
Multimodal Classification: Case Studies

Andrzej Skowron1, Hui Wang2, Arkadiusz Wojna3, and Jan Bazan4

1 Institute of Mathematics
Warsaw University

Banacha 2, 02-097 Warsaw, Poland
skowron@mimuw.edu.pl

2 School of Computing and Mathematics
University of Ulster at Jordanstown

Northern Ireland, BT37 0QB, United Kingdom
h.wang@ulst.ac.uk

3 Institute of Informatics
Warsaw University

Banacha 2, 02-097 Warsaw, Poland
wojna@mimuw.edu.pl

4 Institute of Mathematics
University of Rzeszów

Rejtana 16A, 35-310 Rzeszów, Poland
bazan@univ.rzeszow.pl

Abstract. Data models that are induced in classifier construction of-
ten consist of multiple parts, each of which explains part of the data.
Classification methods for such multi-part models are called multimodal
classification methods. The model parts may overlap or have insufficient
coverage. How to deal best with the problems of overlapping and in-
sufficient coverage? In this paper we propose a hierarchical or layered
approach to this problem. Rather than seeking a single model, we con-
sider a series of models under gradually relaxing conditions, which form a
hierarchical structure. To demonstrate the effectiveness of this approach
we consider two classifiers that construct multi-part models – one based
on the so-called lattice machine and the other one based on rough set
rule induction, and we design hierarchical versions of the two classifiers.
The two hierarchical classifiers are compared through experiments with
their non-hierarchical counterparts, and also with a method that com-
bines k-nearest neighbors classifier with rough set rule induction as a
benchmark. The results of the experiments show that this hierarchical
approach leads to improved multimodal classifiers.

Keywords: hierarchical classification, multimodal classifier, lattice ma-
chine, rough sets, rule induction, k-nearest neighbors.

1 Introduction

Many machine learning methods are based on generation of models with sepa-
rate model parts, each of which explains part of a given dataset. Examples in-
clude decision tree induction [20], rule induction [7] and the lattice machine [33].

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets V, LNCS 4100, pp. 224–239, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Multimodal Classification: Case Studies 225

A decision tree consists of many branches, and each branch explains certain
number of data examples. A rule induction algorithm generates a set of rules as
a model of data, and each rule explains some data examples. The lattice machine
generates a set of hypertuples as a model of data, and each hypertuple covers
a region in the data space. We call this type of learning multimodal learning or
multimodal classification.

In contrast some machine learning paradigms do not construct models with
separate parts. Examples include neural networks, support vector machines and
Bayesian networks.

In the multimodal learning paradigm the model parts may overlap or may
have insufficient coverage of a data space, i.e., the model does not cover the
whole data space. In a decision tree the branches do not overlap and cover the
whole data space. In the case of rule induction, the rules may overlap and may
not cover the whole data space. In the case of lattice machine the hypertuples
overlap and the covering of the whole data space is not guaranteed too.

Overlapping makes it possible to label a data example by more than one class
whereas insufficient coverage makes it possible that a data example is not labeled
at all. How to deal best with the overlapping and insufficient coverage issues?

In this paper we consider a hierarchical strategy to answer this question. Most
machine learning algorithms generate different models from data under different
conditions or parameters, and they advocate some conditions for optimal models
or let a user specify the condition for optimal models. Instead of trying to find the
‘optimal’ model we can consider a series of models constructed under different
conditions. These models form a hierarchy, or a layered structure, where the
bottom layer corresponds to a model with the strictest condition and the top
layer corresponds to the one with the most relaxed condition. The models in
different hierarchy layers correspond to different levels of pattern generalization.

To demonstrate the effectiveness of this strategy we consider two multimodal
classifiers: one is the lattice machine (LM), and the other one is a rough set based
rule induction algorithm RSES-O. We apply the hierarchical strategy in these
two classifiers, leading to two new classification methods: HLM and RSES-H.

HLM is a hierarchical version of the lattice machine [33]. As mentioned earlier,
the lattice machine generates hypertuples as model of data, but the hypertuples
overlap (some objects are multiply covered) and usually only a part of the whole
object space is covered by the hypertuples (some objects are not covered). Hence,
for recognition of uncovered objects, we consider some more general hypertuples
in the hierarchy that covers these objects. For recognition of multiply covered
objects, we also consider more general hypertuples that cover (not exclusively)
the objects. These covering hypertuples locate at various levels of the hierarchy.
They are taken as neighborhoods of the object. A special voting strategy has
been proposed to resolve conflicts between the object neighborhoods covering
the classified object.

The second method, called RSES-H, is a hierarchical version of the rule-based
classifier (hereafter referred to by RSES-O) in RSES [22]. RSES-O is based on
rough set methods with optimization of rule shortening. RSES-H constructs

226 A. Skowron et al.

a hierarchy of rule-based classifiers. The levels of the hierarchy are defined by
different levels of minimal rule shortening [6,22]. A given object is classified by
the classifier from the hierarchy that recognizes the object and corresponds to
the minimal generalization (rule shortening) in the hierarchy of classifiers.

