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Abstrat. We present an extension of the lazy rule indution algorithm

from [1℄. We extended it to deal with real-value attributes and gener-

alised its onditions for symboli non-ordered attributes. The onditions

for symboli attributes are de�ned by means of a metri over attribute

domain. We show that ommonly used rules are a speial ase of the pro-

posed rules with a spei� metri. We also relate the proposed algorithm

to the disretisation problem. We illustrate that lazy approah an omit

the disretisation time omplexity.

1 Introdution

One of the main goals of mahine learning, knowledge disovery and data mining

is to indue the desription of a target onept from its instanes. The instanes

an be represented, e.g., in the form of a deision table. Objets from a deision

table are represented by values of some features, also alled attributes.

In order to obtain an approximation of a onept with good quality, searh-

ing for relevant primitive onepts is required. Feature extration is a problem

of searhing for relevant primitive onepts. Two important ases of a feature

extration problem are those of presene of real value attributes and symboli

(nominal) value attributes with large ardinality of domain. In these ases we

look for new features like age 2 [30; 50℄ and olor 2 fgreen; yellow; blueg respe-

tively.

A well known approah in mahine learning is the lazy learning (see e.g. [4℄,

[1℄). We base our researh on the lazy rule indution algorithm presented in [1℄.

It lassi�es objets equivalently to the algorithm onsidering all minimal deision

rules, i.e., the most general rules onsistent with training examples. We propose

extension of this algorithm to deal with real-value attributes and generalisation

for symboli non-ordered attributes. In the latter ase we propose desriptors

for symboli attributes grouping the values of the attribute domain. For both

kinds of attributes the partition of attribute domains is made loally for a tested

objet.

Our algorithm is related to the problem of disretisation of the numerial

attributes and the methods for grouping attribute values (see e.g. [8℄, [9℄). Our



approah does not require a previous disretisation. A similar approah for nu-

merial attributes was presented in [6℄. However, in our approah disretisation

is done during lassi�ation loally for a test example. Also our approah is

parameterised by the hoie of a metri on non-ordered attributes.

The paper is organised as follows. Setion 2 outlines the basis of rule indu-

tion and disretisation. In Setion 2.3 the algorithm for lazy rule indution is

introdued. Our modi�ation of this algorithm is presented in Setion 3. Setion

4 onludes the paper with a disussion of possible diretions for future researh.

2 Preliminaries

Let A = (U;A [ fdg) be a deision table, where U is a �nite set of examples.

Eah example is desribed by a �nite set of attributes (features) A [ fdg, i.e.

a : U ! V

a

for a 2 A [ fdg, where d =2 A denotes the deision attribute and V

a

is the value domain of an attribute a. The domain of a symboli (disrete-value)

attribute is a �nite set, while the domain of a numerial (real-value) attribute is

an interval. We denote by Class(v) a subset of training examples with a deision

v. We also assume that V

d

= f1; :::;mg, where m = jV

d

j is �nite.

2.1 Minimal Rule Indution

Rule indution algorithms indue deision rules from a training set. A deision

rule onsists of a onjuntion of attribute onditions and a onsequent. The

ommonly used onditions for symboli attributes are equations attribute =

value, while for numerial attributes are spei�ed by interval inlusions, e.g.:

IF (a

1

= 2 ^ a

3

2 [3; 7℄ ^ a

6

= 5) THEN (d = 1)

A rule is said to over an example, and vie versa the example is said to math it,

if all the onditions in the rule are true for the example. The onsequent (d = v)

denotes a deision value that is assigned to an objet if it mathes the rule.

From the knowledge disovery perspetive, an important problem is to om-

pute a omplete set of onsistent and minimal deision rules denoted by Min-

Rules (see e.g. [10℄), i.e. all rules (mathed at least by one training example) that

are maximally general and onsistent with the training set. In order to disover

MinRules, rough set methods ould be used (see e.g. [10℄).

The rules indued from training examples are then used to lassify objets.

For a given test objet the subset of rules mathed by the objet is seleted.

If the objet mathes only rules with the same deision, then the deision pre-

dited by those rules is assigned to the example. If the test objet mathes rules

orresponding to di�erent deisions, the onit has to be resolved (see e.g. [2℄).

A ommon approah is to use a measure for onit resolving. Then the deision

with the highest measure value is hosen. In this paper we fous on a ommonly



used measure, i.e.:

Strength(tst; v) =

�

�

�

�

�

�

[

r2MathRules(tst;v)

supportSet(r)

�

�

�

�

�

�

; (1)

where v denotes the v-th deision (v = 1; :::; jV

d

j), tst is a test example, support-

Set(r) is the set of training examples mathing the rule r, MathRules(tst; v) is

the subset of minimal rules MinRules, suh that the premise is satis�ed by tst

and the onsequent is a deision v. For eah deision Strength measure ounts

the number of training examples that are overed by the minimal rules with the

deision mathing a test example tst.

