14, 2) 41,2 86,1�0,4 65,0�5 85,7�2 85,0�4 85,7�2 85,9 84,9 88,4

breast (277, 9, 2) 77,9 73,4�1,0 73,90 73,00 68,6�5 73,60 - - -

breast-wis (683, 9, 2) 3,0 97,0�0,3 89,7�5 97,00 97,10 96,1�5 95,4 96,4 96,3

bupa-liver (345, 6, 2) 40,6 66,6�1,7 63,0�5 64,1�4 66,00 66,40 - - -

census (45222, 16, 2) 42,1 83,8�0,0 - 84,1+5 82,0�5 83,9+5 85,8 85,9 85,9

chess (3196, 36, 2) 11,9 98,0�0,1 - 96,9�5 97,0�5 97,5�5 99,4 97,8 97,8

german (1000, 20, 2) 29,2 74,5�0,5 70,1�5 74,1�1 72,1�5 73,1�4 71,3 74,4 74,4

glass (214, 9, 6) 2,1 70,7�1,9 39,5�5 70,70 71,9+1 63,9�5 70,0 58,5 68,0

heart (270, 13, 2) 19,4 83,2�1,0 62,8�5 83,10 81,3�5 83,40 77,1 81,1 81,1

iris (150, 4, 3) 37,1 94,6�0,6 90,5�5 94,40 95,3+4 94,70 94,0 96,0 96,0

letter (20000, 16, 26) 3,8 95,8�0,1 - 95,80 95,80 94,0�5 88,1 93,6 95,5

lymph (148, 18, 4) 1,4 85,4�1,3 76,4�5 86,3+1 84,4�2 81,4�5 74,9 75,4 84,1

mushroom (8124, 22, 2) 1,0 100,0�0,0 - 100,00 100,00 100,00 100,0 100,0 100,0

nursery (12960, 8, 5) 43,3 99,3�0,0 - 99,30 98,1�5 99,2�4 97,1 99,0 99,0

pendigits (10992, 16, 10) 1,2 99,4�0,0 - 99,40 99,40 97,4�5 96,7 98,2 98,8

pima (768, 8, 2) 34,3 74,7�0,9 65,2�5 74,40 72,2�5 72,7�5 73,0 76,8 73,2

primary (336, 15, 21) 75,9 31,7�0,8 32,4+1 40,3+5 33,5+4 31,60 - - -

satimage (6435, 36, 6) 3,7 91,3�0,1 - 91,30 91,4+2 87,7�5 86,7 88,5 90,8

segment (2310, 19, 7) 1,7 97,4�0,1 45,3�5 97,5+2 97,3�2 92,1�5 97,3 95,0 96,6

shuttle (58000, 9, 7) 1,3 99,9�0,0 - 99,90 99,90 99,8�5 99,6 97,0 99,7

solar-flare (1066, 10, 8) 70,9 81,2�0,3 81,4+1 82,7+5 78,1�5 81,7+5 82,7 83,5 83,5

splice (3186, 60, 3) 17,3 93,9�0,2 - 93,90 94,00 94,6+5 94,2 69,7 69,7

wine (178, 13, 3) 10,1 97,2�0,6 40,1�5 97,20 96,90 94,5�5 93,3 95,6 95,5

yeast (1484, 8, 10) 23,0 59,8�0,6 45,9�5 58,1�5 54,9�5 59,1�4 56,1 59,8 54,6

Total Average4 88,7�0,4 64,3 88,7 87,8 87,3 86,6 86,1 87,1

5. Experimental Study

Table 1 presents experimental results for 24 data sets from the UCI repository [6]. For data that are

split into a training and a testing set the experiments were performed for joined data (additionally the

accuracy measured on test data is given in Section 5.2). We compare the performance of RIONA with

both S(tst; k) and B(tst; R) neighbourhood to the performance of RIA, ONN, 3-NN, C5.0, DeEPs and

DeEPsNN systems. The accuracy for C5.0, DeEPs and DeEPsNN is taken from the paper [21]. The

remaining algorithms were tested on a 800MHz PentiumIII PC, with 512M bytes of RAM. The algorithm

RIA is time expensive so it was tested only for smaller data sets. The results were obtained by performing

10-fold cross-validation 10 times for each data set. All implemented algorithms: RIONA, RIA, ONN, 3-