We compare HLM and RSES-H through a series of experiments with their
non-hierarchical counterparts, LM [30,32] and RSES-O. We also compare the
two algorithms with a state of the art classifier, RIONA, which is a combi-
nation of rough sets with the k-nearest neighbors (kNN) classifier [15,22]. The
evaluation of described methods was done through experiments with benchmark
datasets from UCI Machine Learning Repository [9] and also with some artifi-
cially generated data. The results of our experiments show that in many cases
the hierarchical strategy leads to improved classification accuracy.

This paper extends the paper [24]. In this paper we provide more details on
how the layers of HLM and RSES-H are constructed and a brief description
of the reference algorithm RIONA. We add experimental results for artificially
generated data containing noise and analyze how the hierarchical methods deal
with noise. We also analyze the statistical significance of the classification accu-
racy improvement provided by the hierarchical approach.

It is necessary to note that our hierarchical strategy to multimodal classifica-
tion is different from the classical hierarchical classification framework (see, e.g.,
[11,27,19,8,3,2,17]), which aims at developing methods to learn complex, usually
hierarchical, concepts. In our study we do not consider the hierarchical structure
of the concepts in question; therefore our study is in fact a hierarchical approach
to flat classification.

The paper is organized as follows. Section 2.1 introduces the lattice machine
classifier LM used as the basis for the hierarchical HLM. Section 2.2 describes
the rough set method RSES-O used as the basis for the hierarchical RSES-H.
Section 2.3 presents the algorithm RIONA used in experiments as the refer-
ence classifier. In Section 3 we introduce the hierarchical classifier HLM and in
Section 4 the hierarchical RSES-H is presented. Section 5 provides experimental
results obtained for the described classifiers and Section 6 concludes the paper
with a brief summary.

2 Multimodal Classifiers

In this section we present in some detail three multimodal classifiers. In later
sections we will present their hierarchical counterparts.

2.1 The Lattice Machine

The lattice machine [30,32,33] is a machine learning paradigm that constructs a
generalized version space from data, which serves as a model (or hypothesis) of
data. A model is a hyperrelation, or a set of hypertuples (patterns), such that
each hypertuple in the hyperrelation is equilabeled, supported, and maximal.
Being equilabeled means the model is consistent with data (i.e., matches objects
with the same decision only); being maximal means the model has generalization

Multimodal Classification: Case Studies 227

capability; and being supported means the model does not generalize beyond the
information given in the data. When data come from Euclidean space, the model
is a set of hyperrectangles consistently, tightly and maximally approximating the
data. Observe that, this approach is different from decision tree induction, which
aims at partition of the data space. Lattice machines have two basic operations:
a construction operation to build a model of data, and a classification operation
that applies the model to classify data. The model is in the form of a set of
hypertuples [31]. To make this paper self-contained we review the concepts of
hypertuple.

Let R = {a1, a2, · · · , an} be a set of attributes, and y be the class (or decision)
attribute; dom(a) be the domain of attribute a ∈ R∪{y}. In particular we let C =
dom(y) – the set of class labels. Let V

def=
∏n

i=1 dom(ai) and L
def=

∏n
i=1 2dom(ai).

V is called the data space defined by R, and L an extended data space. A (given)
dataset is D ⊆ V × C – a sample of V with known class labels. If we write
an element t ∈ V by 〈v1, v2, · · · , vn〉 then vi ∈ dom(ai). If we write h ∈ L by
〈s1, s2, · · · , sn〉 then si ∈ 2dom(ai) or si ⊆ dom(ai). An element of L is called a
hypertuple, and an element of V a simple tuple. The difference between the two
is that a field in a simple tuple is a value (hence value-based) while a field in a
hypertuple is a set (hence set-based). If we interpret vi ∈ dom(ai) as a singleton
set {vi}, then a simple tuple is a special hypertuple. L is a lattice under the
ordering [30]: for s, t ∈ L,

t ≤ s ⇐⇒ t(x) ⊆ s(x) (1)

with the sum and product operations given by

t + s = 〈t(x) ∪ s(x)〉x∈R. (2)
t × s = 〈t(x) ∩ s(x)〉x∈R. (3)

Here t(x) is the projection of t onto attribute x.
The Lm algorithm [31] constructs the unique model but it is not scalable to

large datasets. The efficient algorithm CaseExtract, presented in [30], con-
structs such a model with the maximal condition relaxed. Such a model consists
of a set of hypertuples which have disjoint coverage of the dataset.

Let D be a dataset, which is split into k classes: D = {D1, D2, · · · , Dk} where
Di and Dj are disjoint, i �= j. The CaseExtract algorithm [30] is as follows:

– For i = 1 to k:
• Initialization: let X = Di, Hi = ∅.
• Repeat until X is empty:

1. Let h ∈ X and X = X \ {h}.
2. For each g ∈ X , if h+g is equilabeled then h = h+g and X = X\{g}
3. Let Hi = Hi ∪ {h}.

– H =
⋃k

i=1 Hi is a model of the data.

Note that h+ g is defined in Eq.(2). This algorithm bi-partitions X into a set of
elements the sum of which is an equilabeled element, and a new X consisting of

228 A. Skowron et al.

the rest of the elements. The new X is similarly bi-partitioned until X becomes
empty.

When such a model is obtained, classification can be done by the C2 algorithm
[32]. C2 distinguishes between two types of data: those that are covered by one
and only one hypertuple (primary data), those that are covered by more than
one hypertuple (secondary data) and those that are not covered (tertiary data).
Classification is based on two measures. Primary data t is put in the same class
as the hypertuple that covers t, and secondary and tertiary data are classified
with the use of these two measures.

