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Abstrat. The artile desribes a method ombining two widely-used

empirial approahes: rule indution and instane-based learning. In our

algorithm (RIONA) deision is predited not on the basis of the whole

support set of all rules mathing a test ase, but the support set restrited

to a neighbourhood of a test ase. The size of the optimal neighbourhood

is automatially indued during the learning phase. The empirial study

shows the interesting fat that it is enough to onsider a small neighbour-

hood to preserve lassi�ation auray. The ombination of k-NN and a

rule-based algorithm results in a signi�ant aeleration of the algorithm

using all minimal rules. We study the signi�ane of di�erent ompo-

nents of the presented method and ompare its auray to well-known

methods.

1 Introdution

Many tehniques of indutive onept learning from its instanes have been de-

veloped so far [10℄. Empirial omparison of these approahes shows that eah

performs well on some, but not all, domains. A great progress has been made

in multistrategy learning to ombine these approahes in order to onstrut a

lassi�er that has properties of two or more tehniques. Although the problem of

indutive generalisation has no general solution (what is known as the onserva-

tion law for generalisation performane [11℄), the goal is to inrease the average

auray for the real-world domains at the expense of auray for the domains

that never our in pratie.

We present a multi-strategy learning approah ombining the rule indution

[9℄ and the instane-based tehniques [3℄, [5℄. There has been a lot of work done

in this area [4℄, [6℄, [7℄. Our algorithm onsiders all minimal deision rules, i.e.

the most general rules onsistent with training examples. It simulates lassi-

�ation based on the most frequent lass in the support set of minimal rules

overing a test objet. The main idea is that the support set is restrited to the

neighbourhood of a test example. The neighbourhood of a test example onsists

of either the objets within some distane from a test example or a number of

objets losest to a test example (like in k-NN method). The appropriate size of



a neighbourhood to be taken for lassi�ation is automatially indued during

the proess of learning. The ruial empirial observation is that taking a neigh-

bourhood that is muh smaller than the whole training set preserves or even

improves auray. It enables both to indue the optimal neighbourhood during

the learning phase and to lassify objets e�etively.

The paper is organised as follows. In Setion 2 the paper will be plaed in

the ontext of related work. Setion 3 outlines the main features of two teh-

niques that are most relevant to this work, i.e. rule indution and instane-based

learning. Our algorithm, ombining these approahes, is presented in Setion 4.

Setion 5 provides experimental results evaluating the auray and the speed

of the presented system. Setion 6 onludes this paper with a brief summary

and disussion of possible diretions for future researh.

2 Related Work

In reent literature there has been a number of works ombining instane-based

and deision rule indution methods.

RISE system [4℄ is based on uni�ation of these two methods. The di�er-

ene between RISE system and our approah is that RISE selets the lass for

a test objet on the basis of the losest rule. First, RISE generates deision

rules. At the beginning instanes are treated as maximally spei� rules and

these rules are then gradually generalised as long as the global leave-one-out

auray is improving. An objet is lassi�ed aording to the losest rule. The

distane between an objet and a rule is measured with the metri ombining

the normalised Manhattan metri for numerial attributes and the Simple Value

Di�erene Metri (SVDM) for symboli attributes.

An approah more similar to our method is presented in DeEPs and DeEP-

sNN [7℄. The �rst di�erene is that DeEPs uses a di�erent form of rule onditions

and di�erent riteria for rule seletion. DeEPs lassi�es objets on the basis of all

rules that have high frequeny-hanging rate (a measure similar to on�dene).

While lassifying a test objet the system omputes the support set using all

rules with high frequeny-hanging rate and selets the most frequent lass in

the support set. In our system the omputed support set is limited to a er-

tain neighbourhood of a test objet. DeEPsNN ombines 3-NN and DeEPs : if a

ertain �xed neighbourhood of a test objet overs at least one training objet,

3-NN is applied, otherwise DeEPs is used.

