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Abstract. The article describes a method combining two widely-used
empirical approaches: rule induction and instance-based learning. In our
algorithm (RIONA) decision is predicted not on the basis of the whole
support set of all rules matching a test case, but the support set restricted
to a neighbourhood of a test case. The size of the optimal neighbourhood
is automatically induced during the learning phase. The empirical study
shows the interesting fact that it is enough to consider a small neighbour-
hood to preserve classification accuracy. The combination of k-NN and a
rule-based algorithm results in a significant acceleration of the algorithm
using all minimal rules. We study the significance of different compo-
nents of the presented method and compare its accuracy to well-known
methods.

1 Introduction

Many techniques of inductive concept learning from its instances have been de-
veloped so far [10]. Empirical comparison of these approaches shows that each
performs well on some, but not all, domains. A great progress has been made
in multistrategy learning to combine these approaches in order to construct a
classifier that has properties of two or more techniques. Although the problem of
inductive generalisation has no general solution (what is known as the conserva-
tion law for generalisation performance [11]), the goal is to increase the average
accuracy for the real-world domains at the expense of accuracy for the domains
that never occur in practice.

We present a multi-strategy learning approach combining the rule induction
[9] and the instance-based techniques [3], [5]. There has been a lot of work done
in this area [4], [6], [7]. Our algorithm considers all minimal decision rules, i.e.
the most general rules consistent with training examples. It simulates classi-
fication based on the most frequent class in the support set of minimal rules
covering a test object. The main idea is that the support set is restricted to the
neighbourhood of a test example. The neighbourhood of a test example consists
of either the objects within some distance from a test example or a number of
objects closest to a test example (like in k-NN method). The appropriate size of



a neighbourhood to be taken for classification is automatically induced during
the process of learning. The crucial empirical observation is that taking a neigh-
bourhood that is much smaller than the whole training set preserves or even
improves accuracy. It enables both to induce the optimal neighbourhood during
the learning phase and to classify objects effectively.

The paper is organised as follows. In Section 2 the paper will be placed in
the context of related work. Section 3 outlines the main features of two tech-
niques that are most relevant to this work, i.e. rule induction and instance-based
learning. Our algorithm, combining these approaches, is presented in Section 4.
Section 5 provides experimental results evaluating the accuracy and the speed
of the presented system. Section 6 concludes this paper with a brief summary
and discussion of possible directions for future research.

2 Related Work

In recent literature there has been a number of works combining instance-based
and decision rule induction methods.

RISE system [4] is based on unification of these two methods. The differ-
ence between RISFE system and our approach is that RISE selects the class for
a test object on the basis of the closest rule. First, RISE generates decision
rules. At the beginning instances are treated as maximally specific rules and
these rules are then gradually generalised as long as the global leave-one-out
accuracy is improving. An object is classified according to the closest rule. The
distance between an object and a rule is measured with the metric combining
the normalised Manhattan metric for numerical attributes and the Simple Value
Difference Metric (SVDM) for symbolic attributes.

An approach more similar to our method is presented in DeEPs and DeEP-
sNN [7]. The first difference is that DeEPs uses a different form of rule conditions
and different criteria for rule selection. DeEPs classifies objects on the basis of all
rules that have high frequency-changing rate (a measure similar to confidence).
While classifying a test object the system computes the support set using all
rules with high frequency-changing rate and selects the most frequent class in
the support set. In our system the computed support set is limited to a cer-
tain neighbourhood of a test object. DeEPsNN combines 8-NN and DeEPs: if a
certain fixed neighbourhood of a test object covers at least one training object,
3-NN is applied, otherwise DeFEPs is used.

In [1] an algorithm with the lazy rule induction approach is presented. It com-
putes the support set of all minimal rules covering a test object in the following
way. For each training object the algorithm constructs the local rule containing
the common conditions of the test and the training objects and checks whether
the training objects supporting the local rule are in the same decision class.
Finally, the algorithm selects the class most frequent in the support set. This
algorithm treats all attributes as symbolic. We generalised this approach for
symbolic attributes and extended it to numerical attributes.