Let R be a set of attributes, X ⊆ R, VX be the projection of V onto X , and
S

def= VX . VX is the domain of X . When X = R, VR is the whole data space,
i.e., VR = V . Consider a mass function m : 2S → [0, 1] such that m(∅) = 0 and∑

x∈2S m(x) = 1. Given a, b ∈ 2S , where m(b) �= 0, the first measure is derived
by answering this question: what is the probability that b appears whenever
a appears? In other words, if a appears, what is the probability that b will
be regarded as appearing as well? Denoting this probability by C0

X(b|a), one
solution is:

C0
X(b|a) =

∑
a∪b⊆c m(c)

∑
b⊆c m(c)

.

In the same spirit, another measure is defined as

C1
X(b|a) =

∑
c⊆b m(c)

∑
c⊆a∪b m(c)

.

C1
X(b|a) measures the degree in which merging a and b preserves the existing

structure embodied by the mass function.
With the above two measures, the C2 algorithm for classification is as follows

[32]. Let t ∈ V , and H be the set of hypertuples generated by the CaseExtract

algorithm.

– For each s ∈ H , calculate C0
R(s|t) and C1

R(s|t).
– Let A be the set of s ∈ H which have maximal C0

X values. If A has only one
element, namely A = {s}, then label t by the label of s. Otherwise, let B be
the set of s ∈ A which have maximal C1

X values. If B has only one element,
namely B = {s}, then label t by the label of s. Otherwise, label t by the
label of the element in B which has the highest coverage.

Some variants of C2 are discussed in [33]. C2 performed extremely well on pri-
mary data, but not desirable on secondary and tertiary data.

2.2 RSES-O

The Rough Set Exploration System (RSES) (see [6,5,22]) is a freely available soft-
ware system toolset for data exploration, classification support and knowledge
discovery. Many of the RSES methods have originated from rough set theory in-
troduced by Zdzis�law Pawlak during the early 1980s (see [18]). At the moment of
writing this paper RSES version 2.2 is the most recent (see [5] for more details).

Multimodal Classification: Case Studies 229

One of the most popular methods for classifiers construction is based on learn-
ing rules from examples. Therefore there are several methods for calculation of
the decision rule sets implemented in the RSES system (see [5,22]). One of these
methods generates consistent decision rules with the minimal number of de-
scriptors. This kind of decision rules can be used for classifying new objects as
a standard rough set method of classifiers construction (see e.g. [23]).

Unfortunately, the decision rules consistent with the training examples can
often be inappropriate to classify unseen cases. This happens, e.g. when the
number of examples supporting a decision rule is relatively small. Therefore in
practice we often use approximate rules instead of consistent decision rules. In
RSES we have implemented a method for computing approximate rules (see
e.g. [4]). In our method we begin with algorithms for synthesis of consistent
decision rules with the minimal number of descriptors from a given decision
table. Next, we compute approximate rules from already calculated consistent
decision rules using the consistency coefficient. For a given training table D the
consistency coefficient cons of a given decision rule α → q (q is the decision class
label) is defined by:

cons(α → q) =
‖{x ∈ Dq : x satisfies α}‖
‖{x ∈ D : x satisfies α}‖

where Dq denotes the decision class corresponding to q. The original consistent
decision rules with the minimal number of descriptors are reduced to approxi-
mate rules with consistency coefficient exceeding a fixed (optimal) threshold.

The resulting rules are shorter, more general (can be applied to more training
objects) but they may lose some of their precision, i.e., may provide wrong
answers (decisions) for some of the matching training objects. In exchange for
this we expect to receive more general rules with higher quality of classification
for new cases.

The method of classifier construction based on approximate rules is called the
RSES-O method.

2.3 Rule Induction with Optimal Neighborhood Algorithm
(RIONA)

RIONA [15] is a classification algorithm implemented in RSES [6,22] that com-
bines the kNN classifier with rule induction. The method induces a distance
measure and distance-based rules. For classification of a given test object the
examples most similar to this object vote for decisions but first they are com-
pared against the rules and the examples that do not match any rule are excluded
from voting.

First the algorithm induces a distance measure ρ from a data sample D. The
distance measure is defined by the weighted sum of the distance measures ρi for
particular attributes ai:

ρ(x, y) =
n∑

i=1

wi · ρi(ai(x), ai(y)).

230 A. Skowron et al.

RIONA uses the combination of the normalized city-block Manhattan metric
for numerical attributes and the Simple Value Difference (SVD) metric for nom-
inal attributes [15]. The distance between values of a numerical attribute ai is
defined by the absolute value difference between these values normalized by the
range of attribute values in the data sample D:

ρi(ai(x), ai(y)) =
|a(x) − a(y)|
amax − amin

.

where amin = minx∈D ai(x) and amax = maxx∈D ai(x). The SVD distance be-
tween values of a nominal attribute ai is defined by the difference between the
decision distributions for these values in the data sample D:

ρi(ai(x), ai(y)) =
∑

q∈C

∣
∣
∣P (z ∈ Dq|z ∈ Dai(x)) − P (z ∈ Dq|z ∈ Dai(y))

∣
∣
∣ .

where Dai(x0) = {x ∈ D : ai(x) = ai(x0)}. The weights wi are optimized with
the iterative attribute weighting procedure from [35].

