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Abstra
t. The arti
le des
ribes a method 
ombining two widely-used

empiri
al approa
hes: rule indu
tion and instan
e-based learning. In our

algorithm (RIONA) de
ision is predi
ted not on the basis of the whole

support set of all rules mat
hing a test 
ase, but the support set restri
ted

to a neighbourhood of a test 
ase. The size of the optimal neighbourhood

is automati
ally indu
ed during the learning phase. The empiri
al study

shows the interesting fa
t that it is enough to 
onsider a small neighbour-

hood to preserve 
lassi�
ation a

ura
y. The 
ombination of k-NN and a

rule-based algorithm results in a signi�
ant a

eleration of the algorithm

using all minimal rules. We study the signi�
an
e of di�erent 
ompo-

nents of the presented method and 
ompare its a

ura
y to well-known

methods.

1 Introdu
tion

Many te
hniques of indu
tive 
on
ept learning from its instan
es have been de-

veloped so far [10℄. Empiri
al 
omparison of these approa
hes shows that ea
h

performs well on some, but not all, domains. A great progress has been made

in multistrategy learning to 
ombine these approa
hes in order to 
onstru
t a


lassi�er that has properties of two or more te
hniques. Although the problem of

indu
tive generalisation has no general solution (what is known as the 
onserva-

tion law for generalisation performan
e [11℄), the goal is to in
rease the average

a

ura
y for the real-world domains at the expense of a

ura
y for the domains

that never o

ur in pra
ti
e.

We present a multi-strategy learning approa
h 
ombining the rule indu
tion

[9℄ and the instan
e-based te
hniques [3℄, [5℄. There has been a lot of work done

in this area [4℄, [6℄, [7℄. Our algorithm 
onsiders all minimal de
ision rules, i.e.

the most general rules 
onsistent with training examples. It simulates 
lassi-

�
ation based on the most frequent 
lass in the support set of minimal rules


overing a test obje
t. The main idea is that the support set is restri
ted to the

neighbourhood of a test example. The neighbourhood of a test example 
onsists

of either the obje
ts within some distan
e from a test example or a number of

obje
ts 
losest to a test example (like in k-NN method). The appropriate size of



a neighbourhood to be taken for 
lassi�
ation is automati
ally indu
ed during

the pro
ess of learning. The 
ru
ial empiri
al observation is that taking a neigh-

bourhood that is mu
h smaller than the whole training set preserves or even

improves a

ura
y. It enables both to indu
e the optimal neighbourhood during

the learning phase and to 
lassify obje
ts e�e
tively.

The paper is organised as follows. In Se
tion 2 the paper will be pla
ed in

the 
ontext of related work. Se
tion 3 outlines the main features of two te
h-

niques that are most relevant to this work, i.e. rule indu
tion and instan
e-based

learning. Our algorithm, 
ombining these approa
hes, is presented in Se
tion 4.

Se
tion 5 provides experimental results evaluating the a

ura
y and the speed

of the presented system. Se
tion 6 
on
ludes this paper with a brief summary

and dis
ussion of possible dire
tions for future resear
h.

2 Related Work

In re
ent literature there has been a number of works 
ombining instan
e-based

and de
ision rule indu
tion methods.

RISE system [4℄ is based on uni�
ation of these two methods. The di�er-

en
e between RISE system and our approa
h is that RISE sele
ts the 
lass for

a test obje
t on the basis of the 
losest rule. First, RISE generates de
ision

rules. At the beginning instan
es are treated as maximally spe
i�
 rules and

these rules are then gradually generalised as long as the global leave-one-out

a

ura
y is improving. An obje
t is 
lassi�ed a

ording to the 
losest rule. The

distan
e between an obje
t and a rule is measured with the metri
 
ombining

the normalised Manhattan metri
 for numeri
al attributes and the Simple Value

Di�eren
e Metri
 (SVDM) for symboli
 attributes.

An approa
h more similar to our method is presented in DeEPs and DeEP-

sNN [7℄. The �rst di�eren
e is that DeEPs uses a di�erent form of rule 
onditions

and di�erent 
riteria for rule sele
tion. DeEPs 
lassi�es obje
ts on the basis of all

rules that have high frequen
y-
hanging rate (a measure similar to 
on�den
e).