NN and RIONA(B) were tested with exactly the same folds and the significance of difference between

algorithms was estimated using one-tailed paired t-test. The result of a single cross-validation test was the

accuracy averaged over all 10 folds and the final average accuracy and the confidence level for difference

between RIONA and the corresponding algorithm were computed from 10 repeats of the cross-validation

test (for census-income and shuttle only 4 repeats). SVDM metric and the optimal neighbourhood were

computed from a training set independently for each run in a cross-validation test.
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For all data sets the presented results were obtained for the metric described in Section 3.2 and

NormNStrength measure for conflict resolving (see Section 4). Although, during preliminary experi-

ments, we have also tried other types of metrics, no one appeared significantly better then the presented

one in terms of accuracy on a range of problem domains. We have also compared both NStrength

and NormNStrength measures as a strategy for conflict resolving and have obtained almost identical

results. The optimal size of a neighbourhood was searched during the process of learning on the basis

of the training examples. From the time complexity perspective it was important to limit searching for

the optimal k to a small fixed range of possible values from 1 to k

max

in such a way that sorting and

consistency checking of k
max

nearest neighbours were efficient. Since the values k
max

optimal in this

sense are the values close to the square root of the training set size (see Section 5.3) we set k
max

= 200

(it is close to the square root of the size of the largest domains). In the next subsection we examine the

significance of this setting. Before applying the algorithm no preprocessing was done. In particular we

did not apply discretisation for numerical attributes.

In Table 1 it can be seen that the accuracy of RIONA and ONN is comparable or better than well-

known classifiers, in particular, their accuracy is generally better than the accuracy of RIA and 3-NN. It

suggests the conclusion that RIONA and ONN may replace successfully both the rule-based algorithm

using all minimal rules and the k-NN with a fixed k. It also proves that using a properly selected subset

of rules in rule-based systems gives better results than using all minimal rules. The range of tested data

sets indicates that the presented algorithms work well for domains with both numerical and symbolic

attributes. In particular, it works well for numerical attributes without preprocessing.

5.1. RIONA versus ONN

While comparing RIONA and ONN (k-NN with selection of the optimal neighbourhood) it can be seen in

Table 1 that significant differences in accuracy occurred mostly for smaller data sets (breast, bupa-liver,

chess, primary, solar-flare and yeast). Differences for all other domains are less than 1 percent. The only

difference between RIONA and ONN is the operation of consistency checking. In order to explain the

similarity of results we checked what part of the k-neighbourhood for the optimal k is eliminated by the

operation of consistency-checking (see Table 2).

The presented results show that only for three domains: breast-cancer, primary and solar-flare the

operation of consistency checking eliminates a significant fraction of nearest neighbours. For other do-

mains the number of consistent objects from the optimal neighbourhood in RIONA algorithm is close

to the number of all objects from the optimal neighbourhood of k-NN algorithm. Therefore the differ-

ences in classification accuracy are small. These observations suggest that the operation of consistency

checking in the algorithm RIONA is not very significant (see Section 4).

We suspect that this observations relates to the fact that usually the set of all consistent, minimal rules

is of a large size. The last column in Table 2 indicates that the support set induced from the whole set of

consistent and minimal rules contains a large fraction of all examples. On the other hand, the analysis of

accuracy in dependence on a number of neighbours k shows that usually a small number of objects gives

the best accuracy. It suggests that many of consistent and minimal rules are induced rather accidentally.

Hence considering either a reasonably computed smaller set of rules or a more restrictive operation of

consistency checking may give better classification accuracy.
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Table 2. The dependence of a number of consistent objects on a number of nearest neighbours: the second

column presents an optimal value k, the third column presents the average number of objects in the optimal k-

neighbourhood that are consistent with a tested object and the fourth and fifth columns present analogical data for

maximal experimented neighbourhood.

Domain
optimal

k = k

opt

number of

consistent

for k
opt

maximal

calculated

k = k

max

number of

consistent

for k
max

australian 372 338,22 690 552,42

breast-cancer 123 19,17 275 22,82

census-income 256 192,01 501 344,85

chess 23 21,85 3196 794,05

german 34 33,32 1000 731,77

heart 15 14,96 270 241,44

iris 55 47,21 149 66,63

letter 3 2,99 758 443,72

lymphography 2 1,96 148 68,45

mushroom 1 1,0 508 477,97

nursery 590 377,81 1028 592,41

pendigits 1 1,0 514 498,7

primary 49 6,11 334 10,42

satimage 4 4,0 500 498,7

segment 1 1,0 2310 1716,29

shuttle 1 1,0 504 492,43

solar-flare 28 3,76 929 8,33

splice (dna) 15 14,93 2000 1835,73

yeast 21 20,28 1484 582,45

5.2. Further Study

In this section we describe some of the experiments and conclusions that led us to the final version of the

presented algorithm. We also present experiments that can help us understand important aspects of the

RIONA.

