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Abstract. The classical k nearest neighbor (k-nn) classification assumes
that a fixed global metric is defined and searching for nearest neighbors
is always based on this global metric. In the paper we present a model
with local induction of a metric. Any test object induces a local metric
from the neighborhood of this object and selects k nearest neighbors
according to this locally induced metric. To induce both the global and
the local metric we use the weighted Simple Value Difference Metric
(SVDM). The experimental results show that the proposed classification
model with local induction of a metric reduces classification error up to
several times in comparison to the classical k-nn method.

1 Introduction

The classical machine learning methods [1, 2] induce a mathematical model of
data from training data and apply this model to reason about test objects. The
induced model remains invariant while reasoning about different test objects.
For many real-life data it is not possible to induce relevant global models. This
fact has been recently observed by researches from different areas like data min-
ing, statistics, multiagent systems [3–5]. The main reason is that phenomena
described by real-life data are often too complex and we do not have enough
knowledge to induce global models or a parameterized class of such models to-
gether with searching methods for the relevant global model in such a class.
We propose a step toward development of methods dealing with such a real-life
data. For any test object x first we use some heuristics (in our example based on
distances) that make it possible to eliminate objects not relevant for classifying
x. From the remaining (rather of small size) neighborhood of x a local model
(in our case a distance function) is induced that is relevant for classifying the
test object x. Hence, our idea is based on extracting for a given test object x its
local model that is dependent on x and next using this model for classifying x.

To apply this idea we extend the k nearest neighbor (k-nn) method [6, 7] with
one additional intermediate step (see Figure 1). First it induces a global metric
like in the classical k-nn. Then for each test object x the extended algorithm
selects a neighborhood of x and it induces a local metric based only on the
selected neighborhood. After that the k nearest neighbors of the test object x



Fig. 1. K-nn classification with local metric
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are selected according to the locally induced metric. Local metric induction is a
step towards building a model that depends locally on properties of a test object.
In both definitions of metrics: local and global, we use the weighted version of
the Simple Value Difference Metric [8] defined for data with nominal attributes.

We have tested three data sets each with several thousand of training objects,
and the model with local metric induction has reduced the classification error of
the classical k-nn from 30% up to several times depending on the tested set.

2 Related Work

The classical nearest neighbor method was introduced by Cover and Hart [6]
and the extension of 1-nn to k-nn was described by Duda and Hart [7]. Local
adaptation of a metric in the k-nn method was considered only in the context
of a multidimensional space with real value attributes.

Friedman proposed a method that combines k-nn with recursive partitioning
used in decision trees [9]. For each test object the method starts with the whole
training set and it constructs a sequence of partitions. Each partition eliminates
a number of training objects. In this way after the last partition a small set of
k objects remains to be used for classification. To make a single partition the
direction with the greatest decision discernibility is selected.

The algorithm proposed by Hastie and Tibshirani [10] starts with the Eu-
clidean metric and for each test object it iteratively changes the weights of
attributes. At each iteration it selects a neighborhood of a test object and it ap-
plies local discriminant analysis to shrink the distance in the direction parallel
to the boundary between decision classes. Finally it selects k nearest neighbors
according to the locally transformed metric.

Domeniconi and Gunopulos use a similar idea but they use support vector
machines instead of local discriminant analysis to determine class boundaries
and to shrink the distance [11]. Support vectors can be computed during the
learning phase what makes this approach much more efficient in comparision to
local discriminant analysis.



3 K Nearest Neighbors with the Global SVDM Metric

We assume that a training set U is provided and each object x ∈ U is labeled
with a decision dec(x) from a finite set Vd. The task is to learn from a training
set U how to induce the correct decision for new unlabeled data objects.

K-nn is a widely used classification model assuming that data objects are
given from a pseudometric space X with a distance function ρ : X

2 → R. The
distance function ρ is induced from a training set U during the learning phase.
Then for each data object x to be classified the set S(x, k) of the k nearest
neighbors of x is selected from U according to a distance function ρ and a decision
is inferred from the decisions of the nearest neighbors in S(x, k).

In the paper we use one of the most popular procedures to determine a
decision for a test object x. For each decision value v ∈ Vd the Strength measure
counts the number of the nearest neighbors from S(x, k) with the decision v:

Strength(x, v) = |{y ∈ S(x, k) : dec(y) = v}|

As a decision for a test object x the algorithm assigns the most frequent decision
in the set of the k nearest neighbors S(x, k):

deck−nn(x) = arg maxv∈Vd
Strength(x, v)

As a distance function ρ we use the weighted version of the Simple Value
Difference Metric (SVDM) [12]. It assumes that data objects are represented
as vectors of nominal values x = (x1, . . . , xn). The distance between two data
objects x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined by

ρ(x, y) =
n∑

i=1

wi · ρi(xi, yi)

where ρi(·, ·) is a measure of similarity between two attribute values and wi

are weights computed in the second phase of the metric induction process. Two
nominal values xi, yi are considered to be similar if they imply similar decision
distribution, i.e., if they correlate similarly with the decision on the training
set U:

ρi(xi, yi) =
∑

v∈Vd

|P (dec = v|xi) − P (dec = v|yi)|

As an attribute weighting procedure we use a procedure described in [8].