The minimal rule indution lassi�er based on the Strengthmeasure predits

the deision that is most frequent in the set of training examples overed by the

rules mathed by a test example, i.e.:

deision

MinRules

(tst) = argmax

v2V

d

Strength(tst; v) :

Algorithms for omputing all minimal rules (MinRules) are very time on-

suming, espeially when the number of training objets or attributes is large.

This is due to the fat that the size of the MinRules set an be exponential

with respet to the size of the training set. There are also other approahes to

indue a set of rules, whih over the input examples using e.g. smallest number

of rules (see e.g. [5℄, [2℄). However, we fous in this paper on the MinRules set.

2.2 Disretisation and Value Partitioning

When data are desribed with real-value attributes, they must undergo a pro-

ess alled disretisation (or quantisation), whih divides the range of attribute

values into intervals. Suh intervals form new values for the attribute and, in

onsequene, allow to redue the size of the attribute value set.

Let a be a real-value attribute. A ut is de�ned as a pair (a; ), where  2 V

a

.

A set of uts over attribute a de�nes a partition on V

a

into sub-intervals. Any set

of uts transforms A = (U;A[d) into a new deision table A

P

= (U;A

P

[fdg),

where A

P

= fa

P

: a 2 Ag and a

P

(x) = i, a(x) 2 [

a

i

; 

a

i+1

) for any x 2 U and

i 2 f0; :::; k

a

g, where k

a

is the number of uts over the attribute a. A set of uts

is said to be onsistent with A if and only if the generalised deisions of A and

A

P

are idential. For more details on disretisation the reader is referred to [8℄.

Our attention in the paper is foused on the following theorem (see e.g. [8℄):

Theorem 1. The problem of searhing for a onsistent partition with the min-

imal number of uts is NP-hard.

It shows that the problem of disretisation from the global point of view is a

omplex task. We will show in the Subsetion 3.2 that it is in a sense possible

to overome this problem if one fouses on a loal area instead of the whole

universe. This is the ase with the presented lazy rule indution algorithm.



Sometimes it is also desired to partition not only real-value attributes, but

also symboli non-ordered attributes. Formally the partition over an attribute a

is any funtion P

a

: V

a

! f1; :::;m

a

g. There is a similar theorem to the presented

above (see e.g. [9℄):

Theorem 2. The problem of searhing for a onsistent family of partitions with

the minimal

P

a2A

m

a

is NP-hard.

2.3 Lazy Rule Indution

In the previous setion we have disussed an approah based on alulating

MinRules. Another approah an be based on onstrution of algorithms that

do not require alulation of the deision rule set in advane. These are memory

based (lazy onept indution) algorithms. An example of suh an algorithm is

presented in [1℄. Below we briey desribe this algorithm.

De�nition 1. For objets tst, trn we denote by rule

H

tst

(trn) the loal rule with

deision d(trn) and the following onditions t

i

for eah symboli attribute a

i

:

t

i

=

�

a

i

= a

i

(trn) if a

i

(tst) = a

i

(trn)

a

i

= � if a

i

(tst) 6= a

i

(trn)

where * denotes any value (suh a ondition is always true).

The onditions are hosen in suh a way that both the training and the test

example satisfy the rule and the rule is maximally spei�. Please note that it

is formed di�erently then minimal rules that are minimally spei�. But, the

important thing is that if only suh loal rule is onsistent with the training

data then it an be extended to a minimal rule. Thus, we have the following

relation between MinRules and loal rules (see e.g. [1℄):

Proposition 1. Premise of the rule

H

tst

(trn) implies a premise of a rule from

the set MinRules if and only if rule

H

tst

(trn) is onsistent with a training set.

This proposition shows that instead of omputing the support sets for rules on-

tained in MinRules and overing a new test ase, it is suÆient to generate the

loal rules formed by the test ase with all the training examples and then hek

their onsisteny against the training set. It is done by the lazy rule indution

algorithm (RIA

H

) presented below. The funtion isConsistent(r; verifySet)

heks if a loal rule r is onsistent with a verifySet.

Algorithm 3 RIA

H

(tst)

for eah deision v 2 V

d

supportSet(v) = ;

for eah trn 2 U with d(trn) = v

if isConsistent(rule

H

tst

(trn); U) then

supportSet(v) = supportSet(v) [ ftrng

RIA

H

= argmax

v2V

d

jsupportSet(v)j



From Proposition 1 it an be onluded that the algorithm RIA

H

omputes

the measure Strength and therefore the results of the mentioned algorithm are

equivalent to the results of the algorithm based on alulating MinRules and

using the Strength measure as a strategy for onit resolving (see [1℄).