To classify a tuple t RIONA uses the k nearest neighbors n1(t), . . . , nk(t) of
t in the data sample D according to the previously defined distance measure ρ.
Before voting the nearest neighbors are examined with consistent maximal rules
derived from the data sample D [15]. If there is no consistent maximal rule that
covers both a given neighbor nj(t) and the tuple t, the neighbor nj(t) is excluded
from voting. The neighbors that share at least one maximal consistent rule with
the tuple t are assigned with the vote weights vj inversely proportional to square
of the distance to t:

vj(t) =
{ 1

ρ(nj(t),t)2 if there is consistent maximal rule covering t and nj(t)
0 otherwise

.

The tuple t is classified by q with the largest sum of nearest neighbor votes
S(t, q) =

∑
nj(t)∈Dq

vj(t), where 1 ≤ j ≤ k.
The value of k is optimized automatically in the range 1 ≤ k ≤ 100 by the

efficient leave-one-out procedure [15] applied to the data sample D.

3 HLM: Hierarchical Lattice Machine

In this section we present an implementation of our hierarchical approach to
multimodal classification. This is a hierarchical version of the lattice machine,
referred to by HLM.

We implement the hierarchical strategy in the lattice machine with the expec-
tation that the classification accuracy of the lattice machine can be improved.
Here is an outline of the solution.

We apply the CaseExtract algorithm repeatedly to construct a hierarchy
of hypertuples. The bottom layer is constructed by CaseExtract directly from
data. Then those data that are covered by the hypertuples with small coverage
are marked out in the dataset, and the algorithm is applied again to construct

Multimodal Classification: Case Studies 231

a second layer. This process is repeated until a layer only with one hypertuple
is reached. At the bottom layer all hypertuples are equilabeled, while those at
higher layers may not be equilabeled.

To classify a data tuple (query) we search through the hierarchy to find a
hypertuple at the lowest possible layer that covers the query. Then all data
(including both marked and unmarked) covered by the hypertuple are weighted
by an efficient counting-based weighting method. The weights are aggregated
and used to classify the query. This is similar to the weighted kNN classifier, but
it uses counting instead of distance to weigh relevant data.

3.1 Counting-Based Weighting Measure

In this section we present a counting-based weighting measure, which is suitable
for use with hypertuples.

Suppose we have a neighborhood D for a query tuple (object) t and elements
in D may come from any class. In order to classify the query based on the
neighborhood we can take a majority voting with or without weighting. This is
the essence of the well-known kNN classifier [14,12].

Weighting is usually done by the reverse of distance. Distance measures usu-
ally work for numerical data. For categorical data we need to transform the data
into numerical form first. There are many ways for the transformation (see for
example [26,10,34]), but most of them are task (e.g., classification) specific.

We present a general weighting method that allows us to count the number
of all hypertuples, generated by the data tuples in a neighborhood of a query
tuple t, that cover both t and any data tuple x in the neighborhood. Intuitively
the higher the count the more relevant this x is to t, hence x should play a
bigger role (higher weight). The inverse of this count can be used as a measure
of distance between x and t. Therefore, by this count we can order and weight
the data tuples. This counting method works for both numerical and categorical
data in a conceptually uniform way. We consider next an efficient method to
calculate this count.

As a measure of weighting we determine, for tuples t and x in D, the number
of hypertuples that cover both t and x. We call this number the cover of t and
x, denoted by cov(t, x). The important issue here is how to calculate cov(t, x)
for every pair (t, x).

Consider two simple tuples t =< t1, t2, · · · , tn > and x =< x1, x2, · · · , xn >. t
is a simple tuple to be classified (query) and x is any simple tuple in D. What we
want is to find all hypertuples that cover both t and x. We look at every attribute
and explore the number of subsets that can be used to generate a hypertuple
covering both t and x. Multiplying these numbers across all attributes gives rise
to the number we require.

Consider an attribute ai. If ai is numerical, Ni denotes the number of intervals
that can be used to generate a hypertuple covering both ti and xi. If ai is
categorical, Ni denotes the number of subsets for the same purpose. Assuming
that all attributes have finite domains, we have [29]:

232 A. Skowron et al.

Ni =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(max(ai) − max({xi, ti}) + 1) × (min({xi, ti}) − min(ai) + 1)
if ai is numerical

2mi−1 if ai is categorical and xi = ti

2mi−2 if ai is categorical and xi �= ti.

(4)

where max(ai), min(ai) are the maximal and the minimal value of ai, respec-
tively, if ai is numerical, and mi = |dom(ai)|, if ai is categorical.

The number of covering hypertuples of t and x is cov(t, x) =
∏

i Ni.
A simple tuple x ∈ D is then weighted by cov(t, x) in a kNN classifier. More

specifically, we define
K(t, q) =

∑

x∈Dq

cov(t, x).

where Dq is a subset of D consisting of all q class simple tuples. K(t, q) is the
total of the cover of all q class simple tuples. Then the weighted kNN classifier
is the following rule (wkNN rule):

t is classified by q0 that has the largest K(t, q) for all q.

3.2 The Classification Procedure

We now present a classification procedure, called, hierarchical classification based
on weighting (HLM).

Let D be a given dataset, let HH be a hierarchy of hypertuples constructed
from D, and let t be a query – a simple tuple to be classified.