While 
lassifying a test obje
t the system 
omputes the support set using all

rules with high frequen
y-
hanging rate and sele
ts the most frequent 
lass in

the support set. In our system the 
omputed support set is limited to a 
er-

tain neighbourhood of a test obje
t. DeEPsNN 
ombines 3-NN and DeEPs : if a


ertain �xed neighbourhood of a test obje
t 
overs at least one training obje
t,

3-NN is applied, otherwise DeEPs is used.

In [1℄ an algorithm with the lazy rule indu
tion approa
h is presented. It 
om-

putes the support set of all minimal rules 
overing a test obje
t in the following

way. For ea
h training obje
t the algorithm 
onstru
ts the lo
al rule 
ontaining

the 
ommon 
onditions of the test and the training obje
ts and 
he
ks whether

the training obje
ts supporting the lo
al rule are in the same de
ision 
lass.

Finally, the algorithm sele
ts the 
lass most frequent in the support set. This

algorithm treats all attributes as symboli
. We generalised this approa
h for

symboli
 attributes and extended it to numeri
al attributes.



A detailed study of k-NN algorithms is presented in [12℄. In parti
ular, that

paper des
ribes resear
h on sele
tion of the optimal value of k. The experiments

presented in that paper showed that the a

ura
y of k-NN is insensitive to the

exa
t 
hoi
e of k when the optimal k is large enough. Di�erent methods for

adapting the value of k lo
ally within di�erent parts of the input spa
e have

also been investigated. The lo
al sele
tion of k improves a

ura
y for data that


ontain noise or irrelevant features.

Our approa
h 
ombines the idea used in [1℄ (extended as des
ribed above)

with k-NN method in su
h a way that it 
onsiders lo
al rules only for the training

examples from the k-nearest neighbourhood of a test example. The distan
e is

measured with the metri
 used in RISE [4℄. Moreover, the algorithm sear
hes for

the global optimal value k during the learning phase. This 
ombination improves

the a

ura
y of a k-NN 
lassi�er with a �xed value k and helps to rea
h the

a

ura
y 
omparable to a rule-based 
lassi�er in 
ase when the a

ura
y of the

k-NN method is low.

3 Preliminaries and De�nitions

We assume that a training set, denoted in the paper trnSet, 
onsists of a �nite

set of examples. Ea
h example is des
ribed by a �nite set of attributes (features)

A [ fdg, i.e. a : trnSet! V

a

for a 2 A [ fdg, where d =2 A denotes the de
ision

attribute and V

a

is a value domain of the attribute a. Two groups of attributes

are 
onsidered: symboli
 and numeri
al (real-valued). We denote by Class(v) a

subset of training examples with a 
lass v. We also assume that V

d

= f1; :::; jV

d

jg.

3.1 Minimal and Lazy Rule Indu
tion

Rule indu
tion algorithms indu
e de
ision rules from a training set. A de
ision

rule 
onsists of a 
onjun
tion of attribute 
onditions and a 
onsequent. The 
om-

monly used 
onditions are equations attribute = value for symboli
 attributes

and interval in
lusion for numeri
al attributes, e.g. IF (a

1

= 2^a

3

2 [3; 7℄^a

6

=

5) THEN (d = 1).

Many systems 
ompute a set of su
h de
ision rules and then use it in the


lassi�
ation pro
ess. Another approa
h is the lazy 
on
ept indu
tion that does

not require 
al
ulation of de
ision rules before 
lassi�
ation of new obje
ts. An

example of su
h an algorithm is presented in [1℄. It generates only de
ision rules

relevant for a new test obje
t and then 
lassi�es it like algorithms generating

rules in advan
e. Below we brie
y des
ribe this algorithm generalised for sym-

boli
 attributes and extended to the 
ase of numeri
al attributes.

De�nition 1. For obje
ts tst, trn we denote by rule

tst

(trn) the lo
al rule with

de
ision d(trn) and the following 
onditions 


i

for ea
h attribute a

i

:




i

=

�

a

i

2 [min(a

i

(tst); a

i

(trn));max(a

i

(tst); a

i

(trn))℄ when a

i

is numeri
al

a

i

2 B (a

i

(tst); Æ(a

i

(tst); a

i

(trn))) when a

i

is symboli


where B(
; R) is a ball 
entered in 
 with radius R and Æ is a measure of attribute

value similarity.



The 
onditions in De�nition 1 are 
hosen so that both the training and the

test example satisfy the rule and the 
onditions are maximally spe
i�
. The 
on-

dition used in [1℄ is a parti
ular 
ase of the above 
ondition de�ned for symboli


attributes when Hamming metri
 is used (Æ(x; y) = 1 if x 6= y and 0 otherwise).