Corollary 1. For any test objet tst, RIA

H

(tst) = deision

MinRules

(tst).

The time omplexity of the RIA

H

algorithm for a single test objet is O(n

2

),

where n is the number of objets in training data. For more details related to

this algorithm the reader is referred to [1℄.

3 Lazy Rule Indution with Attribute Value Grouping

Here we present the extension of the algorithm presented in the previous setion.

The idea is that we want to use more spei� onditions forming a loal rule

instead of the "star" ondition in ase when attribute values of the examples

di�er. In a sense star represents the group of all values from the domain of an

attribute. Our idea bases on the observation that it is possible to �nd smaller

groups of attribute values that an be more relevant for the lassi�ation.

We divide attributes into two groups aording to whether domains of the

attributes are linearly ordered or not. In the �rst group there are numerial

attributes and some of linearly ordered symboli attributes. For suh attributes

we form the ondition requiring the attribute to lay between the values of the

examples forming a loal rule.

Non-ordered attributes are treated di�erently. For eah suh attribute we

require a metri to be de�ned (see example in Subsetion 3.1). Suh a metri

should measure the distane between two values belonging to the domain of the

attribute. Then we onsider the group of values whih are desribed as balls

B

a

(; R) = fv 2 V

a

: Æ

a

(; v) � Rg, where a 2 A is an attribute, Æ

a

is a metri

related to this attribute,  2 V

a

is a enter of the ball and R is a radius of the

ball. Then one an measure the distane between values of examples and reate

ondition allowing only these attribute values that are lose to a test example in

terms of the measured distane. Hene, we propose the following generalisation

of De�nition 1.

De�nition 2. For objets tst, trn we denote by rule

Æ

tst

(trn) the loal rule with

deision d(trn) and the following onditions t

i

for eah attribute a

i

:

t

i

=

�

min � a

i

� max when a

i

is linearly ordered

a

i

2 B (a

i

(tst); R

a

i

) otherwise

where min = min(a

i

(tst); a

i

(trn)), max = max(a

i

(tst); a

i

(trn)),

R

a

i

= Æ

a

i

(a

i

(tst); a

i

(trn)) and Æ

a

i

is a measure of attribute value similarity.

For both kinds of attributes the onditions are hosen in suh a way that

both the training and the test example satisfy a rule and the onditions are

maximally spei�. Using this de�nition one an use Algorithm 3 with loal



rules rule

Æ

tst

(trn) from De�nition 2 instead of rule

tst

(trn) from De�nition 1.

This algorithm groups attribute values during the lassi�ation and we denote

it by RIA

Æ

.

The advantage of the algorithm for lazy rule indution is that it does not

require generating rules in advane. Here we have another advantage, i.e. the

algorithm deals with numerial attributes without need of disretisation and it

groups symboli attributes without prior searhing for global partition.

3.1 Metris for Attribute Value Grouping and Example

In this setion we disuss the variety of the proposed loal rules while hanging

a metri. First, let us onsider the ase when all attributes are symboli and

when we use Kroneker delta as a metri for all attributes (Æ

H

a

(v

1

; v

2

) = 1 if

v

1

6= v

2

and 0 otherwise). This ase relates to the Hamming distane between

attribute vetor values (ounting the number of attributes for whih examples

di�er). Please note that in ase when a

i

(trn) 6= a

i

(tst) then B(a

i

(tst); R

a

i

) = V

a

i

and in ase when a

i

(trn) = a

i

(tst), we get B(a

i

(tst); R

a

i

) = fa

i

(tst)g. Thus, the

onditions from De�nition 2 are equivalent to the onditions from the De�nition

1 when Kroneker metri is used.

But the proposed generalisation of loal rules opens a variety of possibilities

for grouping the attributes. Let us now present more informative alternative of

a metri than Hamming distane, i.e. Simple Value Di�erene Metri (SVDM):

Æ

SVDM

a

(v

1

; v

2

) =

X

v2V

d

jP (Class(v)ja = v

1

)� P (Class(v)ja = v

2

)j

q

;

where v

1

; v

1

2 V

a

, a 2 A and q is a natural-value parameter (q = 1; 2; 3; :::).

SVDM onsiders two symboli values to be similar if they have similar deision

distribution, i.e. if they orrelate similarly with the deision. Di�erent variants

of this metri have been suessfully used previously (see e.g. [3℄).

As an example let us onsider the following training set and the test example:

Objet Age Weight Gender BloodGroup Diagn Objet Age Weight Gender BloodGroup Diagn

trn

1

35 90 M A Sik trn

5

45 75 M B Sik

trn

2

40 65 F AB Sik trn

6

35 70 F B Healthy

trn

3

45 68 F AB Healthy trn

7

45 70 M O Healthy

trn

4

40 70 M AB Healthy tst 50 72 F A ?