Step 1. Search HH in the bottom up order and stop as soon as a covering
hypertuple is found at layer l. Continue searching layer l until all covering
hypertuples are found. Let S be a set of all covering hypertuples from this
layer;
Step 2. Let N ← {h : h ∈ S}, a neighborhood of the query;
Step 3. Apply wkNN to classify t.

Note that h is the set of simple tuples covered by h.

4 RSES-H: Hierarchical Rule-Based Classifier

In this section we present another implementation of our hierarchical approach
to multimodal classification. This is a hierarchical version of RSES-O, referred
to by RSES-H.

In RSES-H a set of minimal decision rules [7,22] is generated. Then, different
layers for classification are created by rule shortening. The algorithm works as
follows:

1. At the beginning, we divide original data sets into two disjoint parts: train
table and test table.

2. Next, we calculate (consistent) rules with a minimal number of descriptors
for the train table (using covering method from RSES [7,22]). This set of
rules is used to construct the first (the bottom) level of our classifier.

Multimodal Classification: Case Studies 233

3. In the successive steps defined by the following consistency thresholds (after
rule shortening): 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, we generate a set
of rules obtained by shortening all rules generated in the previous step. The
rules generated in the i-th step are used to construct the classifier with the
label i + 1 in the classifier hierarchy.

4. Now, we can use our hierarchical classifier in the following way:
(a) For any object from the test table, we try to classify this object using

decision rules from the first level of our classifier.
(b) If the tested object is classified by rules from the first level of classifier,

we return the decision value for this object and the remaining levels of
our classifier are not used.

(c) If the tested object can not be classified by rules from the first level, we
try to classify it using the second level of our hierarchical classifier, etc.

(d) Finally, if the tested object can not be classified by rules from the level
with the label 9, then our classifier can not classify the tested object.
The last case happens seldom, because higher levels are usually sufficient
for classifying any tested object.

The range of thresholds for the rule consistency (see Section 2.2) in the third
step of the algorithm presented above have been determined on the basis of ex-
perience obtained from the previous experiments (see e.g. [1]). The step between
thresholds has been determined to 0.05, because this allows us to make rule
search quite precise and the number of thresholds (that have to be checked) is
not too large from the computational complexity point of view.

5 Evaluation

Experiments were performed with the two hierarchical classifiers (HLM and
RSES-H) described in Section 3.1 (HLM) and Section 4 (RSES-H), their
non-hierarchical counterparts (LM and RSES-O based on rules) and RIONA

as a benchmark classifier. The purpose of the experiment was two fold: first,
we wanted to know whether the hierarchical algorithms improve their non-
hierarchical counterparts. Second, we wanted to know the correspondence be-
tween the degree of improvement and distribution of data.

For this purpose we considered two types of data: real world data and artifi-
cial (or synthetic) data. The former were some popular benchmark datasets from
UCI Machine Learning Repository [9], and some simple statistics are shown in
Table 1. The latter were generated by Handl and Knowles [16]. The generator is
based on a standard cluster model using multivariate normal distributions. We
generated six datasets: three of them have two clusters labeled as two separate
classes (unimodal data), and the remaining three have four clusters grouped
again into two classes (multimodal data). In all cases 20% random noise were
added.

In the experiment each classifier was tested 10 times on each dataset with the
use of 5-fold cross-validation.

234 A. Skowron et al.

Table 1. General information on the datasets and the 5-fold cross validation success
rate with standard deviation of LM, HLM, RSES-H, RSES-O and RIONA

General Info 5CV success rateData
Att Exa Cla LM HLM RSES-O RSES-H RIONA

Anneal 38 798 6 95.7±0.3 96.0±0.4 94.3±0.6 96.2±0.5 92.5
Austral 14 690 2 91.9±0.3 92.0±0.4 86.4±0.5 87.0±0.5 85.7
Auto 25 205 6 73.0±1.5 76.5±1.4 69.0±3.1 73.7±1.7 76.7

Diabetes 8 768 2 70.6±0.6 72.6±0.8 73.8±0.6 73.8±1.2 75.4
Ecoli 7 336 8 79.8±1.0 85.6±0.7 72.4±2.3 76.0±1.7 84.1

German 20 1000 2 69.8±0.6 71.4±0.9 72.2±0.4 73.2±0.9 74.4
Glass 9 214 3 63.5±1.2 71.3±1.2 61.2±2.5 63.4±1.8 66.1
Heart 13 270 2 75.2±1.8 79.0±1.0 83.8±1.1 84.0±1.3 82.3

Hepatitis 19 155 2 77.2±0.7 78.7±1.2 82.6±1.3 81.9±1.6 82.0
Horse-Colic 22 368 2 78.2±0.8 76.3±0.9 85.5±0.5 86.5±0.6 84.6

Iris 4 150 3 95.0±0.4 94.1±0.4 94.9±1.5 95.5±0.8 94.4
Sonar 60 208 2 74.2±1.2 73.7±0.8 74.3±1.8 75.3±2.0 86.1
TTT 9 958 2 94.0±0.7 95.0±0.3 99.0±0.2 99.1±0.2 93.6