Below we present the lazy rule indu
tion algorithm (RIA). The fun
tion isCon-

sistent(r,verifySet) 
he
ks whether a lo
al rule r is 
onsistent with a verifySet.

Algorithm 1 RIA(tst)

1.for ea
h 
lass v 2 V

d

2. supp(v) = ;

3. for ea
h trn 2 trnSet with d(trn) = v

4. if isConsistent(rule

tst

(trn); trnSet)

5. then supp(v) = supp(v) [ ftrng

6.RIA = argmax

v2V

d

jsupp(v)j

jClass(v)j

It was shown in [1℄ that RIA is equivalent to the algorithm based on 
al
u-

lating all rules that are maximally general and 
onsistent with the training set.

The time 
omplexity of RIA for a single test obje
t is O(n

2

), where n = jtrnSetj.

One of the motivations behind our work was to redu
e this 
omplexity.

3.2 Instan
e-Based Learning

A 
ommonly used instan
e-based learning method is the k nearest neighbours

algorithm (k-NN ). It is based on the 
on
ept of similarity. Given a number of

training examples the 
lass for a test 
ase is inferred from the k nearest examples

in the sense of a similarity measure. Di�erent measures are used for numeri
al

and symboli
 domains. For domains with both types of attributes a 
ombination

of these approa
hes may be used:

%(x; y) =

X

a2A

Æ

a

(x; y)

where x; y are obje
ts and Æ

a

(�; �) is a measure of attribute value similarity. In

the paper we used the normalised Manhattan distan
e for numeri
al attributes

and SVDM (see e.g. [4℄) for symboli
 attributes:

Æ

a

(x; y) =

(

�

�

�

a(x)�a(y)

a

max

�a

min

�

�

�

for a - numeri
al

P

v2V

d

jP (Class(v)ja(x)) � P (Class(v)ja(y))j for a - symboli


4 Rule Indu
tion with Optimal Neighbourhood

Algorithm (RIONA)

Instead of 
onsidering all training examples in building a support set like in

RIA, we 
an limit it to a 
ertain neighbourhood of a test example. The intuition

behind it is that training examples far from a test obje
t are less relevant for


lassi�
ation than 
loser examples. We 
onsider two 
lasses of a neighbourhood:



De�nition 2. For ea
h test example tst we de�ne S(tst; k) as the set of k train-

ing examples that are most similar to tst a

ording to a similarity measure %.

De�nition 3. For ea
h test example tst we de�ne B(tst; R) as the set of train-

ing examples trn su
h that %(tst; trn) � R.

The former neighbourhood is similar to the one used in the k-NN algorithm.

From now on, we use in the paper S(tst; k) neighbourhood, although we studied

both 
lasses of neighbourhoods in parallel and the empiri
al di�eren
e between

them will be dis
ussed in Se
tion 5.

Now we are ready to present an approa
h to indu
tion that is a kind of


ombination of 
ase-based learning (see Se
tion 3.2) and lazy minimal rule in-

du
tion (see Se
tion 3.1). The main idea is that we apply the following strategy

for 
on
i
t resolving:

NormNStrength(tst; v) =

�

�

�

�

�

S

r2MinRules

v

tst

supp(r) \ S(tst; k)

�

�

�

�

�

jClass(v)j

(1)

where v denotes the v-th 
lass, tst is a test example, supp(r) is the set of training

examples mat
hing a rule r,MinRules

v

tst

is the set of all rules maximally general

and 
onsistent with the training set, whose premise is satis�ed by tst and the


onsequent is the 
lass v.

In the 
lassi�
ation pro
ess we assume that the parameter k of the neigh-

bourhood is �xed. The proper size of the neighbourhood is found in the learning

phase (see Se
tion 4.1).

In order to 
al
ulate the measure (1) we used a modi�ed version of Algorithm

1. First, in the line 3 of the algorithm only the examples trn 2 S(tst; k) should

be 
onsidered. Furthermore, it is not ne
essary to 
onsider all the examples from

the training set to 
he
k the 
onsisten
y of the rule

tst

(trn). Please note that from

De�nition 1 we have that:

Proposition 1. If trn

0

satis�es rule

tst

(trn) then %(tst; trn

0

) � %(tst; trn):

Hen
e, the examples that are distan
ed from the test example tst more than the

training example trn 
an not 
ause in
onsisten
y of rule

tst

(trn). The resulting


lassi�
ation algorithm is presented below. It predi
ts the most 
ommon 
lass

among the training examples that are 
overed by the rules satis�ed by a test

example and that are in the spe
i�ed neighbourhood.