A detailed study of k-NN algorithms is presented in [12]. In particular, that
paper describes research on selection of the optimal value of k. The experiments
presented in that paper showed that the accuracy of k-NN is insensitive to the
exact choice of k when the optimal k is large enough. Different methods for
adapting the value of k locally within different parts of the input space have
also been investigated. The local selection of k£ improves accuracy for data that
contain noise or irrelevant features.

Our approach combines the idea used in [1] (extended as described above)
with £-NN method in such a way that it considers local rules only for the training
examples from the k-nearest neighbourhood of a test example. The distance is
measured with the metric used in RISE [4]. Moreover, the algorithm searches for
the global optimal value k£ during the learning phase. This combination improves
the accuracy of a k-NN classifier with a fixed value k£ and helps to reach the
accuracy comparable to a rule-based classifier in case when the accuracy of the
k-NN method is low.

3 Preliminaries and Definitions

We assume that a training set, denoted in the paper trnSet, consists of a finite
set of examples. Each example is described by a finite set of attributes (features)
AuU{d},ie. a:trnSet —» V, for a € AU {d}, where d ¢ A denotes the decision
attribute and V, is a value domain of the attribute a. Two groups of attributes
are considered: symbolic and numerical (real-valued). We denote by Class(v) a
subset of training examples with a class v. We also assume that V; = {1, ..., |Vq|}.

3.1 Minimal and Lazy Rule Induction

Rule induction algorithms induce decision rules from a training set. A decision
rule consists of a conjunction of attribute conditions and a consequent. The com-
monly used conditions are equations attribute = value for symbolic attributes
and interval inclusion for numerical attributes, e.g. I'F (a1 = 2Aa3 € [3,7]Aag =
5) THEN (d=1).

Many systems compute a set of such decision rules and then use it in the
classification process. Another approach is the lazy concept induction that does
not require calculation of decision rules before classification of new objects. An
example of such an algorithm is presented in [1]. It generates only decision rules
relevant for a new test object and then classifies it like algorithms generating
rules in advance. Below we briefly describe this algorithm generalised for sym-
bolic attributes and extended to the case of numerical attributes.

Definition 1. For objects tst, trn we denote by rule (trn) the local rule with
decision d(trn) and the following conditions c; for each attribute a;:
o= {ai € [min(a;(tst), a;(trn)), max(a;(tst), a;(trn))] when a; is numerical
') a; € B(a;(tst), d(a;(tst), a;(trn))) when a; is symbolic
where B(c, R) is a ball centered in ¢ with radius R and § is a measure of attribute
value similarity.



The conditions in Definition 1 are chosen so that both the training and the
test example satisfy the rule and the conditions are maximally specific. The con-
dition used in [1] is a particular case of the above condition defined for symbolic
attributes when Hamming metric is used (d(z,y) = 1 if x # y and 0 otherwise).
Below we present the lazy rule induction algorithm (RIA). The function isCon-
sistent(r,verifySet) checks whether a local rule r is consistent with a verifySet.

Algorithm 1 RIA(tst)
1.for each class v € Vy
2. supp(v) =0
3. for each trn € trnSet with d(trn) = v

4. if isConsistent(ruleys; (trn), trnSet)
5. then supp(v) = supp(v) U {trn}
6.RIA = arg max ||é‘;;’;((’;))“

vEVy

It was shown in [1] that RIA is equivalent to the algorithm based on calcu-
lating all rules that are maximally general and consistent with the training set.
The time complexity of RIA for a single test object is O(n?), where n = |trnSet|.
One of the motivations behind our work was to reduce this complexity.

3.2 Instance-Based Learning

A commonly used instance-based learning method is the k nearest neighbours
algorithm (k-NN). It is based on the concept of similarity. Given a number of
training examples the class for a test case is inferred from the k nearest examples
in the sense of a similarity measure. Different measures are used for numerical
and symbolic domains. For domains with both types of attributes a combination
of these approaches may be used:

o(@,y) =Y da(z,y)

a€A

where z,y are objects and d,(+,-) is a measure of attribute value similarity. In
the paper we used the normalised Manhattan distance for numerical attributes
and SVDM (see e.g. [4]) for symbolic attributes:

0a(z,y) = { ama"—amm‘ for a - numerical

> vev, |P(Class(v)|a(x)) — P(Class(v)|a(y))| for a - symbolic

4 Rule Induction with Optimal Neighbourhood
Algorithm (RIONA)

Instead of considering all training examples in building a support set like in
RIA, we can limit it to a certain neighbourhood of a test example. The intuition
behind it is that training examples far from a test object are less relevant for
classification than closer examples. We consider two classes of a neighbourhood:



Definition 2. For each test ezample tst we define S(tst, k) as the set of k train-
ing examples that are most similar to tst according to a similarity measure o.