Vehicle 18 846 4 69.4±0.5 67.6±0.7 64.2±1.3 66.1±1.4 70.2
Vote 18 232 2 96.4±0.5 95.4±0.5 96.4±0.5 96.5±0.5 95.3
Wine 12 178 3 96.4±0.4 92.6±0.8 90.7±2.2 91.2±1.2 95.4
Yeast 8 1484 10 49.9±0.6 51.3±0.7 50.7±1.2 51.9±0.9 58.9

D20c22n0 20 522 2 85.0±0.8 89.4±0.6 88.9±0.9 88.8±1.2 91.4
D20c22n1 20 922 2 87.6±0.5 89.1±0.5 90.1±0.6 90.1±1.0 86.9
D20c22n2 20 838 2 89.2±0.5 91.2±0.3 90.3±0.4 89.9±0.9 89.4
D20c42n0 20 1370 2 81.4±0.5 85.5±0.3 83.6±1.0 84.4±1.4 90.9
D20c42n1 20 1558 2 80.1±0.3 83.8±0.3 88.5±0.4 88.7±0.6 87.1
D20c42n2 20 1524 2 77.9±0.8 79.0±0.5 79.6±0.7 79.8±1.0 83.2

Average success rate 80.53 82.05 81.41 82.3 83.77

The average results with standard deviations are shown in Table 1. HLM

obtained the higher accuracy than its non-hierarchical counterpart LM on 17
data sets and it lost on 6 data sets. The best improvements were for the data sets
Glass (7.8%) and Ecoli (5.8%). The difference between RSES-H and its non-
hierarchical counterpart RSES-O is even more distinct: RSES-H outperformed
RSES-O on 19 data sets and lost on 3 data sets only. The best improvements
were for the data sets Auto (4.7%) and Ecoli (3.6%).

The supremacy of the hierarchical methods over the non-hierarchical ones
can be also noticed in the total average accuracy: HLM accuracy is 1.5% higher
than LM accuracy and similarly RSES-H accuracy is almost 1% higher than
RSES-O accuracy. On average both hierachical methods ouperformed both non-
hierarchical methods.

The benchmark classifier RIONA has the highest total average accuracy but
the difference to hierarchical methods is much smaller than to non-hierarchical
classifiers. The advantage of RIONA over HLM and RSES-H comes from a few
specific data sets (Sonar, Ecoli and Yeast) where the nearest neighbor component
helps a lot in overcoming the problem of a large number of attributes or classes.

Multimodal Classification: Case Studies 235

Table 2. The levels of statistical significance of difference when comparing the hi-
erarchical methods against the non-hierarchical methods: 5 is 99.5%, 4 is 99%, 3 is
97.5%, 2 is 95%, 1 is 90% and 0 is below 90%. Plus indicates that the average accuracy
of a hierarchical method is higher than that of a non-hierarchical method and minus
otherwise.

General Info Statistical significance
Data HLM vs RSES-H vsAttrib Exampl Classes

LM RSES-O LM RSES-O
Anneal 38 798 6 +3 +5 +5 +5
Austral 14 690 2 +0 +5 −5 +3
Auto 25 205 6 +5 +5 +0 +5

Diabetes 8 768 2 +5 −5 +5 0
Ecoli 7 336 8 +5 +5 −5 +5

German 20 1000 2 +5 −4 +5 +5
Glass 9 214 3 +5 +5 −0 +3
Heart 13 270 2 +5 −5 +5 +0

Hepatitis 19 155 2 +5 −5 +5 −0
Horse-Colic 22 368 2 −5 −5 +5 +5

Iris 4 150 3 −5 −1 +2 +0
Sonar 60 208 2 −0 −0 +1 +0
TTT 9 958 2 +5 −5 +5 +1

Vehicle 18 846 4 −5 +5 −5 +4
Vote 18 232 2 −5 −5 +0 +0
Wine 12 178 3 −5 +4 −5 +0
Yeast 8 1484 10 +5 +1 +5 +3

D20c22n0 20 522 2 +5 +1 +5 −0
D20c22n1 20 922 2 +5 −5 +5 +0
D20c22n2 20 838 2 +5 +5 +3 −0
D20c42n0 20 1370 2 +5 +5 +5 +1
D20c42n1 20 1558 2 +5 −5 +5 +0
D20c42n2 20 1524 2 +5 −3 +5 +0

Wins/Losses quite probable (> 90%) 16/5 11/11 16/4 11/0
Wins/Losses certain (> 99.5%) 15/5 8/8 13/4 5/0

One could ask whether the differences in accuracy between the hierarchi-
cal and non-hierarchical methods are really significant. To answer this ques-
tion in Table 2 we compared the hierarchical HLM and RSES-H against the
non-hierarchical LM and RSES-O and provided the statistical significance of
differences between the accuracy of classifiers on particular data sets using the
one-tail unpaired Student’s t-test [25].

Comparing HLM against LM (see Figure 1) one can see that for almost all the
data sets the differences are significant. In other words, in 16 cases HLM provided
the statistically significant improvement in accuracy over LM (for 15 data sets
this improvement is practically certain) and the accuracy has significantly fallen
in 5 cases. This confirms the conclusion that, in general, it is worth to apply
hierarchical HLM instead of non-hierarchical LM.