Algorithm 2 RIONA(tst)

neighbourSet = S(tst; k)

for ea
h 
lass v 2 V

d

supp(v) = ;

for ea
h trn 2 neighbourSet with d(trn) = v

if isConsistent(rule

tst

(trn); neighbourSet)

then supp(v) = supp(v) [ ftrng

RIONA = argmax

v2V

d

jsupp(v)j

jClass(v)j



For the maximal neighbourhood the algorithm RIONA works exa
tly as RIA

algorithm. On the other hand, taking a neighbourhood as a single nearest train-

ing example we obtain the nearest neighbour algorithm. In this sense RIONA

belongs between the nearest neighbour and the rule indu
tion 
lassi�er.

4.1 Sele
tion of Optimal Neighbourhood

During the experiments (see Se
tion 5) we found that the performan
e of the

algorithm 
an signi�
antly depend on the size of a 
hosen neighbourhood and a

di�erent size is appropriate for di�erent problem domains. In fa
t, it is possible

to estimate the optimal value k for S(tst; k) neighbourhood. It would be similar

if the optimal value k for k-NN method were estimated. The idea is that one


an use the leave-one-out method on a training set to estimate the a

ura
y of

the 
lassi�er for di�erent values of k (1 � k � k

max

) and then 
hoose the value

k for whi
h the estimation is the greatest. Applying it dire
tly would require

repeating the leave-one-out estimation k

max

times. However, we emulated this

pro
ess in a time 
omparable to the single leave-one-out test for k equal to the

maximal possible value k = k

max

. This idea is realised in Algorithm 3.

Algorithm 3 �ndOptimalK(k

max

)

for ea
h trn 2 trnSet A

trn

= getClassi�
ationVe
tor(trn; k

max

)

return argmax

k

jftrn 2 trnSet : d(trn) = A

trn

[k℄gj

fun
tion getClassi�
ationVe
tor(tst; k

max

)

NN = ve
tor of k

max

training examples NN

1

; : : : ; NN

k

max

nearest to tst sorted a

ording to a distan
e %(tst; �)

for ea
h 
lass v 2 V

d

de
Strength[v℄ = 0


urrentDe
= the most frequent 
lass in trnSet

for k = 1; 2; :::; k

max

if isConsistent(rule

tst

(NN

k

); NN) then

v = d(NN

k

)

de
Strength[v℄ = de
Strength[v℄ + 1

if

de
Strength[v℄

jClass(v)j

>

de
Strength[
urrentDe
℄

jClass(
urrentDe
)j

then 
urrentDe
 = v

D[k℄ = 
urrentDe


return D

Ignoring the 
onsisten
y 
he
king in the fun
tion getClassifi
ationV e
tor(�; �)

we obtain the k nearest neighbours algorithm with sele
tion of the optimal k

(ONN ). An experimental 
omparison of RIONA and ONN is presented in the

next se
tion.

5 Experimental Study

Table 1 presents experimental results for 24 data sets from UCI repository [2℄.

For data that are split into a training and a testing set the experiments were per-

formed for joined data. The a

ura
y for C5.0, DeEPs and DeEPsNN are taken



Table 1. The average optimal k, the average a

ura
y (%) and the standard deviation

for RIONA with the optimal k-best neighbourhood and the average a

ura
y (%) for

the other systems: RIA, ONN, 3-NN, RIONA with the optimal B(tst;R) neighbour-

hood, C5.0, DeEPs and DeEPsNN. The supers
ripts denote the 
on�den
e levels: 5 is