First, we performed the experiments that helped us compare two types of a neighbourhood: the ra-

dial neighbourhood B(tst; R), where the radius R was variable and the k-best neighbourhood S(tst; k),

where k was variable, and choose a proper range of values of a variable parameter to test. Looking at the

second and the third columns in Table 3 it can be seen that the accuracy of the algorithm for the neigh-

bourhood S(tst; k) is better than B(tst; R) on 13 domains and worse only on 4 domains. For breast-

cancer it lost about 1 percent, for solar-flare and splice it lost about half percent and for census-income

the difference in accuracy is insignificant. On the other hand for a number of domains (letter, lymphogra-

phy, pendigits, satimage, segment, yeast) the neighbourhood S(tst; k) outperformed B(tst; R) with the

gain much higher than 1 percent of accuracy. Thus we can draw a conclusion that for the algorithm RI-

ONA the neighbourhood S(tst; k) works better than B(tst; R), although the latter neighbourhood seems

to be more natural. In further experiments we focused our attention on the neighbourhood S(tst; k).
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Table 3. Leave-one-out accuracy of RIONA on training sets for different types of a neighbourhood: the opti-

mal S(tst; k
opt

) (optimal k is given in parenthesis), the optimal B(tst; R

opt

) (average k for optimal R) and the

maximal experimented S(tst; k

max

) (all denotes the unlimited neighbourhood). The last column contains the

loss in accuracy (in comparison to the second column) when the maximal experimented value k was limited to

k

max

= 200.

Domain
RIONA for

S(tst,k)

RIONA for

B(tst,r)

RIONA for

S
�

(tst,k)

with maximal k

RIONA difference

for S
�

(tst,k)

with k
max

= 200

australian 87,68% (372) 87,39% (381) 68,55% (all) -0,15% (77)

breast-cancer 74,72% (123) 75,81% (125) 74,0% (all) 0,0%

census-income 83,97% (256) 84,02% (420) 83,81% (500) -0,04% (24)

chess 98,31% (23) 98,15% (2176) 98,09 (all) 0,0%

german 76,5% (34) 75,7% (13) 70,1% (all) 0,0%

heart 85,55% (15) 85,18% (35) 64,07% (all) 0,0%

iris 96,0% (55) 96,0% (37) 91,33% (all) 0,0%

letter 95,38% (3) 93,39% (34) 74,69% (500) 0,0%

lymphography 87,83% (2) 84,45% (12) 81,08% (all) 0,0%

mushroom 100,0% (1) 100,0% (109) 99,97% (500) 0,0%

nursery 99,46% (590) 99,43% (674) 99,31% (1000) -0,1% (171)

pendigits 99,53% (1) 97,37% (117) 82,21% (500) 0,0%

primary 32,44% (49) 32,12% (56) 31,84% (all) 0,0%

satimage 91,09% (4) 87,82% (231) 81,83% (500) 0,0%

segment 97,66% (1) 92,64% (90) 41,47% (all) 0,0%

shuttle 99,94% (1) 99,83% (195) 99,64% (500) 0,0%

solar-flare 81,42% (28) 81,98% (18) 81,42% (all) 0,0%

splice (dna) 94,9% (15) 95,55% (14) 62,5% (all) 0,0%

yeast 61,38% (21) 59,70% (115) 47,1% (all) 0,0%

The setting k

max

= 200 preserved the efficiency of RIONA but the interesting question was how

significantly this setting influenced the classification results. Please note that the maximal possible value

k is just the size of a training set. In order to answer this question the following experiment was per-

formed: for the smaller sets (less than 4000 objects) experiments were performed for all possible values

of k and for the greater sets the maximal value k was set to k

max

= 500 (for the set nursery we made

the exception k

max

= 1000). The classification accuracy was measured for the leave-one-out method

applied to the whole set. Figures 1, 2, 3, 4 present the dependence of classification accuracy on the value

of k for exemplary domains.

For most data sets we observed that while increasing k beyond a certain small value the classification

accuracy was falling down (see Figures 1, 2, 3). In particular, while comparing the fourth and the

second column in Table 3 one can see that for most data sets the results for the total or a quite large

neighbourhood are significantly worse than the results for the neighbourhood found by the algorithm

RIONA. For the remaining data sets (breast, census-income, nursery, primary, solar-flare) the accuracy

becomes stable beyond a certain value k (see Figure 4).
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Figure 1. Classification accuracy for letter.