236 A. Skowron et al.

0,0% 90,0% 95,0% 97,5% 99,0% 99,5%
0

3

6

9

12

15

18

HLM wins
LM wins

Significance

N
um

be
r o

f w
in

s

Fig. 1. The number of data sets where HLM outperforms LM and the number of
datasets where HLM loses in dependence of significance level of accuracy difference

The comparison between HLM and RSES-O does not show supremacy of any
method. However, for some datasets (Australian, Auto, Ecoli and Glass) HLM

provided significantly better results than both RSES-H and RSES-O.
The relation between the results of RSES-H and LM is similar to the relation

HLM vs LM. The differences in accuracy are significant for almost all the data
sets and in most cases RSES-H outperformed LM.

The interesting relation is between the results of RSES-H and RSES-O (see
Figure 2). There is no data set on which RSES-H was significantly worse than
RSES-O. On other hand, in half of cases RSES-H improved significantly RSES-

O. This indicates that the extension of RSES-O to RSES-H is rather stable:
RSES-H keeps the level of the RSES-O accuracy. There are no risk while replac-
ing RSES-O with RSES-H and a significant chance of improving the results.

Another interesting observation can be made when one focuses on artificial
data. In comparison with LM both hierarchical methods provide significant im-
provement on all generated data sets. This indicates that lattice machine does
not deal well with noisy data and both hierarchical methods do it better. There-
fore in cases of noisy data the lattice machine is particularly recommended to
be extended to hierarchical approach.

The different situation is in case of RSES-O. The comparison of both hier-
archical methods with RSES-O on artificial data does not show the significant
supremacy of any method. This suggests that to overcome the problem of noise
the rule optimization used in RSES-O is equally effective as the hierarchical
approach.

The experiments confirmed our original expectation that the performance of
LM and RSES-O can be improved by our hierarchical approach. The cost is

Multimodal Classification: Case Studies 237

0,0% 90,0% 95,0% 97,5% 99,0% 99,5%
0

4

8

12

16

20

RSES-H wins
RSES-O wins

Significance

N
um

be
r o

f w
in

s

Fig. 2. The number of data sets where RSES-H outperforms RSES-O and the num-
ber of datasets where RSES-H loses in dependence of significance level of accuracy
difference

some extra time to construct the hierarchy and to test some new objects using
this hierarchy.

The experimental results provide also the hint which hierarchical method to
use in dependence of the expected profit. RSES-H is safer: it usually provides
smaller improvements than HLM but it never worsens the accuracy. Application
of HLM can result in a greater improvement but there is also a higher risk of
worsening the results.

6 Conclusions

In the paper we addressed the problem of balancing between accuracy and uni-
versality in multimodal classification models. The accurate model parts can be
specific and cover part of data space only. On the other hand more general
model parts can lose accuracy. To solve this problem we proposed the hierarchi-
cal approach to multimodal classification. The hierarchical approach introduces
a number of multimodal layers instead of a single one, each with different accu-
racy and universality. Such a hierarchical model tries to classify data with the
most accurate layer and if it fails then it moves through more and more general
layers until an answer is found. Such a hierarchical approach provides a kind of
adaptation to test case difficulty. The proper graduation between the successive
levels allows to classify data with the optimal balance between accuracy and
universality.

The experimental results confirmed that such a hierarchical model is more ef-
fective than one-layer multimodal methods: it gives higher classification

238 A. Skowron et al.

accuracy. Hierarchical approach guarantees also a certain level of adaptability
to data: it deals well with noise in data.

In future research we plan to develop hierarchical multimodal methods for
incremental learning. Incremental learning requires reconstruction of particular
layers when new examples arrive. In hierarchical model the reconstruction time
of a layer can be reduced by the use of knowledge from the adjoining layers.

The other interesting research direction is the application of a hierarchical rule
model in RIONA. In that classifier rules are used to validate and filter nearest
neighbors (see Section 2.3). The interesting question is whether one can improve
RIONA accuracy still more by replacing the single set of rules with a hierarchical
rule model in the validation step.

Acknowledgments. The research has been supported by the grant 3 T11C
002 26 from Ministry of Scientific Research and Information Technology of the
Republic of Poland.

References

1. Bazan, J.: A Comparison of Dynamic and non-Dynamic Rough Set Methods for
Extracting Laws from Decision Table, Polkowski L., Skowron A. (eds.): Rough Sets
in Knowledge Discovery. Heidelberg: Physica-Verlag 321-365, 1998.

2. J. Bazan. Classifiers based on two-layered learning. Lecture Notes in Artificial
Intelligence 3066, Springer, Heidelberg, 356–361, 2004.

3. J. Bazan, S. Hoa Nguyen, H. Son Nguyen, A. Skowron. Rough set methods in
approximation of hierarchical concepts. Proc. of RSCTC’2004, Lecture Notes in
Artificial Intelligence 3066, Springer, Heidelberg, 346–355, 2004.

4. J. G. Bazan, H. Son Nguyen, S. Hoa Nguyen, P. Synak, J. Wróblewski. Rough Set
Algorithms in Classification Problem, L. Polkowski, S. Tsumoto, T. Y. Lin, (eds.):
Rough Set Methods and Applications. Heidelberg: Physica-Verlag 49-88, 2000.

5. J. G. Bazan, M. Szczuka. The Rough Set Exploration System. In Transactions on
Rough Sets III, Lecture Notes in Computer Science 3400, 2005, 37-56.