99.9%, 4 is 99%, 3 is 97.5%, 2 is 95%, 1 is 90%, and 0 is below 90%. Plus indi
ates that

the average a

ura
y of an algorithm is higher than in RIONA and minus otherwise

Domain (size, attr, 
lasses) k

opt

RIONA RIA ONN 3-NN RIONA(B) C5.0 DeEPs DeEPsNN

australian (690, 14, 2) 41,2 86,1�0,4 65,0

�5

85,7

�2

85,0

�4

85,7

�2

85,9 84,9 88,4

breast (277, 9, 2) 77,9 73,4�1,0 73,9

0

73,0

0

68,6

�5

73,6

0

- - -

breast-wis (683, 9, 2) 3,0 97,0�0,3 89,7

�5

97,0

0

97,1

0

96,1

�5

95,4 96,4 96,3

bupa-liver (345, 6, 2) 40,6 66,6�1,7 63,0

�5

64,1

�4

66,0

0

66,4

0

- - -


ensus (45222, 16, 2) 42,1 83,8�0,0 - 84,1

+5

82,0

�5

83,9

+5

85,8 85,9 85,9


hess (3196, 36, 2) 11,9 98,0�0,1 - 96,9

�5

97,0

�5

97,5

�5

99,4 97,8 97,8

german (1000, 20, 2) 29,2 74,5�0,5 70,1

�5

74,1

�1

72,1

�5

73,1

�4

71,3 74,4 74,4

glass (214, 9, 6) 2,1 70,7�1,9 39,5

�5

70,7

0

71,9

+1

63,9

�5

70,0 58,5 68,0

heart (270, 13, 2) 19,4 83,2�1,0 62,8

�5

83,1

0

81,3

�5

83,4

0

77,1 81,1 81,1

iris (150, 4, 3) 37,1 94,6�0,6 90,5

�5

94,4

0

95,3

+4

94,7

0

94,0 96,0 96,0

letter (20000, 16, 26) 3,8 95,8�0,1 - 95,8

0

95,8

0

94,0

�5

88,1 93,6 95,5

lymph (148, 18, 4) 1,4 85,4�1,3 76,4

�5

86,3

+1

84,4

�2

81,4

�5

74,9 75,4 84,1

mushroom (8124, 22, 2) 1,0 100,0�0,0 - 100,0

0

100,0

0

100,0

0

100,0 100,0 100,0

nursery (12960, 8, 5) 43,3 99,3�0,0 - 99,3

0

98,1

�5

99,2

�4

97,1 99,0 99,0

pendigits (10992, 16, 10) 1,2 99,4�0,0 - 99,4

0

99,4

0

97,4

�5

96,7 98,2 98,8

pima (768, 8, 2) 34,3 74,7�0,9 65,2

�5

74,4

0

72,2

�5

72,7

�5

73,0 76,8 73,2

primary (336, 15, 21) 75,9 31,7�0,8 32,4

+1

40,3

+5

33,5

+4

31,6

0

- - -

satimage (6435, 36, 6) 3,7 91,3�0,1 - 91,3

0

91,4

+2

87,7

�5

86,7 88,5 90,8

segment (2310, 19, 7) 1,7 97,4�0,1 45,3

�5

97,5

+2

97,3

�2

92,1

�5

97,3 95,0 96,6

shuttle (58000, 9, 7) 1,3 99,9�0,0 - 99,9

0

99,9

0

99,8

�5

99,6 97,0 99,7

solar-
are (1066, 10, 8) 70,9 81,2�0,3 81,4

+1

82,7

+5

78,1

�5

81,7

+5

82,7 83,5 83,5

spli
e (3186, 60, 3) 17,3 93,9�0,2 - 93,9

0

94,0

0

94,6

+5

94,2 69,7 69,7

wine (178, 13, 3) 10,1 97,2�0,6 40,1

�5

97,2

0

96,9

0

94,5

�5

93,3 95,6 95,5

yeast (1484, 8, 10) 23,0 59,8�0,6 45,9

�5

58,1

�5

54,9

�5

59,1

�4

56,1 59,8 54,6

Total Average 88,7�0,4 64,3 88,7 87,8 87,3 86,6 86,1 87,1

from the paper [8℄. The remaining algorithms were tested on a 800MHz Pentiu-

mIII PC, with 512M bytes of RAM. The algorithm RIA is time expensive so it

was tested only for smaller data sets. The results were obtained by performing

10-fold 
ross-validation 10 times for ea
h data set. All implemented algorithms:

RIONA, RIA, ONN, 3-NN and RIONA(B) were tested with exa
tly the same

folds and the signi�
an
e of di�eren
e between algorithms was estimated using

one-tailed paired t test.

1

SVDM metri
 and the optimal neighbourhood were


omputed from a training set independently for ea
h run in a 
ross-validation

test.