Definition 3. For each test example tst we define B(tst, R) as the set of train-
ing examples trn such that o(tst,trn) < R.

The former neighbourhood is similar to the one used in the k-NN algorithm.
From now on, we use in the paper S(ist, k) neighbourhood, although we studied
both classes of neighbourhoods in parallel and the empirical difference between
them will be discussed in Section 5.

Now we are ready to present an approach to induction that is a kind of
combination of case-based learning (see Section 3.2) and lazy minimal rule in-
duction (see Section 3.1). The main idea is that we apply the following strategy
for conflict resolving;:

U supp(r) N S(tst, k)
reEMinRules},,

NormNStrength(tst,v) = | Class(v)|

(1)

where v denotes the v-th class, tst is a test example, supp(r) is the set of training
examples matching a rule r, MinRules,, is the set of all rules maximally general
and consistent with the training set, whose premise is satisfied by tst and the
consequent is the class v.

In the classification process we assume that the parameter k of the neigh-
bourhood is fixed. The proper size of the neighbourhood is found in the learning
phase (see Section 4.1).

In order to calculate the measure (1) we used a modified version of Algorithm
1. First, in the line 3 of the algorithm only the examples trn € S(tst, k) should
be considered. Furthermore, it is not necessary to consider all the examples from
the training set to check the consistency of the rule;s;(trn). Please note that from
Definition 1 we have that:

Proposition 1. If trn’ satisfies rulegs; (trn) then o(tst, trn') < o(tst, trn).

Hence, the examples that are distanced from the test example tst more than the
training example ¢rn can not cause inconsistency of ruleqs:(trn). The resulting
classification algorithm is presented below. It predicts the most common class
among the training examples that are covered by the rules satisfied by a test
example and that are in the specified neighbourhood.

Algorithm 2 RIONA (tst)
neighbourSet = S(tst, k)
for each class v € Vy
supp(v) = 0
for each trn € neighbourSet with d(trn) = v
if isConsistent(ruleys; (trn), neighbourSet)
then supp(v) = supp(v) U {trn}

RIONA = arg max %
vEVy



For the maximal neighbourhood the algorithm RIONA works exactly as RIA
algorithm. On the other hand, taking a neighbourhood as a single nearest train-
ing example we obtain the nearest neighbour algorithm. In this sense RIONA
belongs between the nearest neighbour and the rule induction classifier.

4.1 Selection of Optimal Neighbourhood

During the experiments (see Section 5) we found that the performance of the
algorithm can significantly depend on the size of a chosen neighbourhood and a
different size is appropriate for different problem domains. In fact, it is possible
to estimate the optimal value k for S(tst, k) neighbourhood. It would be similar
if the optimal value k for £-NN method were estimated. The idea is that one
can use the leave-one-out method on a training set to estimate the accuracy of
the classifier for different values of k (1 < k < kpqae) and then choose the value
k for which the estimation is the greatest. Applying it directly would require
repeating the leave-one-out estimation k,,,, times. However, we emulated this
process in a time comparable to the single leave-one-out test for k equal to the
maximal possible value k = kj,q,- This idea is realised in Algorithm 3.

Algorithm 3 findOptimalK (k. )
for each trn € trnSet Ay, = getClassificationVector(trn, kpaz)
return arg max |{trn € trnSet : d(trn) = Ak}
k

function getClassificationVector(tst, kmaz)
NN = vector of kmaax training examples NNy,...,NNy, ..
nearest to tst sorted according to a distance o(tst,-)
for each class v € V4 decStrength[v] = 0
currentDec= the most frequent class in trnSet
fork=1,2,.. knax
if isConsistent(rulew; (N Ny), NN) then
v = d(NNy)
decStrength[v] = decStrength[v] + 1

. ¢ decStrength[v] decStrength[currentDec] _
f [Class(v)]| > |Class(currentDec)| then currentDec = v
DIk] = currentDec
return D

Ignoring the consistency checking in the function getClassificationVector(-,-)
we obtain the k nearest neighbours algorithm with selection of the optimal &
(ONN). An experimental comparison of RIONA and ONN is presented in the
next section.