In [1℄ an algorithm with the lazy rule indution approah is presented. It om-

putes the support set of all minimal rules overing a test objet in the following

way. For eah training objet the algorithm onstruts the loal rule ontaining

the ommon onditions of the test and the training objets and heks whether

the training objets supporting the loal rule are in the same deision lass.

Finally, the algorithm selets the lass most frequent in the support set. This

algorithm treats all attributes as symboli. We generalised this approah for

symboli attributes and extended it to numerial attributes.



A detailed study of k-NN algorithms is presented in [12℄. In partiular, that

paper desribes researh on seletion of the optimal value of k. The experiments

presented in that paper showed that the auray of k-NN is insensitive to the

exat hoie of k when the optimal k is large enough. Di�erent methods for

adapting the value of k loally within di�erent parts of the input spae have

also been investigated. The loal seletion of k improves auray for data that

ontain noise or irrelevant features.

Our approah ombines the idea used in [1℄ (extended as desribed above)

with k-NN method in suh a way that it onsiders loal rules only for the training

examples from the k-nearest neighbourhood of a test example. The distane is

measured with the metri used in RISE [4℄. Moreover, the algorithm searhes for

the global optimal value k during the learning phase. This ombination improves

the auray of a k-NN lassi�er with a �xed value k and helps to reah the

auray omparable to a rule-based lassi�er in ase when the auray of the

k-NN method is low.

3 Preliminaries and De�nitions

We assume that a training set, denoted in the paper trnSet, onsists of a �nite

set of examples. Eah example is desribed by a �nite set of attributes (features)

A [ fdg, i.e. a : trnSet! V

a

for a 2 A [ fdg, where d =2 A denotes the deision

attribute and V

a

is a value domain of the attribute a. Two groups of attributes

are onsidered: symboli and numerial (real-valued). We denote by Class(v) a

subset of training examples with a lass v. We also assume that V

d

= f1; :::; jV

d

jg.

3.1 Minimal and Lazy Rule Indution

Rule indution algorithms indue deision rules from a training set. A deision

rule onsists of a onjuntion of attribute onditions and a onsequent. The om-

monly used onditions are equations attribute = value for symboli attributes

and interval inlusion for numerial attributes, e.g. IF (a

1

= 2^a

3

2 [3; 7℄^a

6

=

5) THEN (d = 1).

Many systems ompute a set of suh deision rules and then use it in the

lassi�ation proess. Another approah is the lazy onept indution that does

not require alulation of deision rules before lassi�ation of new objets. An

example of suh an algorithm is presented in [1℄. It generates only deision rules

relevant for a new test objet and then lassi�es it like algorithms generating

rules in advane. Below we briey desribe this algorithm generalised for sym-

boli attributes and extended to the ase of numerial attributes.

De�nition 1. For objets tst, trn we denote by rule

tst

(trn) the loal rule with

deision d(trn) and the following onditions 

i

for eah attribute a

i

:



i

=

�

a

i

2 [min(a

i

(tst); a

i

(trn));max(a

i

(tst); a

i

(trn))℄ when a

i

is numerial

a

i

2 B (a

i

(tst); Æ(a

i

(tst); a

i

(trn))) when a

i

is symboli

where B(; R) is a ball entered in  with radius R and Æ is a measure of attribute

value similarity.



The onditions in De�nition 1 are hosen so that both the training and the

test example satisfy the rule and the onditions are maximally spei�. The on-

dition used in [1℄ is a partiular ase of the above ondition de�ned for symboli

attributes when Hamming metri is used (Æ(x; y) = 1 if x 6= y and 0 otherwise).

Below we present the lazy rule indution algorithm (RIA). The funtion isCon-

sistent(r,verifySet) heks whether a loal rule r is onsistent with a verifySet.