1

The result of a single 
ross-validation test was the a

ura
y averaged over all 10

folds and the �nal average a

ura
y and the 
on�den
e level for di�eren
e between

RIONA and the 
orresponding algorithm were 
omputed from 10 repeats of the


ross-validation test (for 
ensus-in
ome and shuttle only 4 repeats).



The total average a

ura
y was 
omputed over all data sets ex
ept breast,

bupa-liver and primary (for RIA it was 
omputed only over the data sets that

are given the a

ura
y).

For all data sets the presented results were obtained for the metri
 des
ribed

in Se
tion 3.2 and NormNStrength measure for 
on
i
t resolving (see Se
tion

4). Although during the preliminary experiments we tried other types of a met-

ri
, no one appeared better then the presented one in terms of a

ura
y on a

range of problem domains. We also tried to omit normalisation fa
tor in the

measure NormNStrength what gave almost identi
al results. The optimal size

of a neighbourhood was sear
hed during the pro
ess of learning on the basis of

the training examples. From the time 
omplexity perspe
tive it was important

to limit sear
hing for the optimal k to a small �xed range of possible values from

1 to k

max

in su
h a way that sorting and 
onsisten
y 
he
king of k

max

nearest

neighbours were eÆ
ient. Sin
e the values k

max

optimal in this sense are the

values 
lose to the square root of the training set size (see Se
tion 5.2) we set

k

max

= 200 (it is 
lose to the square root of the size of the largest domains). In

the next subse
tion we examine the signi�
an
e of this setting.

In Table 1 one 
an see that signi�
ant di�eren
es in a

ura
y between RIONA

and ONN (k-NN with sele
tion of the optimal neighbourhood) o

urred mostly

for smaller data sets (breast, bupa-liver, 
hess, primary, solar-
are and yeast).

The only di�eren
e between RIONA and ONN is the operation of 
onsisten
y


he
king. In order to explain the similarity of results we 
he
ked what part of the

k-neighbourhood for the optimal k is eliminated by the operation of 
onsisten
y-


he
king and found that only for the domains breast, primary and solar-
are

the fra
tion of eliminated nearest neighbours was signi�
ant. For other domains

the number of 
onsistent obje
ts from the optimal neighbourhood in RIONA

algorithm is 
lose to the number of all obje
ts from the optimal neighbourhood

of k-NN algorithm. Therefore the di�eren
es in 
lassi�
ation a

ura
y are small.

These observations suggest that the operation of 
onsisten
y 
he
king in RIONA

is not very signi�
ant and it should be 
onsidered to be more restri
tive.

On the other hand, the a

ura
y of RIONA and ONN is 
omparable or better

than well-known 
lassi�ers, in parti
ular, their a

ura
y is generally better than

the a

ura
y of RIA and 3-NN. It suggests the 
on
lusion that RIONA and ONN

may repla
e su

essfully both the rule-based algorithm using all minimal rules

and a k-NN with a �xed k. It also proves that using a properly sele
ted subset

of rules in rule-based systems gives better results than using all minimal rules.

The range of tested data sets indi
ates that the presented algorithms work well

for domains with both numeri
al and symboli
 attributes. In parti
ular, it works

well for numeri
al attributes without prepro
essing.

5.1 Further Study

In this se
tion we des
ribe more experiments and 
on
lusions that 
an help us

to understand important aspe
ts of RIONA.

First, we performed the experiments that helped us to 
ompare two types

of a neighbourhood: thr radial B(tst; R) and the k-best S(tst; k). For ea
h data



Fig. 1. A

ura
y for german Fig. 2. A

ura
y for 
ensus-in
ome

set we estimated the optimal value of the radius R and the optimal value of

k from a training set and 
ompared 
lassi�
ation a

ura
y for both types of a

neighbourhood. Looking at the third and the seventh 
olumns in Table 1 one


an see that the a

ura
y of the algorithm for the neighbourhood B(tst; R) is

signi�
antly worse than S(tst; k) on 14 domains (with the 
on�den
e level -

4, -5) and signi�
antly better on 3 domains (with the 
on�den
e level +4, +5).

Therefore in further experiments we fo
used our attention on the neighbourhood

S(tst; k).

The setting k

max

= 200 preserved the eÆ
ien
y of RIONA but the interesting

question was how signi�
antly this setting in
uen
ed the 
lassi�
ation results.

Please note that the maximal possible value k is just the size of a training set.