5 Experimental Study

Table 1 presents experimental results for 24 data sets from UCI repository [2].
For data that are split into a training and a testing set the experiments were per-
formed for joined data. The accuracy for C5.0, DeEPs and DeEPsNN are taken



Table 1. The average optimal k, the average accuracy (%) and the standard deviation
for RIONA with the optimal k-best neighbourhood and the average accuracy (%) for
the other systems: RIA, ONN, 8-NN, RIONA with the optimal B(tst, R) neighbour-
hood, C5.0, DeEPs and DeEPsNN. The superscripts denote the confidence levels: 5 is
99.9%, 4 is 99%, 3 is 97.5%, 2 is 95%, 1 is 90%, and 0 is below 90%. Plus indicates that
the average accuracy of an algorithm is higher than in RIONA and minus otherwise

Domain (size, attr, classes) |kopt RIONA RIA ONN 3-NN |RIONA(B)| C5.0 |DeEPs|DeEPsNN
australian (690, 14, 2)  |41,2| 86,140,4 [65,07°|85,772(85,07*| 85,772 | 85,9 | 84,9 | 88,4
breast (277, 9, 2) 77,9| 73,4+1,0 | 73,9° | 73,0° |68,675| 73,6° - - -
breast-wis (683, 9, 2) 3,0 | 97,0+0,3 |89,77%| 97,0° | 97,1° | 96,17° | 95,4 | 96,4 | 96,3
bupa-liver (345, 6, 2) 40,6| 66,6+1,7 |63,07°|64,17*| 66,0° | 66,4° - - -
census (45222, 16, 2) 42,1| 83,840,0 - |84,1%%|82,07%| 83,915 | 85,8 | 85,9 | 85,9
chess (3196, 36, 2) 11,9| 98,0+0,1 - |96,97°|97,07%| 97,57° | 99,4| 97,8 | 97,8
german (1000, 20, 2) 29,2| 74,54+0,5 |70,17°| 74,171 | 72,175 73,17% | 71,3 | 74,4 | 74,4
glass (214, 9, 6) 2,1 | 70,74+1,9 [39,57%| 70,7° |71,9%'| 63,97° | 70,0 | 58,5 | 68,0
heart (270, 13, 2) 19,4| 83,2+1,0 |62,87°| 83,1° |81,37°| 83,4° | 77,1 | 81,1 | 81,1
iris (150, 4, 3) 37,1| 94,6+0,6 |90,57°| 94,4° |95,3t*| 947° | 94,0 |96,0| 96,0
letter (20000, 16, 26) 3,8 | 95,8+0,1 - 95,8° | 95,8° | 94,075 | 88,1 | 93,6 | 95,5
lymph (148, 18, 4) 1,4 | 85,4+1,3 |76,47°(86,371|84,472| 81,475 | 74,9 | 75,4 | 84,1
mushroom (8124, 22, 2) | 1,0 {100,0+0,0 - |100,0°|100,0°| 100,0° |{100,0{100,0| 100,0
nursery (12960, 8, 5) 43,3| 99,340,0 - 99,3° |98,17%| 99,274 | 97,1 | 99,0 | 99,0
pendigits (10992, 16, 10)| 1,2 | 99,440,0 - 99,4° | 99,4° | 97,475 | 96,7 | 98,2 | 98,8
pima (768, 8, 2) 34,3| 74,74+0,9 |65,27°| 74,4° [72,27%| 72,77°% | 73,0 | 76,8 | 73,2
primary (336, 15, 21) 75,9| 31,7+0,8 |32,4%!|40,375(33,5t*| 31,6° - - -
satimage (6435, 36, 6) |3,7 | 91,3+0,1 - 91,3° [91,4%2| 87,775 | 86,7 | 88,5 | 90,8
segment (2310, 19, 7) 1,7 | 97,4+0,1 |45,375|97,572|97,372| 92,175 | 97,3 | 95,0 | 96,6
shuttle (58000, 9, 7) 1,3 | 99,940,0 - 99,9° | 99,9° | 99,875 | 99,6 | 97,0 | 99,7
solar-flare (1066, 10, 8) |[70,9| 81,2+0,3 [81,4%1|82,775|78,17°| 81,7+% | 82,7 | 83,5 | 83,5
splice (3186, 60, 3) 17,3| 93,940,2 - 93,9° | 94,0° | 94,675 | 94,2 | 69,7 | 69,7
wine (178, 13, 3) 10,1| 97,2+0,6 |40,17%| 97,2° | 96,9° | 94,575 | 93,3 | 95,6 | 95,5
yeast (1484, 8, 10) 23,0| 59,8+0,6 |45,97°(58,17°|54,97°| 59,17* | 56,1 | 59,8 | 54,6
Total Average 88,7+0,4 | 64,3 | 88,7 | 87,8 87,3 | 86,6 | 86,1 | 87,1

