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Abstra
t. We present an extension of the lazy rule indu
tion algorithm

from [1℄. We extended it to deal with real-value attributes and gener-

alised its 
onditions for symboli
 non-ordered attributes. The 
onditions

for symboli
 attributes are de�ned by means of a metri
 over attribute

domain. We show that 
ommonly used rules are a spe
ial 
ase of the pro-

posed rules with a spe
i�
 metri
. We also relate the proposed algorithm

to the dis
retisation problem. We illustrate that lazy approa
h 
an omit

the dis
retisation time 
omplexity.

1 Introdu
tion

One of the main goals of ma
hine learning, knowledge dis
overy and data mining

is to indu
e the des
ription of a target 
on
ept from its instan
es. The instan
es


an be represented, e.g., in the form of a de
ision table. Obje
ts from a de
ision

table are represented by values of some features, also 
alled attributes.

In order to obtain an approximation of a 
on
ept with good quality, sear
h-

ing for relevant primitive 
on
epts is required. Feature extra
tion is a problem

of sear
hing for relevant primitive 
on
epts. Two important 
ases of a feature

extra
tion problem are those of presen
e of real value attributes and symboli


(nominal) value attributes with large 
ardinality of domain. In these 
ases we

look for new features like age 2 [30; 50℄ and 
olor 2 fgreen; yellow; blueg respe
-

tively.

A well known approa
h in ma
hine learning is the lazy learning (see e.g. [4℄,

[1℄). We base our resear
h on the lazy rule indu
tion algorithm presented in [1℄.

It 
lassi�es obje
ts equivalently to the algorithm 
onsidering all minimal de
ision

rules, i.e., the most general rules 
onsistent with training examples. We propose

extension of this algorithm to deal with real-value attributes and generalisation

for symboli
 non-ordered attributes. In the latter 
ase we propose des
riptors

for symboli
 attributes grouping the values of the attribute domain. For both

kinds of attributes the partition of attribute domains is made lo
ally for a tested

obje
t.

Our algorithm is related to the problem of dis
retisation of the numeri
al

attributes and the methods for grouping attribute values (see e.g. [8℄, [9℄). Our



approa
h does not require a previous dis
retisation. A similar approa
h for nu-

meri
al attributes was presented in [6℄. However, in our approa
h dis
retisation

is done during 
lassi�
ation lo
ally for a test example. Also our approa
h is

parameterised by the 
hoi
e of a metri
 on non-ordered attributes.

The paper is organised as follows. Se
tion 2 outlines the basi
s of rule indu
-

tion and dis
retisation. In Se
tion 2.3 the algorithm for lazy rule indu
tion is

introdu
ed. Our modi�
ation of this algorithm is presented in Se
tion 3. Se
tion

4 
on
ludes the paper with a dis
ussion of possible dire
tions for future resear
h.

2 Preliminaries

Let A = (U;A [ fdg) be a de
ision table, where U is a �nite set of examples.

Ea
h example is des
ribed by a �nite set of attributes (features) A [ fdg, i.e.

a : U ! V

a

for a 2 A [ fdg, where d =2 A denotes the de
ision attribute and V

a

is the value domain of an attribute a. The domain of a symboli
 (dis
rete-value)

attribute is a �nite set, while the domain of a numeri
al (real-value) attribute is

an interval. We denote by Class(v) a subset of training examples with a de
ision

v. We also assume that V

d

= f1; :::;mg, where m = jV

d

j is �nite.

2.1 Minimal Rule Indu
tion

Rule indu
tion algorithms indu
e de
ision rules from a training set. A de
ision

rule 
onsists of a 
onjun
tion of attribute 
onditions and a 
onsequent. The


ommonly used 
onditions for symboli
 attributes are equations attribute =

value, while for numeri
al attributes are spe
i�ed by interval in
lusions, e.g.:

IF (a

1

= 2 ^ a

3

2 [3; 7℄ ^ a

6

= 5) THEN (d = 1)

A rule is said to 
over an example, and vi
e versa the example is said to mat
h it,

if all the 
onditions in the rule are true for the example. The 
onsequent (d = v)

denotes a de
ision value that is assigned to an obje
t if it mat
hes the rule.

From the knowledge dis
overy perspe
tive, an important problem is to 
om-

pute a 
omplete set of 
onsistent and minimal de
ision rules denoted by Min-

Rules (see e.g. [10℄), i.e. all rules (mat
hed at least by one training example) that

are maximally general and 
onsistent with the training set. In order to dis
over

MinRules, rough set methods 
ould be used (see e.g. [10℄).

The rules indu
ed from training examples are then used to 
lassify obje
ts.

For a given test obje
t the subset of rules mat
hed by the obje
t is sele
ted.