In order to answer this question the following experiment was performed: for the

smaller sets (less than 4000 obje
ts) the 
lassi�
ation a

ura
y was measured

for all possible values of k and for the greater sets the maximal value k was set

to k

max

= 500 (for the set nursery we made the ex
eption k

max

= 1000). The


lassi�
ation a

ura
y was measured for the leave-one-out method applied to

the whole sets. Figures 1, 2 present the dependen
e of 
lassi�
ation a

ura
y on

the value of k for exemplary domains.

For most data sets we observed that while in
reasing k beyond a 
ertain small

value the 
lassi�
ation a

ura
y is falling down (see Figure 1). In parti
ular,

while 
omparing the third and the fourth 
olumn in Table 1, one 
an see that

for most data sets the results for the total neighbourhood are signi�
antly worse

than the results for the neighbourhood found by the algorithm RIONA. For the

remaining data sets (breast, 
ensus-in
ome, nursery, primary, solar-
are) the

a

ura
y be
omes stable beyond a 
ertain value k (see Figure 2).

For the former group we examined the neighbourhood size (the value of k) for

whi
h the maximum a

ura
y was obtained. In the latter 
ase we examined both

the value of k beyond whi
h the a

ura
y remains stable and the 
u
tuations in

a

ura
y while in
reasing k. For most domains the optimal value of k appeared to

be mu
h less than 200. On the other hand, for the domains where the optimal k

was greater (australian, 
ensus-in
ome and nursery) the loss in a

ura
y related

to this setting was insigni�
ant: it remained within the range of 0,15%. Moreover,



Table 2. Single obje
t test time (in se
onds) for RIONA, RIA and ONN

Domain t

RIONA

t

RIA

t

ONN

Domain t

RIONA

t

RIA

t

ONN

australian 0,026 0,087 0,022 breast 0,016 0,021 0,014

breast-wis 0,032 0,063 0,017 bupa-liver 0,009 0,016 0,006


ensus 0,572 > 5; 0 0,568 
hess 0,130 0,891 0,126

german 0,047 0,188 0,042 glass 0,010 0,012 0,006

heart 0,019 0,024 0,014 iris 0,003 0,006 0,003

letter 0,236 > 5; 0 0,224 lymph 0,017 0,019 0,014

mushroom 0,223 > 5; 0 0,219 nursery 0,169 > 5; 0 0,167

pendigits 0,133 > 5; 0 0,130 pima 0,013 0,055 0,010

primary-tumor 0,018 0,028 0,018 satimage 0,174 > 5; 0 0,169

segment 0,046 0,557 0,042 shuttle 0,378 > 5; 0 0,376

solar-
are 0,025 0,082 0,023 spli
e 0,405 3,194 0,393

wine 0,010 0,891 0,007 yeast 0,017 0,104 0,014

the a

ura
y be
ame stable for values of k also mu
h lower than 200. Therefore

we 
ould 
on
lude that the setting k

max

= 200 preserved good time 
omplexity

properties and did not 
hange the results signi�
antly for tested data sets.

For data sets split originally into a training and a testing set (spli
e, satim-

age, pendigits, letter, 
ensus-in
ome, shuttle) we performed the experiments to


ompare the a

ura
y for two 
ases: when the value k was estimated either from

a training set or from a test set (the optimal k). Experiments showed that for

pendigits a

ura
y obtained by RIONA di�ers by about half per
ent from the

a

ura
y with an optimal number k and for the other domains the di�eren
e

remains in the range of 0.2%. It means that the used algorithm �nds almost

optimal number k in terms of obtained a

ura
y.

Analogi
al experiments were done for the neighbourhood B(tst; R) and we

observed that after the value R ex
eeded a 
onstant R

max

(where R

max

was

relatively small in 
omparison to the maximal possible value of R) the a

ura
y

either be
ame worse or did not improve signi�
antly. This suggests the similar


on
lusion, i.e. the best a

ura
y is obtained for a small radius.

5.2 Time Complexity of RIONA

First, the learning algorithm performs two phases for ea
h training obje
t. In the

�rst phase it sele
ts k

max

nearest obje
ts among n = jtrnSetj obje
ts. On average

it is done in the linear time. In the se
ond phase the algorithm sorts all k

max

sele
ted obje
ts and 
he
ks 
onsisten
y among them. It takes O(k

2

max

). Finally,

for the whole training set the algorithm 
omputes leave-one-out a

ura
y for ea
h

1 � k � k

max

, whi
h takes O(nk

max

). Summing up, the average 
omplexity of

the learning algorithm is O(n(n + k

2

max

)). In pra
ti
e the 
omponent O(n

2

) is

dominant.