Algorithm 1 RIA(tst)

1.for eah lass v 2 V

d

2. supp(v) = ;

3. for eah trn 2 trnSet with d(trn) = v

4. if isConsistent(rule

tst

(trn); trnSet)

5. then supp(v) = supp(v) [ ftrng

6.RIA = argmax

v2V

d

jsupp(v)j

jClass(v)j

It was shown in [1℄ that RIA is equivalent to the algorithm based on alu-

lating all rules that are maximally general and onsistent with the training set.

The time omplexity of RIA for a single test objet is O(n

2

), where n = jtrnSetj.

One of the motivations behind our work was to redue this omplexity.

3.2 Instane-Based Learning

A ommonly used instane-based learning method is the k nearest neighbours

algorithm (k-NN ). It is based on the onept of similarity. Given a number of

training examples the lass for a test ase is inferred from the k nearest examples

in the sense of a similarity measure. Di�erent measures are used for numerial

and symboli domains. For domains with both types of attributes a ombination

of these approahes may be used:

%(x; y) =

X

a2A

Æ

a

(x; y)

where x; y are objets and Æ

a

(�; �) is a measure of attribute value similarity. In

the paper we used the normalised Manhattan distane for numerial attributes

and SVDM (see e.g. [4℄) for symboli attributes:

Æ

a

(x; y) =

(

�

�

�

a(x)�a(y)

a

max

�a

min

�

�

�

for a - numerial

P

v2V

d

jP (Class(v)ja(x)) � P (Class(v)ja(y))j for a - symboli

4 Rule Indution with Optimal Neighbourhood

Algorithm (RIONA)

Instead of onsidering all training examples in building a support set like in

RIA, we an limit it to a ertain neighbourhood of a test example. The intuition

behind it is that training examples far from a test objet are less relevant for

lassi�ation than loser examples. We onsider two lasses of a neighbourhood:



De�nition 2. For eah test example tst we de�ne S(tst; k) as the set of k train-

ing examples that are most similar to tst aording to a similarity measure %.

De�nition 3. For eah test example tst we de�ne B(tst; R) as the set of train-

ing examples trn suh that %(tst; trn) � R.

The former neighbourhood is similar to the one used in the k-NN algorithm.

From now on, we use in the paper S(tst; k) neighbourhood, although we studied

both lasses of neighbourhoods in parallel and the empirial di�erene between

them will be disussed in Setion 5.

Now we are ready to present an approah to indution that is a kind of

ombination of ase-based learning (see Setion 3.2) and lazy minimal rule in-

dution (see Setion 3.1). The main idea is that we apply the following strategy

for onit resolving:

NormNStrength(tst; v) =

�

�

�

�

�

S

r2MinRules

v

tst

supp(r) \ S(tst; k)

�

�

�

�

�

jClass(v)j

(1)

where v denotes the v-th lass, tst is a test example, supp(r) is the set of training

examples mathing a rule r,MinRules

v

tst

is the set of all rules maximally general

and onsistent with the training set, whose premise is satis�ed by tst and the

onsequent is the lass v.

In the lassi�ation proess we assume that the parameter k of the neigh-

bourhood is �xed. The proper size of the neighbourhood is found in the learning

phase (see Setion 4.1).

In order to alulate the measure (1) we used a modi�ed version of Algorithm

1. First, in the line 3 of the algorithm only the examples trn 2 S(tst; k) should

be onsidered. Furthermore, it is not neessary to onsider all the examples from

the training set to hek the onsisteny of the rule

tst

(trn). Please note that from

De�nition 1 we have that:

Proposition 1. If trn

0

satis�es rule

tst

(trn) then %(tst; trn

0

) � %(tst; trn):

Hene, the examples that are distaned from the test example tst more than the

training example trn an not ause inonsisteny of rule

tst

(trn). The resulting

lassi�ation algorithm is presented below. It predits the most ommon lass

among the training examples that are overed by the rules satis�ed by a test

example and that are in the spei�ed neighbourhood.