from the paper [8]. The remaining algorithms were tested on a 800MHz Pentiu-
mlll PC, with 512M bytes of RAM. The algorithm RIA is time expensive so it
was tested only for smaller data sets. The results were obtained by performing
10-fold cross-validation 10 times for each data set. All implemented algorithms:
RIONA, RIA, ONN, 8-NN and RIONA(B) were tested with exactly the same
folds and the significance of difference between algorithms was estimated using
one-tailed paired t test.! SVDM metric and the optimal neighbourhood were
computed from a training set independently for each run in a cross-validation
test.

! The result of a single cross-validation test was the accuracy averaged over all 10
folds and the final average accuracy and the confidence level for difference between
RIONA and the corresponding algorithm were computed from 10 repeats of the
cross-validation test (for census-income and shuttle only 4 repeats).



The total average accuracy was computed over all data sets except breast,
bupa-liver and primary (for RIA it was computed only over the data sets that
are given the accuracy).

For all data sets the presented results were obtained for the metric described
in Section 3.2 and NormN Strength measure for conflict resolving (see Section
4). Although during the preliminary experiments we tried other types of a met-
ric, no one appeared better then the presented one in terms of accuracy on a
range of problem domains. We also tried to omit normalisation factor in the
measure NormN Strength what gave almost identical results. The optimal size
of a neighbourhood was searched during the process of learning on the basis of
the training examples. From the time complexity perspective it was important
to limit searching for the optimal k£ to a small fixed range of possible values from
1 to kpmaz in such a way that sorting and consistency checking of k., nearest
neighbours were efficient. Since the values k., optimal in this sense are the
values close to the square root of the training set size (see Section 5.2) we set
Emaz = 200 (it is close to the square root of the size of the largest domains). In
the next subsection we examine the significance of this setting.

In Table 1 one can see that significant differences in accuracy between RIONA
and ONN (k-NN with selection of the optimal neighbourhood) occurred mostly
for smaller data sets (breast, bupa-liver, chess, primary, solar-flare and yeast).
The only difference between RIONA and ONN is the operation of consistency
checking. In order to explain the similarity of results we checked what part of the
k-neighbourhood for the optimal k is eliminated by the operation of consistency-
checking and found that only for the domains breast, primary and solar-flare
the fraction of eliminated nearest neighbours was significant. For other domains
the number of consistent objects from the optimal neighbourhood in RIONA
algorithm is close to the number of all objects from the optimal neighbourhood
of k-NN algorithm. Therefore the differences in classification accuracy are small.
These observations suggest that the operation of consistency checking in RIONA
is not very significant and it should be considered to be more restrictive.

On the other hand, the accuracy of RIONA and ONN is comparable or better
than well-known classifiers, in particular, their accuracy is generally better than
the accuracy of RTA and 3-NN. It suggests the conclusion that RIONA and ONN
may replace successfully both the rule-based algorithm using all minimal rules
and a k-NN with a fixed k. It also proves that using a properly selected subset
of rules in rule-based systems gives better results than using all minimal rules.
The range of tested data sets indicates that the presented algorithms work well
for domains with both numerical and symbolic attributes. In particular, it works
well for numerical attributes without preprocessing.