Testing is analogi
al to learning. The 
lassi�
ation algorithm �nds k

opt

near-

est examples and then 
he
ks 
onsisten
y among them. Sin
e k

opt

� k

max

, the


omplexity is O(n + k

2

max

) for a single test obje
t and the total average 
om-



plexity of the testing algorithm is O(m(n+ k

2

max

)) where m is a number of test

obje
ts. In Table 2 one 
an see that for all the presented data sets the average

time of 
lassi�
ation for a single obje
t is less than 0.6 s. Moreover, for larger

data sets it is 
omparable with a single obje
t test time in the algorithm ONN

and is mu
h shorter than a single test obje
t time in the algorithm RIA.

In 
ase when the number of test obje
ts is approximately equal to the number

of training obje
ts, taking into a

ount both the learning and the 
lassi�
ation

phase, the average time 
omplexity of RIONA is in pra
tise O(n

2

), while the

average time 
omplexity of RIA is O(n

3

) what is quite a signi�
ant a

eleration.

6 Con
lusions and Future Resear
h

The resear
h reported in the paper attempts to bring together the features of

rule indu
tion and instan
e-based learning in a single algorithm. As the empir-

i
al results indi
ate the presented algorithm obtained the a

ura
y 
omparable

to the well-known systems su
h as: 3-NN, C5.0, DeEPs and DeEPsNN. The

experiments show that the 
hoi
e of a metri
 is very important for 
lassi�
ation

a

ura
y of the algorithm. The 
ombination of the normalised Manhattan metri


for numeri
al attributes and SVDM metri
 for symboli
 attributes proved to be

very su

essful. It did not require dis
retisation for numeri
al attributes.

We have 
ompared two types of a neighbourhood: the k-nearest neighbours

S(tst; k) and the ball B(tst; R). The former type of a neighbourhood gave gener-

ally better results, although the latter seemed more natural. This may suggest

that the topology of the spa
e indu
ed by the used metri
 is rather 
omplex.

We found that the appropriate 
hoi
e of the neighbourhood size is also an

important fa
tor for 
lassi�
ation a

ura
y. It appeared that for all domain prob-

lems the optimal a

ura
y is obtained for a small neighbourhood (a small number

of nearest neighbours k in S or a small radius R in B neighbourhood). This leads

us to the 
on
lusion that generally it is enough to 
onsider only a small neigh-

bourhood instead of the maximal neighbourhood related to the whole training

set. This is interesting from the 
lassi�
ation perspe
tive, be
ause it suggests

that usually only a small number of training examples is relevant for a

urate


lassi�
ation. It also illustrates the empiri
al fa
t that while using rule-based


lassi�ers one 
an obtain better results by reje
ting some rules instead of using

all minimal rules like the algorithm RIA does. We propose an approa
h to use

only the rules that are built on the basis of a neighbourhood of the test 
ase.

The fa
t mentioned above is also the key idea that allowed us to make the

original algorithm RIA eÆ
ient without loss in 
lassi�
ation a

ura
y. In pra
-

ti
e the 
omplexity of learning and 
lassi�
ation is only squarely and linearly

dependent on the size of a learning sample respe
tively. Although a great e�ort

was put into a

elerating the algorithm, we think that further a

eleration is

possible, for instan
e by more spe
ialised data stru
tures and an approximate


hoi
e of nearest examples (see e.g. [10℄).

The fa
ts that RIONA and ONN algorithms have similar 
lassi�
ation a

u-

ra
y and the fra
tion of obje
ts eliminated by the 
onsisten
y 
he
king operation



is very small indi
ate that this operation has rather small in
uen
e on the a

u-

ra
y of the algorithm. It suggests that the k-NN 
omponent remains a dominant

element of RIONA and shows that either the 
onstru
tion of lo
al rules should be

more general or the operation of 
onsisten
y 
he
king should be more restri
tive.

In RIONA the sele
tion of the optimal value of k is performed globally. One

possible extension of this approa
h is to apply a lo
al method to sear
hing for

the appropriate value of k (see e.g. [12℄).

The interesting topi
 is the dependen
e of the average number of training

examples on the distan
e to a test 
ase. Empiri
ally it was noti
ed that the

dependen
e was 
lose to linear, what seemed surprising to us.
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