If the obje
t mat
hes only rules with the same de
ision, then the de
ision pre-

di
ted by those rules is assigned to the example. If the test obje
t mat
hes rules


orresponding to di�erent de
isions, the 
on
i
t has to be resolved (see e.g. [2℄).

A 
ommon approa
h is to use a measure for 
on
i
t resolving. Then the de
ision

with the highest measure value is 
hosen. In this paper we fo
us on a 
ommonly



used measure, i.e.:

Strength(tst; v) =

�

�

�

�

�

�

[

r2Mat
hRules(tst;v)

supportSet(r)

�

�

�

�

�

�

; (1)

where v denotes the v-th de
ision (v = 1; :::; jV

d

j), tst is a test example, support-

Set(r) is the set of training examples mat
hing the rule r, Mat
hRules(tst; v) is

the subset of minimal rules MinRules, su
h that the premise is satis�ed by tst

and the 
onsequent is a de
ision v. For ea
h de
ision Strength measure 
ounts

the number of training examples that are 
overed by the minimal rules with the

de
ision mat
hing a test example tst.

The minimal rule indu
tion 
lassi�er based on the Strengthmeasure predi
ts

the de
ision that is most frequent in the set of training examples 
overed by the

rules mat
hed by a test example, i.e.:

de
ision

MinRules

(tst) = argmax

v2V

d

Strength(tst; v) :

Algorithms for 
omputing all minimal rules (MinRules) are very time 
on-

suming, espe
ially when the number of training obje
ts or attributes is large.

This is due to the fa
t that the size of the MinRules set 
an be exponential

with respe
t to the size of the training set. There are also other approa
hes to

indu
e a set of rules, whi
h 
over the input examples using e.g. smallest number

of rules (see e.g. [5℄, [2℄). However, we fo
us in this paper on the MinRules set.

2.2 Dis
retisation and Value Partitioning

When data are des
ribed with real-value attributes, they must undergo a pro-


ess 
alled dis
retisation (or quantisation), whi
h divides the range of attribute

values into intervals. Su
h intervals form new values for the attribute and, in


onsequen
e, allow to redu
e the size of the attribute value set.

Let a be a real-value attribute. A 
ut is de�ned as a pair (a; 
), where 
 2 V

a

.

A set of 
uts over attribute a de�nes a partition on V

a

into sub-intervals. Any set

of 
uts transforms A = (U;A[d) into a new de
ision table A

P

= (U;A

P

[fdg),

where A

P

= fa

P

: a 2 Ag and a

P

(x) = i, a(x) 2 [


a

i

; 


a

i+1

) for any x 2 U and

i 2 f0; :::; k

a

g, where k

a

is the number of 
uts over the attribute a. A set of 
uts

is said to be 
onsistent with A if and only if the generalised de
isions of A and

A

P

are identi
al. For more details on dis
retisation the reader is referred to [8℄.

Our attention in the paper is fo
used on the following theorem (see e.g. [8℄):

Theorem 1. The problem of sear
hing for a 
onsistent partition with the min-

imal number of 
uts is NP-hard.

It shows that the problem of dis
retisation from the global point of view is a


omplex task. We will show in the Subse
tion 3.2 that it is in a sense possible

to over
ome this problem if one fo
uses on a lo
al area instead of the whole

universe. This is the 
ase with the presented lazy rule indu
tion algorithm.



Sometimes it is also desired to partition not only real-value attributes, but

also symboli
 non-ordered attributes. Formally the partition over an attribute a

is any fun
tion P

a

: V

a

! f1; :::;m

a

g. There is a similar theorem to the presented

above (see e.g. [9℄):

Theorem 2. The problem of sear
hing for a 
onsistent family of partitions with

the minimal

P

a2A

m

a

is NP-hard.

2.3 Lazy Rule Indu
tion

In the previous se
tion we have dis
ussed an approa
h based on 
al
ulating

MinRules. Another approa
h 
an be based on 
onstru
tion of algorithms that

do not require 
al
ulation of the de
ision rule set in advan
e. These are memory

based (lazy 
on
ept indu
tion) algorithms. An example of su
h an algorithm is

presented in [1℄. Below we brie
y des
ribe this algorithm.

De�nition 1. For obje
ts tst, trn we denote by rule

H

tst

(trn) the lo
al rule with

de
ision d(trn) and the following 
onditions t

i

for ea
h symboli
 attribute a

i

:

t

i

=

�

a

i

= a

i

(trn) if a

i

(tst) = a

i

(trn)

a

i

= � if a

i

(tst) 6= a

i

(trn)

where * denotes any value (su
h a 
ondition is always true).