5.1 Further Study

In this section we describe more experiments and conclusions that can help us
to understand important aspects of RIONA.

First, we performed the experiments that helped us to compare two types
of a neighbourhood: thr radial B(tst, R) and the k-best S(ist, k). For each data
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set we estimated the optimal value of the radius R and the optimal value of
k from a training set and compared classification accuracy for both types of a
neighbourhood. Looking at the third and the seventh columns in Table 1 one
can see that the accuracy of the algorithm for the neighbourhood B(tst, R) is
significantly worse than S(tst,k) on 14 domains (with the confidence level -
4, -5) and significantly better on 3 domains (with the confidence level +4, +5).
Therefore in further experiments we focused our attention on the neighbourhood
S(tst, k).

The setting ke = 200 preserved the efficiency of RIONA but the interesting
question was how significantly this setting influenced the classification results.
Please note that the maximal possible value k is just the size of a training set.
In order to answer this question the following experiment was performed: for the
smaller sets (less than 4000 objects) the classification accuracy was measured
for all possible values of k£ and for the greater sets the maximal value k was set
t0 kmaz = 500 (for the set nursery we made the exception k., = 1000). The
classification accuracy was measured for the leave-one-out method applied to
the whole sets. Figures 1, 2 present the dependence of classification accuracy on
the value of k for exemplary domains.

For most data sets we observed that while increasing k£ beyond a certain small
value the classification accuracy is falling down (see Figure 1). In particular,
while comparing the third and the fourth column in Table 1, one can see that
for most data sets the results for the total neighbourhood are significantly worse
than the results for the neighbourhood found by the algorithm RIONA. For the
remaining data sets (breast, census-income, nursery, primary, solar-flare) the
accuracy becomes stable beyond a certain value k (see Figure 2).

For the former group we examined the neighbourhood size (the value of k) for
which the maximum accuracy was obtained. In the latter case we examined both
the value of k£ beyond which the accuracy remains stable and the fluctuations in
accuracy while increasing k. For most domains the optimal value of k appeared to
be much less than 200. On the other hand, for the domains where the optimal &
was greater (australian, census-income and nursery) the loss in accuracy related
to this setting was insignificant: it remained within the range of 0,15%. Moreover,



Table 2. Single object test time (in seconds) for RIONA, RIA and ONN

Domain trrona|trra |[tonn|Domain |trrona|trra |toNN
australian 0,026 |0,087|0,022 |breast 0,016 |0,021|0,014
breast-wis 0,032 |0,063|0,017 |bupa-liver| 0,009 |0,016|0,006
census 0,572 |> 5,0|0,568 [chess 0,130 (0,891(0,126
german 0,047 |0,188 0,042 |glass 0,010 |0,012 0,006
heart 0,019 |0,024|0,014 |iris 0,003 | 0,006 |0,003
letter 0,236 |> 5,0|0,224 |lymph 0,017 (0,019(0,014
mushroom 0,223 |> 5,0(0,219 |nursery 0,169 (> 5,0(0,167
pendigits 0,133 |> 5,0[0,130 |pima 0,013 0,055 |0,010
primary-tumor| 0,018 |0,028]|0,018 [satimage | 0,174 |> 5,0(0,169
segment 0,046 |0,557|0,042 [shuttle 0,378 |>5,0(0,376
solar-flare 0,025 [0,082|0,023 |splice 0,405 |[3,1940,393
wine 0,010 |0,891|0,007 |yeast 0,017 (0,104 (0,014

the accuracy became stable for values of k& also much lower than 200. Therefore
we could conclude that the setting k,,,, = 200 preserved good time complexity
properties and did not change the results significantly for tested data sets.

For data sets split originally into a training and a testing set (splice, satim-
age, pendigits, letter, census-income, shuttle) we performed the experiments to
compare the accuracy for two cases: when the value k£ was estimated either from
a training set or from a test set (the optimal k). Experiments showed that for
pendigits accuracy obtained by RIONA differs by about half percent from the
accuracy with an optimal number k£ and for the other domains the difference
remains in the range of 0.2%. It means that the used algorithm finds almost
optimal number k in terms of obtained accuracy.