4 K Nearest Neighbors with Local Metrics

In this section we describe an extension of the k-nn method with local metric in-
duction. The learning phase of the extended method is analogical to the classical
k-nn. It induces a global metric ρ from a training set U.

Algorithm 1 presents the classification of a single query object x by the
extended method. First the algorithm selects the n nearest neighbors N(x, n)



Algorithm 1 K nearest neighbors with local metric

ρ - the weighted SVDM metric induced from the whole training set U

x - a query object to be classified

N(x, n) := the set of n nearest neighbors of x from U according to ρ

ρx := local weighted SVDM metric induced from the neighborhood N(x, n)
S(x, k) := the set of k nearest neighbors of x from N(x, n)

according to ρx (k ≤ n)

declocal−knn(x) := arg max
v∈Vd

|{y ∈ S(x, k) : dec(x) = v}|

of x from U according to the global metric ρ. Next it induces a local metric ρx

using only the selected neighborhood N(x, n). After that the algorithm selects
the nearest neighbors of x again but only the k nearest neighbors and only from
the neighborhood set N(x, n). The selected set S(x, k) is then used to compute
the majority decision declocal−knn(x) that is returned as the final result for
the query object x. Both for the global and for the local metric definition the
algorithm uses the weighted version of the SVDM metric described in Section 4.

To improve classification accuracy the neighborhood size n should be large,
at least several hundred. To accelerate selection of a large number of nearest
neighbors from a training set we use the advanced hierarchical indexing [8].

The optimal value k can be estimated from a training set. We use the proce-
dure analogical to the estimation procedure proposed for the classical k-nn [13].

The classical k-nn is called a lazy method: it induced a global metric and
it performs the rest of computation at the moment of classification. The de-
scribed algorithm extends this idea: it repeats metric induction at the moment
of classification. The proposed extension allows to use the local properties of
data topology in the neighborhood of a query object and to adjust the metric
definition to these local properties.

5 Experimental Results

We have performed experiments for 3 large benchmark data sets with nominal
attributes from the UCI repository [14] (in parenthesis the number of attributes,
the training set and the test set size): chess (36, 2131, 1065), nursery (8, 8640,
4320) and DNA-splice (60, 2000, 1186). The data sets provided as a single file
(chess, nursery) have been randomly split into a training and a test part with
the ratio 2 to 1. The data set splice have been tested with the original partition.

Each data set has been tested with the classical k-nn and with the extended
k-nn with three different values of the neighborhood size n: 100, 200 and 500. To
make the results comparable all four classification models have been tested with
the same partition of a data set and with the same global metric. Each method
estimated the optimal value k from a training set in the range 1 ≤ k ≤ n and it
used this value during classification of a test set. Each test has been repeated 3
times for each data set and the average classification error has been calculated.



Fig. 2. Classification error of the classical k-nn and the extended k-nn with three
different neighborhood sizes: 100, 200 and 500
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Figure 2 presents the comparision of the average classification errors obtained
from the experiments. The graph shows that for all data sets the k-nn model with
local metric induction reduces the classification error significantly in comparision
to the classical k-nn based on a global metric. In case of the data sets chess and
splice the reduction is between 20% and 40% depending on the neighborhood
size and in case of the data set nursery the reduction is severel times (over 7
times in the best case). The presented results prove that a large profit can be
obtained if one applies a local approach to data instead of the global one.

The difference between the results for nursery and for two other data sets
seems to correlate with the data set size. It implies that the larger data set is the
more profitable it is to include local metric induction as an intermediate step.

The interesting issue is the dependence between the classification error and
the neighborhood size n used to induce a local metric. The best error reduction
was obtained for n = 100 in case of two data sets and for n = 200 in case of the
data set splice. In particular, the optimal neighborhood size is larger in case of
the data set splice than in case of nursery although the latter data set is about
4 times larger than the former one. It indicates that the optimal neighborhood
size depends strongly on the properties of a data set and an advanced technique
is necessary to estimate this optimal size.

6 Conclusions

In the paper we proposed a new classification model that is an extension of
the classical k-nn and we compared the accuracy of the new and the original
method. The classical k-nn assumes that a fixed distance function is defined for
the whole data space. The extended model induces a different distance function
for each object to be classified and it uses only local information around the
object to induce this distance function. This approach allowed us to adapt the
metric depending on the local properties of data topology.



We have applied the new method to the classification problem for data with
nominal attributes. The experimental results show that the presented approach
has an adventage over the original k-nn method. The extended method reduces
the classification error from several tens percent up to several times.

The k-nn model with a local metric corresponds to the idea of transductive
reasoning [5]. The transductive approach assumes that a classification model
should depend on the objects to be classified and it should be adapted according
to the properties of these objects. The presented extension of k-nn implements
transduction: local metric induction adapts the metric defintion to the local
topology in the neighborhood of an object to be classifed.
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