Algorithm 2 RIONA(tst)

neighbourSet = S(tst; k)

for eah lass v 2 V

d

supp(v) = ;

for eah trn 2 neighbourSet with d(trn) = v

if isConsistent(rule

tst

(trn); neighbourSet)

then supp(v) = supp(v) [ ftrng

RIONA = argmax

v2V

d

jsupp(v)j

jClass(v)j



For the maximal neighbourhood the algorithm RIONA works exatly as RIA

algorithm. On the other hand, taking a neighbourhood as a single nearest train-

ing example we obtain the nearest neighbour algorithm. In this sense RIONA

belongs between the nearest neighbour and the rule indution lassi�er.

4.1 Seletion of Optimal Neighbourhood

During the experiments (see Setion 5) we found that the performane of the

algorithm an signi�antly depend on the size of a hosen neighbourhood and a

di�erent size is appropriate for di�erent problem domains. In fat, it is possible

to estimate the optimal value k for S(tst; k) neighbourhood. It would be similar

if the optimal value k for k-NN method were estimated. The idea is that one

an use the leave-one-out method on a training set to estimate the auray of

the lassi�er for di�erent values of k (1 � k � k

max

) and then hoose the value

k for whih the estimation is the greatest. Applying it diretly would require

repeating the leave-one-out estimation k

max

times. However, we emulated this

proess in a time omparable to the single leave-one-out test for k equal to the

maximal possible value k = k

max

. This idea is realised in Algorithm 3.

Algorithm 3 �ndOptimalK(k

max

)

for eah trn 2 trnSet A

trn

= getClassi�ationVetor(trn; k

max

)

return argmax

k

jftrn 2 trnSet : d(trn) = A

trn

[k℄gj

funtion getClassi�ationVetor(tst; k

max

)

NN = vetor of k

max

training examples NN

1

; : : : ; NN

k

max

nearest to tst sorted aording to a distane %(tst; �)

for eah lass v 2 V

d

deStrength[v℄ = 0

urrentDe= the most frequent lass in trnSet

for k = 1; 2; :::; k

max

if isConsistent(rule

tst

(NN

k

); NN) then

v = d(NN

k

)

deStrength[v℄ = deStrength[v℄ + 1

if

deStrength[v℄

jClass(v)j

>

deStrength[urrentDe℄

jClass(urrentDe)j

then urrentDe = v

D[k℄ = urrentDe

return D

Ignoring the onsisteny heking in the funtion getClassifiationV etor(�; �)

we obtain the k nearest neighbours algorithm with seletion of the optimal k

(ONN ). An experimental omparison of RIONA and ONN is presented in the

next setion.

5 Experimental Study

Table 1 presents experimental results for 24 data sets from UCI repository [2℄.

For data that are split into a training and a testing set the experiments were per-

formed for joined data. The auray for C5.0, DeEPs and DeEPsNN are taken



Table 1. The average optimal k, the average auray (%) and the standard deviation

for RIONA with the optimal k-best neighbourhood and the average auray (%) for

the other systems: RIA, ONN, 3-NN, RIONA with the optimal B(tst;R) neighbour-

hood, C5.0, DeEPs and DeEPsNN. The supersripts denote the on�dene levels: 5 is

99.9%, 4 is 99%, 3 is 97.5%, 2 is 95%, 1 is 90%, and 0 is below 90%. Plus indiates that