6. J. Bazan, M. Szczuka, A. Wojna, M. Wojnarski. On the evolution of Rough Set
Exploration System, Proc. of RSCTC’2004, Lecture Notes in Artificial Intelligence
3066, Springer, Heidelberg, 592–601, 2004.

7. J. G. Bazan, M. Szczuka, J. Wróblewski. A New Version of Rough Set Explo-
ration System, Proc. of RSCTC’2002, Lecture Notes in Artificial Intelligence 2475,
Springer-Verlag, Heidelberg, 397-404, 2002.

8. S. Behnke. Hierarchical Neural Networks for Image Interpretation. Lecture Notes
in Artificial Intelligence 2766, Springer, Heidelberg, 2003.

9. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
10. S. Cost, S. Salzberg. A weighted nearest neighbor algorithm for learning with

symbolic features. Machine Learning, 10:57–78, 1993.
11. T. G. Dietterich. Ensemble Learning. In M.A. Arbib (Ed.), The Handbook of Brain

Theory and Neural Networks, Second edition, Cambridge, MA: The MIT Press,
405-408, 2002.

12. S. A. Dudani. The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst.
Man Cyber., 6:325–327, 1976.

Multimodal Classification: Case Studies 239

13. Ivo Düntsch and Günther Gediga. Simple data filtering in rough set systems.
International Journal of Approximate Reasoning, 18(1–2):93–106, 1998.

14. E. Fix and J. L. Hodges. Discriminatory analysis, nonparametric discrimination:
Consistency properties. Technical Report TR4, USAF School of Aviation Medicine,
Randolph Field, TX, 1951.

15. G. Góra and A. G. Wojna. RIONA: a new classification system combining rule
induction and instance-based learning. Fundamenta Informaticae, 51(4):369–390,
2002.

16. J. Handl and J. Knowles. Cluster generators: synthetic data for the evaluation of
clustering algorithms. "http://dbkweb.ch.umist.ac.uk/handl/generators/".

17. S. Hoa Nguyen, J. Bazan, A. Skowron, H. Son Nguyen. Layered learning for concept
synthesis. Lecture Notes in Artificial Intelligence 3100, Transactions on Rough Sets
I:187–208, Springer, Heidelberg, 2004.

18. Z. Pawlak. Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer
Academic Publishers, Dordrecht, 1991.

19. T. Poggio, S. Smale. The Mathematics of Learning: Dealing with Data. Notices of
the AMS 50(5):537-544, 2003.

20. Ross Quinlan. Improved Use of Continuous Attributes in C4.5. Journal of Artificial
Intelligence Research, 4:77-90, 1996.

21. R. Quinlan. Rulequest research data mining tools. http://www.rulequest.com/.
22. RSES: Rough set exploration system. http://logic.mimuw.edu.pl/˜rses, Institute

of Mathematics, Warsaw University, Poland.
23. A. Skowron. Boolean reasoning for decision rules generation, Proc. of ISMIS’93,

Lecture Notes in Artificial Intelligence 689, Springer-Verlag, Heidelberg, 295–305,
1993.

24. A. Skowron, H. Wang, A. G. Wojna, J. G. Bazan. A Hierarchical Approach to
Multimodal Classification, Proc. of RSFDGrC’2005, Lecture Notes in Artificial
Intelligence 3642, Springer-Verlag, Heidelberg, 2005, 119–127.

25. G. W. Snedecor, W. G. Cochran. Statisitical Methods, Iowa State University Press,
Ames, IA, 2002, eighth edition.

26. C. Stanfill and D. Waltz. Toward memory-based reasoning. Communication of
ACM, 29:1213–1229, 1986.

27. P. Stone. Layered Learning in Multi-agent Systems: A Winning Approach to Robotic
Soccer. MIT Press, Cambridge, MA, 2000.

28. V. N. Vapnik. Statistical learning theory. Wiley New York, 1998.
29. H. Wang. Nearest neighbors by neighborhood counting. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 28(6), June 2006.
30. H. Wang, W. Dubitzky, I. Düntsch, and D. Bell. A lattice machine approach to

automated casebase design: Marrying lazy and eager learning. In Proc. IJCAI99,
Stockholm, Sweden, 254–259, 1999.

31. H. Wang, I. Düntsch, D. Bell. Data reduction based on hyper relations. Proceedings
of KDD98, New York, 349–353, 1998.

32. H. Wang, I. Düntsch, G. Gediga. Classificatory filtering in decision systems. In-
ternational Journal of Approximate Reasoning, 23:111–136, 2000.

33. H. Wang, I. Düntsch, G. Gediga, A. Skowron. Hyperrelations in version space.
International Journal of Approximate Reasoning, 36(3):223–241, 2004.

34. D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions.
Journal of Artificial Intelligence Research, 6:1–34, 1997.

35. A. G. Wojna. Analogy-Based Reasoning in Classifier Construction. Transactions
on Rough Sets IV, Lecture Notes in Computer Science 3700, 2005, 277-374.

"http://dbkweb.ch.umist.ac.uk/handl/generators/"
http://www.rulequest.com/

	Introduction
	Multimodal Classifiers
	The Lattice Machine
	RSES-O
	Rule Induction with Optimal Neighborhood Algorithm (RIONA)

	HLM: Hierarchical Lattice Machine
	Counting-Based Weighting Measure
	The Classification Procedure

	RSES-H: Hierarchical Rule-Based Classifier
	Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