Figure 2. Classification accuracy for german

For the former group we examined the neighbourhood size (value of k) for which the maximum

accuracy was obtained. In the latter case we examined both the value of k beyond which accuracy

remains stable and the fluctuations in accuracy while increasing k. In the second column of Table 3 it

can be seen that in most cases the optimal value of k is less than 200. Moreover, for many domains

the optimal value of k is less than 60 and for 7 of them this value is equal or less than 4. On the other

hand, for the domains where the optimal k was greater than 200 (australian, census-income and nursery)

the loss in classification accuracy related to this setting was insignificant: it remained within the range

of 0,15% (see the last column in Table 3). Moreover, the accuracy became stable for values of k also

much lower than 200. Therefore we could conclude that the setting k

max

= 200 preserved good time

complexity properties and did not change the results significantly for tested data sets.

The fact that a small neighbourhood gives the best accuracy leads to another conclusion. Limiting the

support set of a maximally general decision rule from MinRules to a neighbourhood of a test example

can be seen as replacing the rule with a more specific one. In this sense the presented results suggest that
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Figure 3. Classification accuracy for splice.

Figure 4. Classification accuracy for census-income.

taking the complete set of consistent and maximally general decision rules usually gives worse accuracy

than a set of more specific rules. It relates to measures for conflict resolving that consider as one of the

important factor the specificity of a rule (see e.g. [17]). It would be interesting to do further research in

order to verify this hypothesis.

For a number of data sets (letter, pendigits, satimage, segment, shuttle and yeast) we noticed that the

accuracy is falling down monotonically. Since for these domains the best accuracy is obtained for the

smallest values of k; k-NN method seems to work best for them. On the other hand, all the mentioned

data have numerical attributes. Hence, we can conclude that numerical data are induced best by the k-NN

method and a falling accuracy characterises well the data sets that are appropriate for k-NN method.

Analogical experiments were done for the neighbourhood B(tst; R). The conclusion was similar to

the one just mentioned. For all the presented domains we observed that after the value R exceeded some

constant R
max

(where R
max

was relatively small in comparison to all possible values ofR) classification

accuracy either became worse or did not improve significantly. This suggests the similar conclusion, i.e.

the best accuracy is obtained for small radius.
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Table 4. Difference in classification accuracy between induced and optimal number of different neighbours: the

second column presents the accuracy on a test set for the value k induced from a training set, the third column

presents maximal possible accuracy of the algorithm if the optimal number k were found (the optimal number k is

given in parentheses), the last column shows the difference between these two accuracies.

Domain
RIONA for

S
%

(tst,k)

optimal

accuracy for

S
%

(tst,k)

accuracy

difference

census-income 83,74% (256) 83,75% (417) -0,01%

letter 95,54% (3) 95,74% (7) -0,2%

pendigits 97,36% (1) 97,88% (4) -0,52%

satimage 91,1% (4) 91,1% (3) 0,0%

shuttle 99,94% (1) 99,94% (1) 0,0%

splice (dna) 94,18% (15) 94,26% (33) -0,08%

If data are split into training and testing set one can ask the question whether the accuracy on a

test set obtained for the value k computed from a training set may differ significantly from the optimal

accuracy on a test set. In order to study this aspect we compared this accuracies on the data sets that

were originally split. The results are presented in Table 4. The experiments showed that for pendigits

accuracy obtained by RIONA differs by about half percent from the accuracy with the optimal number k

and for other domains the difference remains in the range of 0.2%. It means that the used algorithm finds

almost the optimal number k in terms of the accuracy obtained.

To sum up, there is no need to take the whole training set in the process of classification. More-

over, taking less objects can improve classification performance. It was found that the performance is

significantly better for the S(tst; k) neighbourhood in comparison to the B(tst; R) neighbourhood.

5.3. Time Complexity of RIONA

First, the learning algorithm performs two phases for each training object. In the first phase it selects

k

max

nearest objects among n objects, where n denotes the size of a training set. On average it is done in

the linear time. In the second phase the algorithm sorts all k
max

selected objects and checks consistency

among them. It takes O(k

2

max

). Finally, for the whole training set the algorithm computes leave-one-out

accuracy for each 1 � k � k

max

. It takes O(nk

max

). Summing up, the average complexity of the

learning algorithm is O(n(n+ k

2

max

)). In practice the component O(n

2

) is predominant.