the average auray of an algorithm is higher than in RIONA and minus otherwise

Domain (size, attr, lasses) k

opt

RIONA RIA ONN 3-NN RIONA(B) C5.0 DeEPs DeEPsNN

australian (690, 14, 2) 41,2 86,1�0,4 65,0

�5

85,7

�2

85,0

�4

85,7

�2

85,9 84,9 88,4

breast (277, 9, 2) 77,9 73,4�1,0 73,9

0

73,0

0

68,6

�5

73,6

0

- - -

breast-wis (683, 9, 2) 3,0 97,0�0,3 89,7

�5

97,0

0

97,1

0

96,1

�5

95,4 96,4 96,3

bupa-liver (345, 6, 2) 40,6 66,6�1,7 63,0

�5

64,1

�4

66,0

0

66,4

0

- - -

ensus (45222, 16, 2) 42,1 83,8�0,0 - 84,1

+5

82,0

�5

83,9

+5

85,8 85,9 85,9

hess (3196, 36, 2) 11,9 98,0�0,1 - 96,9

�5

97,0

�5

97,5

�5

99,4 97,8 97,8

german (1000, 20, 2) 29,2 74,5�0,5 70,1

�5

74,1

�1

72,1

�5

73,1

�4

71,3 74,4 74,4

glass (214, 9, 6) 2,1 70,7�1,9 39,5

�5

70,7

0

71,9

+1

63,9

�5

70,0 58,5 68,0

heart (270, 13, 2) 19,4 83,2�1,0 62,8

�5

83,1

0

81,3

�5

83,4

0

77,1 81,1 81,1

iris (150, 4, 3) 37,1 94,6�0,6 90,5

�5

94,4

0

95,3

+4

94,7

0

94,0 96,0 96,0

letter (20000, 16, 26) 3,8 95,8�0,1 - 95,8

0

95,8

0

94,0

�5

88,1 93,6 95,5

lymph (148, 18, 4) 1,4 85,4�1,3 76,4

�5

86,3

+1

84,4

�2

81,4

�5

74,9 75,4 84,1

mushroom (8124, 22, 2) 1,0 100,0�0,0 - 100,0

0

100,0

0

100,0

0

100,0 100,0 100,0

nursery (12960, 8, 5) 43,3 99,3�0,0 - 99,3

0

98,1

�5

99,2

�4

97,1 99,0 99,0

pendigits (10992, 16, 10) 1,2 99,4�0,0 - 99,4

0

99,4

0

97,4

�5

96,7 98,2 98,8

pima (768, 8, 2) 34,3 74,7�0,9 65,2

�5

74,4

0

72,2

�5

72,7

�5

73,0 76,8 73,2

primary (336, 15, 21) 75,9 31,7�0,8 32,4

+1

40,3

+5

33,5

+4

31,6

0

- - -

satimage (6435, 36, 6) 3,7 91,3�0,1 - 91,3

0

91,4

+2

87,7

�5

86,7 88,5 90,8

segment (2310, 19, 7) 1,7 97,4�0,1 45,3

�5

97,5

+2

97,3

�2

92,1

�5

97,3 95,0 96,6

shuttle (58000, 9, 7) 1,3 99,9�0,0 - 99,9

0

99,9

0

99,8

�5

99,6 97,0 99,7

solar-are (1066, 10, 8) 70,9 81,2�0,3 81,4

+1

82,7

+5

78,1

�5

81,7

+5

82,7 83,5 83,5

splie (3186, 60, 3) 17,3 93,9�0,2 - 93,9

0

94,0

0

94,6

+5

94,2 69,7 69,7

wine (178, 13, 3) 10,1 97,2�0,6 40,1

�5

97,2

0

96,9

0

94,5

�5

93,3 95,6 95,5

yeast (1484, 8, 10) 23,0 59,8�0,6 45,9

�5

58,1

�5

54,9

�5

59,1

�4

56,1 59,8 54,6

Total Average 88,7�0,4 64,3 88,7 87,8 87,3 86,6 86,1 87,1

from the paper [8℄. The remaining algorithms were tested on a 800MHz Pentiu-

mIII PC, with 512M bytes of RAM. The algorithm RIA is time expensive so it

was tested only for smaller data sets. The results were obtained by performing

10-fold ross-validation 10 times for eah data set. All implemented algorithms:

RIONA, RIA, ONN, 3-NN and RIONA(B) were tested with exatly the same

folds and the signi�ane of di�erene between algorithms was estimated using

one-tailed paired t test.