Analogical experiments were done for the neighbourhood B(ist, R) and we
observed that after the value R exceeded a constant R,.. (where R,,.. was
relatively small in comparison to the maximal possible value of R) the accuracy
either became worse or did not improve significantly. This suggests the similar
conclusion, i.e. the best accuracy is obtained for a small radius.

5.2 Time Complexity of RIONA

First, the learning algorithm performs two phases for each training object. In the
first phase it selects ky,q. nearest objects among n = |trnSet| objects. On average
it is done in the linear time. In the second phase the algorithm sorts all kj,qz
selected objects and checks consistency among them. It takes O(k2,,,). Finally,
for the whole training set the algorithm computes leave-one-out accuracy for each
1 < k < kpas, which takes O(nkpq,). Summing up, the average complexity of
the learning algorithm is O(n(n + k2,,,)). In practice the component O(n?) is
dominant.

Testing is analogical to learning. The classification algorithm finds k,,; near-
est examples and then checks consistency among them. Since kopt < Kz, the

complexity is O(n + k2,,,) for a single test object and the total average com-



plexity of the testing algorithm is O(m(n + k2,,,)) where m is a number of test
objects. In Table 2 one can see that for all the presented data sets the average
time of classification for a single object is less than 0.6 s. Moreover, for larger
data sets it is comparable with a single object test time in the algorithm ONN
and is much shorter than a single test object time in the algorithm RIA.

In case when the number of test objects is approximately equal to the number
of training objects, taking into account both the learning and the classification
phase, the average time complexity of RIONA is in practise O(n?), while the
average time complexity of RIA is O(n?) what is quite a significant acceleration.

6 Conclusions and Future Research

The research reported in the paper attempts to bring together the features of
rule induction and instance-based learning in a single algorithm. As the empir-
ical results indicate the presented algorithm obtained the accuracy comparable
to the well-known systems such as: 3-NN, C5.0, DeEPs and DeEPsNN. The
experiments show that the choice of a metric is very important for classification
accuracy of the algorithm. The combination of the normalised Manhattan metric
for numerical attributes and SVDM metric for symbolic attributes proved to be
very successful. It did not require discretisation for numerical attributes.

We have compared two types of a neighbourhood: the k-nearest neighbours
S(tst, k) and the ball B(tst, R). The former type of a neighbourhood gave gener-
ally better results, although the latter seemed more natural. This may suggest
that the topology of the space induced by the used metric is rather complex.

We found that the appropriate choice of the neighbourhood size is also an
important factor for classification accuracy. It appeared that for all domain prob-
lems the optimal accuracy is obtained for a small neighbourhood (a small number
of nearest neighbours k& in S or a small radius R in B neighbourhood). This leads
us to the conclusion that generally it is enough to consider only a small neigh-
bourhood instead of the maximal neighbourhood related to the whole training
set. This is interesting from the classification perspective, because it suggests
that usually only a small number of training examples is relevant for accurate
classification. It also illustrates the empirical fact that while using rule-based
classifiers one can obtain better results by rejecting some rules instead of using
all minimal rules like the algorithm RIA does. We propose an approach to use
only the rules that are built on the basis of a neighbourhood of the test case.

The fact mentioned above is also the key idea that allowed us to make the
original algorithm RIA efficient without loss in classification accuracy. In prac-
tice the complexity of learning and classification is only squarely and linearly
dependent on the size of a learning sample respectively. Although a great effort
was put into accelerating the algorithm, we think that further acceleration is
possible, for instance by more specialised data structures and an approximate
choice of nearest examples (see e.g. [10]).

The facts that RIONA and ONN algorithms have similar classification accu-
racy and the fraction of objects eliminated by the consistency checking operation



is very small indicate that this operation has rather small influence on the accu-
racy of the algorithm. It suggests that the k-NN component remains a dominant
element of RIONA and shows that either the construction of local rules should be
more general or the operation of consistency checking should be more restrictive.

In RIONA the selection of the optimal value of k is performed globally. One
possible extension of this approach is to apply a local method to searching for
the appropriate value of k (see e.g. [12]).

The interesting topic is the dependence of the average number of training
examples on the distance to a test case. Empirically it was noticed that the
dependence was close to linear, what seemed surprising to us.
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