Testing is analogical to learning. The classification algorithm finds k
opt

nearest examples and then

checks consistency among them. Since k
opt

� k

max

, the complexity is O(n + k

2

max

) for a single test

object and the total average complexity of the testing algorithm is O(m(n+k

2

max

)) where m is a number

of test objects. In Table 5 one can see that for all the presented data sets the average time of classification

for a single object is less than 0.6 s. Moreover, for larger data sets it is comparable with a single object

test time in the algorithm ONN and is much shorter than a single test object time in the algorithm RIA.

In case when the number of test objects is approximately equal to the number of training objects,

taking into account both the learning and the classification phase, the average time complexity of RIONA

is in practise O(n

2

), while the average time complexity of RIA is O(n

3

) what is quite a significant

acceleration.
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Table 5. Single object test time (in seconds) for RIONA, RIA and ONN

Domain t

RIONA

t

RIA

t

ONN

Domain t

RIONA

t

RIA

t

ONN

australian 0,026 0,087 0,022 breast 0,016 0,021 0,014

breast-wis 0,032 0,063 0,017 bupa-liver 0,009 0,016 0,006

census 0,572 > 5; 0 0,568 chess 0,130 0,891 0,126

german 0,047 0,188 0,042 glass 0,010 0,012 0,006

heart 0,019 0,024 0,014 iris 0,003 0,006 0,003

letter 0,236 > 5; 0 0,224 lymph 0,017 0,019 0,014

mushroom 0,223 > 5; 0 0,219 nursery 0,169 > 5; 0 0,167

pendigits 0,133 > 5; 0 0,130 pima 0,013 0,055 0,010

primary-tumor 0,018 0,028 0,018 satimage 0,174 > 5; 0 0,169

segment 0,046 0,557 0,042 shuttle 0,378 > 5; 0 0,376

solar-flare 0,025 0,082 0,023 splice 0,405 3,194 0,393

wine 0,010 0,891 0,007 yeast 0,017 0,104 0,014

6. Conclusions and Future Research

The research reported in the paper attempts to bring together the features of rule induction and instance-

based learning in a single algorithm.

As the empirical results indicate the presented algorithm obtained the accuracy comparable to the

well-known systems: 3-NN, C5.0, DeEPs and DeEPsNN. The experiments show that the choice of a

metric is very important for classification accuracy of the algorithm. The combination of the normalised

Manhattan metric for numerical attributes and SVDM metric for symbolic attributes proved to be very

successful. It did not require discretisation for numerical attributes.

We have compared two types of a neighbourhood: the k-nearest neighbours (S(tst; k)) and the ball

B(tst; R). The former type of a neighbourhood gave generally better results, although the latter seemed

more natural. This may suggest that the topology of the space induced by the used metric is rather

complex.

We found that the appropriate choice of the neighbourhood size is also an important factor for clas-

sification accuracy. It appeared that for all domain problems the optimal accuracy is obtained for a small

neighbourhood (a small number of nearest neighbours k in S or a small radius R in B neighbourhood).

This leads us to the conclusion that generally it is enough to consider only a small neighbourhood instead

of the maximal neighbourhood related to the whole training set. This is interesting from the classifica-

tion perspective, because it suggest that usually only a small number of training examples is relevant for

accurate classification. We believe that this fact can stimulate further research in this direction. It also

illustrates the empirical fact that while using rule-based classifiers one can obtain better results by reject-

ing some rules instead of using all minimal rules like the algorithm RIA does. We propose an approach

to use only the rules that are built on the basis of a neighbourhood of the test case.

The fact mentioned above is also the key idea that allowed us to make the original algorithm RIA

(see Section 3.1) efficient without loss in classification accuracy. In practice the complexity of learning

and classification is only squarely and linearly dependent on the size of a learning sample respectively.

Although a great effort was put into accelerating the algorithm, we think that further acceleration is
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possible, for instance by more specialised data structures and an approximate choice of nearest examples

(see e.g. [22], [25]).

The facts that RIONA and ONN algorithms have similar classification accuracy and the fraction of

objects eliminated by the consistency checking operation is very small indicate that this operation has

rather small influence on the accuracy of the presented algorithm. It suggests that the k-NN component

remains a dominant element of the presented algorithm and shows that either the construction of local

rules should be more general or the operation of consistency checking should be more restrictive.

In RIONA the selection of the optimal value of k is performed globally. One possible extension of

this approach is to apply a local method to searching for the appropriate value of k (see e.g. [31]).

The interesting topic, although marginal in this paper, is the dependence of the average number of

training examples on the distance to a test case. Empirically it was noticed that the dependence was close

to linear, what seemed interesting and surprising to us.
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