1

SVDM metri and the optimal neighbourhood were

omputed from a training set independently for eah run in a ross-validation

test.

1

The result of a single ross-validation test was the auray averaged over all 10

folds and the �nal average auray and the on�dene level for di�erene between

RIONA and the orresponding algorithm were omputed from 10 repeats of the

ross-validation test (for ensus-inome and shuttle only 4 repeats).



The total average auray was omputed over all data sets exept breast,

bupa-liver and primary (for RIA it was omputed only over the data sets that

are given the auray).

For all data sets the presented results were obtained for the metri desribed

in Setion 3.2 and NormNStrength measure for onit resolving (see Setion

4). Although during the preliminary experiments we tried other types of a met-

ri, no one appeared better then the presented one in terms of auray on a

range of problem domains. We also tried to omit normalisation fator in the

measure NormNStrength what gave almost idential results. The optimal size

of a neighbourhood was searhed during the proess of learning on the basis of

the training examples. From the time omplexity perspetive it was important

to limit searhing for the optimal k to a small �xed range of possible values from

1 to k

max

in suh a way that sorting and onsisteny heking of k

max

nearest

neighbours were eÆient. Sine the values k

max

optimal in this sense are the

values lose to the square root of the training set size (see Setion 5.2) we set

k

max

= 200 (it is lose to the square root of the size of the largest domains). In

the next subsetion we examine the signi�ane of this setting.

In Table 1 one an see that signi�ant di�erenes in auray between RIONA

and ONN (k-NN with seletion of the optimal neighbourhood) ourred mostly

for smaller data sets (breast, bupa-liver, hess, primary, solar-are and yeast).

The only di�erene between RIONA and ONN is the operation of onsisteny

heking. In order to explain the similarity of results we heked what part of the

k-neighbourhood for the optimal k is eliminated by the operation of onsisteny-

heking and found that only for the domains breast, primary and solar-are

the fration of eliminated nearest neighbours was signi�ant. For other domains

the number of onsistent objets from the optimal neighbourhood in RIONA

algorithm is lose to the number of all objets from the optimal neighbourhood

of k-NN algorithm. Therefore the di�erenes in lassi�ation auray are small.

These observations suggest that the operation of onsisteny heking in RIONA

is not very signi�ant and it should be onsidered to be more restritive.

On the other hand, the auray of RIONA and ONN is omparable or better

than well-known lassi�ers, in partiular, their auray is generally better than

the auray of RIA and 3-NN. It suggests the onlusion that RIONA and ONN

may replae suessfully both the rule-based algorithm using all minimal rules

and a k-NN with a �xed k. It also proves that using a properly seleted subset

of rules in rule-based systems gives better results than using all minimal rules.

The range of tested data sets indiates that the presented algorithms work well

for domains with both numerial and symboli attributes. In partiular, it works

well for numerial attributes without preproessing.

5.1 Further Study

In this setion we desribe more experiments and onlusions that an help us

to understand important aspets of RIONA.

First, we performed the experiments that helped us to ompare two types

of a neighbourhood: thr radial B(tst; R) and the k-best S(tst; k). For eah data



Fig. 1. Auray for german Fig. 2. Auray for ensus-inome

set we estimated the optimal value of the radius R and the optimal value of

k from a training set and ompared lassi�ation auray for both types of a

neighbourhood. Looking at the third and the seventh olumns in Table 1 one

an see that the auray of the algorithm for the neighbourhood B(tst; R) is

signi�antly worse than S(tst; k) on 14 domains (with the on�dene level -

4, -5) and signi�antly better on 3 domains (with the on�dene level +4, +5).

Therefore in further experiments we foused our attention on the neighbourhood

S(tst; k).

The setting k

max

= 200 preserved the eÆieny of RIONA but the interesting

question was how signi�antly this setting inuened the lassi�ation results.