Age and Weight are numerial while Gender and BloodGroup (BG) are sym-

boli non-ordered attributes. Let us take SVDM metri for attributes BG and

Gender. We have Æ

SVDM

BG

(A;AB) =

�

�

1�

1

3

�

�

+

�

�

0�

2

3

�

�

=

4

3

, Æ

SVDM

BG

(A;B) = 1,

Æ

SV DM

BG

(A;O) = 2. Let us onsider rule

SVDM

tst

(trn

1

) and rule

SVDM

tst

(trn

2

):

if (A 2 [35; 50℄^W 2 [72; 90℄ ^ BG 2 fAg) then Diagn = Sik

if (A 2 [40; 50℄ ^W 2 [65; 72℄^Gen = F ^ BG 2 fA;AB;Bg)then Diagn = Sik

The former rule is onsistent just beause no other objet from the training set

satisfy the premise of this rule. The latter rule is inonsistent beause the objet

trn

3

satis�es the premise of the rule and has a di�erent deision.



3.2 Relation to Disretisation

In this setion we are going to relate the proposed algorithm to the loal dis-

retisation (in the area of a tested objet). First, we will introdue de�nitions

analogous to the presented in Setion 2. Let us onsider a deision table with all

real-value attributes. We will say that a set of uts is loally onsistent with A

for a ase u if A

P

preserves the generalised deision of an objet u. The set of

uts is loally irreduible if any proper subset of uts is not loally onsistent.

For eah training objet we onsider all possible onsistent and irreduible

sets of loal uts. Please note that there are many possible loal uts for a single

example and di�erent sets of loal uts are possible for di�erent examples. Every

set of loal uts de�nes a rule. The set of all suh rules over the training objets

is denoted by MinRules

LC

. This is analogous to the onstrution of MinRules,

where eah rule is reated loally.

We have the following relation between MinRules

LC

and loal rules:

Proposition 2. For deision tables with real-value attributes the premise of the

rule

Æ

tst

(trn) implies premise of a rule from the set MinRules

LC

if and only if

rule

Æ

tst

(trn) is onsistent with a training set.

Proof. If rule

Æ

tst

(trn) is inonsistent then no rule fromMinRules

LC

ould be im-

plied by this rule. In other ase the loal uts would not preserve the onsisteny.

If rule

Æ

tst

(trn) is onsistent then let us maximally lengthen eah interval so that

onsisteny is preserved. Suh extended rule is ontained in the setMinRules

LC

(from the de�nition of MinRules

LC

).

This is the proposition analogous to Proposition 1. It shows that instead of

omputing the support sets for rules ontained in MinRules

LC

and overing a

new test ase, it is suÆient to generate the loal rules rule

Æ

for all training

examples and then hek their onsisteny against the training set. We have also

the analogy to the Corollary 1:

Corollary 2. For any test objet tst, RIA

Æ

(tst) = deision

MinRules

LC

(tst).

Again it an be onluded that the results of the algorithm RIA

Æ

are equivalent

to the results of the algorithm based on alulating MinRules

LC

and using the

Strength measure as a strategy for onit resolving. It shows that in a sense

one an overome the omplexity of disretisation problem by using lazy disreti-

sation with lazy rule indution. Finally, let us note that the presented results

hold true for a deision table with mixed real-value and symboli non-ordered

attributes with Kroneker delta as a measure of attribute value similarity. In

suh ase the proof of Proposition 2 would be analogous to the presented one.

4 Conlusions and Further Researh

We onsidered lazy rule indution algorithm. We presented loal rules that an

deal with all types of attributes without predisretisation of numerial attributes.



Moreover, the presented rules group values of symboli attributes. The kind

of grouping depends on the metri used. For the speial kind of a metri, i.e.

Kroneker delta metri, the proposed loal rules oinide with the ommonly

used rules.

The value grouping of the attributes is made loally, i.e. for eah test exam-

ple di�erent grouping is possible. It is parameterised by a metri used, thus it

opens many possibilities of forming rules and opens the �eld for a range of ex-

periments. Pratial veri�ation of the possible lassi�ers needs further researh.

As a good starting step we propose SVDM metri, whih gave good results in

many appliations.

We also showed interpretation of the lazy rule indution algorithm for real-

value attributes. We showed analogous proposition known for symboli attributes.

Further researh requires explanation whether a spei� distribution of train-

ing examples in domain spae and the related position of a lassi�ed objet may

inuene performane of the reated lassi�er. Also it is interesting how noise in

data may inuene �nal results.
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