Please note that the maximal possible value k is just the size of a training set.

In order to answer this question the following experiment was performed: for the

smaller sets (less than 4000 objets) the lassi�ation auray was measured

for all possible values of k and for the greater sets the maximal value k was set

to k

max

= 500 (for the set nursery we made the exeption k

max

= 1000). The

lassi�ation auray was measured for the leave-one-out method applied to

the whole sets. Figures 1, 2 present the dependene of lassi�ation auray on

the value of k for exemplary domains.

For most data sets we observed that while inreasing k beyond a ertain small

value the lassi�ation auray is falling down (see Figure 1). In partiular,

while omparing the third and the fourth olumn in Table 1, one an see that

for most data sets the results for the total neighbourhood are signi�antly worse

than the results for the neighbourhood found by the algorithm RIONA. For the

remaining data sets (breast, ensus-inome, nursery, primary, solar-are) the

auray beomes stable beyond a ertain value k (see Figure 2).

For the former group we examined the neighbourhood size (the value of k) for

whih the maximum auray was obtained. In the latter ase we examined both

the value of k beyond whih the auray remains stable and the utuations in

auray while inreasing k. For most domains the optimal value of k appeared to

be muh less than 200. On the other hand, for the domains where the optimal k

was greater (australian, ensus-inome and nursery) the loss in auray related

to this setting was insigni�ant: it remained within the range of 0,15%. Moreover,



Table 2. Single objet test time (in seonds) for RIONA, RIA and ONN

Domain t

RIONA

t

RIA

t

ONN

Domain t

RIONA

t

RIA

t

ONN

australian 0,026 0,087 0,022 breast 0,016 0,021 0,014

breast-wis 0,032 0,063 0,017 bupa-liver 0,009 0,016 0,006

ensus 0,572 > 5; 0 0,568 hess 0,130 0,891 0,126

german 0,047 0,188 0,042 glass 0,010 0,012 0,006

heart 0,019 0,024 0,014 iris 0,003 0,006 0,003

letter 0,236 > 5; 0 0,224 lymph 0,017 0,019 0,014

mushroom 0,223 > 5; 0 0,219 nursery 0,169 > 5; 0 0,167

pendigits 0,133 > 5; 0 0,130 pima 0,013 0,055 0,010

primary-tumor 0,018 0,028 0,018 satimage 0,174 > 5; 0 0,169

segment 0,046 0,557 0,042 shuttle 0,378 > 5; 0 0,376

solar-are 0,025 0,082 0,023 splie 0,405 3,194 0,393

wine 0,010 0,891 0,007 yeast 0,017 0,104 0,014

the auray beame stable for values of k also muh lower than 200. Therefore

we ould onlude that the setting k

max

= 200 preserved good time omplexity

properties and did not hange the results signi�antly for tested data sets.

For data sets split originally into a training and a testing set (splie, satim-

age, pendigits, letter, ensus-inome, shuttle) we performed the experiments to

ompare the auray for two ases: when the value k was estimated either from

a training set or from a test set (the optimal k). Experiments showed that for

pendigits auray obtained by RIONA di�ers by about half perent from the

auray with an optimal number k and for the other domains the di�erene

remains in the range of 0.2%. It means that the used algorithm �nds almost

optimal number k in terms of obtained auray.

Analogial experiments were done for the neighbourhood B(tst; R) and we

observed that after the value R exeeded a onstant R

max

(where R

max

was

relatively small in omparison to the maximal possible value of R) the auray

either beame worse or did not improve signi�antly. This suggests the similar

onlusion, i.e. the best auray is obtained for a small radius.

5.2 Time Complexity of RIONA

First, the learning algorithm performs two phases for eah training objet. In the

�rst phase it selets k

max

nearest objets among n = jtrnSetj objets. On average

it is done in the linear time. In the seond phase the algorithm sorts all k

max

seleted objets and heks onsisteny among them. It takes O(k

2

max

). Finally,

for the whole training set the algorithm omputes leave-one-out auray for eah

1 � k � k

max

, whih takes O(nk

max

). Summing up, the average omplexity of

the learning algorithm is O(n(n + k

2

max

)). In pratie the omponent O(n

2

) is

dominant.

Testing is analogial to learning. The lassi�ation algorithm �nds k

opt

near-

est examples and then heks onsisteny among them. Sine k

opt

� k

max

, the

omplexity is O(n + k

2

max

) for a single test objet and the total average om-



plexity of the testing algorithm is O(m(n+ k

2

max

)) where m is a number of test

objets. In Table 2 one an see that for all the presented data sets the average

time of lassi�ation for a single objet is less than 0.6 s. Moreover, for larger

data sets it is omparable with a single objet test time in the algorithm ONN

and is muh shorter than a single test objet time in the algorithm RIA.

In ase when the number of test objets is approximately equal to the number

of training objets, taking into aount both the learning and the lassi�ation

phase, the average time omplexity of RIONA is in pratise O(n

2

), while the

average time omplexity of RIA is O(n

3

) what is quite a signi�ant aeleration.

6 Conlusions and Future Researh

The researh reported in the paper attempts to bring together the features of

rule indution and instane-based learning in a single algorithm. As the empir-

ial results indiate the presented algorithm obtained the auray omparable

to the well-known systems suh as: 3-NN, C5.0, DeEPs and DeEPsNN. The

experiments show that the hoie of a metri is very important for lassi�ation

auray of the algorithm. The ombination of the normalised Manhattan metri

for numerial attributes and SVDM metri for symboli attributes proved to be

very suessful. It did not require disretisation for numerial attributes.

We have ompared two types of a neighbourhood: the k-nearest neighbours

S(tst; k) and the ball B(tst; R). The former type of a neighbourhood gave gener-

ally better results, although the latter seemed more natural. This may suggest

that the topology of the spae indued by the used metri is rather omplex.

We found that the appropriate hoie of the neighbourhood size is also an

important fator for lassi�ation auray. It appeared that for all domain prob-

lems the optimal auray is obtained for a small neighbourhood (a small number

of nearest neighbours k in S or a small radius R in B neighbourhood). This leads

us to the onlusion that generally it is enough to onsider only a small neigh-

bourhood instead of the maximal neighbourhood related to the whole training

set. This is interesting from the lassi�ation perspetive, beause it suggests

that usually only a small number of training examples is relevant for aurate

lassi�ation. It also illustrates the empirial fat that while using rule-based

lassi�ers one an obtain better results by rejeting some rules instead of using

all minimal rules like the algorithm RIA does. We propose an approah to use

only the rules that are built on the basis of a neighbourhood of the test ase.

The fat mentioned above is also the key idea that allowed us to make the

original algorithm RIA eÆient without loss in lassi�ation auray. In pra-

tie the omplexity of learning and lassi�ation is only squarely and linearly

dependent on the size of a learning sample respetively. Although a great e�ort

was put into aelerating the algorithm, we think that further aeleration is

possible, for instane by more speialised data strutures and an approximate

hoie of nearest examples (see e.g. [10℄).

The fats that RIONA and ONN algorithms have similar lassi�ation au-

ray and the fration of objets eliminated by the onsisteny heking operation



is very small indiate that this operation has rather small inuene on the au-

ray of the algorithm. It suggests that the k-NN omponent remains a dominant

element of RIONA and shows that either the onstrution of loal rules should be

more general or the operation of onsisteny heking should be more restritive.

In RIONA the seletion of the optimal value of k is performed globally. One

possible extension of this approah is to apply a loal method to searhing for

the appropriate value of k (see e.g. [12℄).

The interesting topi is the dependene of the average number of training

examples on the distane to a test ase. Empirially it was notied that the

dependene was lose to linear, what seemed surprising to us.
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