The 
onditions are 
hosen in su
h a way that both the training and the test

example satisfy the rule and the rule is maximally spe
i�
. Please note that it

is formed di�erently then minimal rules that are minimally spe
i�
. But, the

important thing is that if only su
h lo
al rule is 
onsistent with the training

data then it 
an be extended to a minimal rule. Thus, we have the following

relation between MinRules and lo
al rules (see e.g. [1℄):

Proposition 1. Premise of the rule

H

tst

(trn) implies a premise of a rule from

the set MinRules if and only if rule

H

tst

(trn) is 
onsistent with a training set.

This proposition shows that instead of 
omputing the support sets for rules 
on-

tained in MinRules and 
overing a new test 
ase, it is suÆ
ient to generate the

lo
al rules formed by the test 
ase with all the training examples and then 
he
k

their 
onsisten
y against the training set. It is done by the lazy rule indu
tion

algorithm (RIA

H

) presented below. The fun
tion isConsistent(r; verifySet)


he
ks if a lo
al rule r is 
onsistent with a verifySet.

Algorithm 3 RIA

H

(tst)

for ea
h de
ision v 2 V

d

supportSet(v) = ;

for ea
h trn 2 U with d(trn) = v

if isConsistent(rule

H

tst

(trn); U) then

supportSet(v) = supportSet(v) [ ftrng

RIA

H

= argmax

v2V

d

jsupportSet(v)j



From Proposition 1 it 
an be 
on
luded that the algorithm RIA

H


omputes

the measure Strength and therefore the results of the mentioned algorithm are

equivalent to the results of the algorithm based on 
al
ulating MinRules and

using the Strength measure as a strategy for 
on
i
t resolving (see [1℄).

Corollary 1. For any test obje
t tst, RIA

H

(tst) = de
ision

MinRules

(tst).

The time 
omplexity of the RIA

H

algorithm for a single test obje
t is O(n

2

),

where n is the number of obje
ts in training data. For more details related to

this algorithm the reader is referred to [1℄.

3 Lazy Rule Indu
tion with Attribute Value Grouping

Here we present the extension of the algorithm presented in the previous se
tion.

The idea is that we want to use more spe
i�
 
onditions forming a lo
al rule

instead of the "star" 
ondition in 
ase when attribute values of the examples

di�er. In a sense star represents the group of all values from the domain of an

attribute. Our idea bases on the observation that it is possible to �nd smaller

groups of attribute values that 
an be more relevant for the 
lassi�
ation.

We divide attributes into two groups a

ording to whether domains of the

attributes are linearly ordered or not. In the �rst group there are numeri
al

attributes and some of linearly ordered symboli
 attributes. For su
h attributes

we form the 
ondition requiring the attribute to lay between the values of the

examples forming a lo
al rule.

Non-ordered attributes are treated di�erently. For ea
h su
h attribute we

require a metri
 to be de�ned (see example in Subse
tion 3.1). Su
h a metri


should measure the distan
e between two values belonging to the domain of the

attribute. Then we 
onsider the group of values whi
h are des
ribed as balls

B

a

(
; R) = fv 2 V

a

: Æ

a

(
; v) � Rg, where a 2 A is an attribute, Æ

a

is a metri


related to this attribute, 
 2 V

a

is a 
enter of the ball and R is a radius of the

ball. Then one 
an measure the distan
e between values of examples and 
reate


ondition allowing only these attribute values that are 
lose to a test example in

terms of the measured distan
e. Hen
e, we propose the following generalisation

of De�nition 1.

De�nition 2. For obje
ts tst, trn we denote by rule

Æ

tst

(trn) the lo
al rule with

de
ision d(trn) and the following 
onditions t

i

for ea
h attribute a

i

:

t

i

=

�

min � a

i

� max when a

i

is linearly ordered

a

i

2 B (a

i

(tst); R

a

i

) otherwise

where min = min(a

i

(tst); a

i

(trn)), max = max(a

i

(tst); a

i

(trn)),

R

a

i

= Æ

a

i

(a

i

(tst); a

i

(trn)) and Æ

a

i

is a measure of attribute value similarity.

For both kinds of attributes the 
onditions are 
hosen in su
h a way that

both the training and the test example satisfy a rule and the 
onditions are

maximally spe
i�
. Using this de�nition one 
an use Algorithm 3 with lo
al



rules rule

Æ

tst

(trn) from De�nition 2 instead of rule

tst

(trn) from De�nition 1.

This algorithm groups attribute values during the 
lassi�
ation and we denote

it by RIA

Æ

.

The advantage of the algorithm for lazy rule indu
tion is that it does not

require generating rules in advan
e. Here we have another advantage, i.e. the

algorithm deals with numeri
al attributes without need of dis
retisation and it

groups symboli
 attributes without prior sear
hing for global partition.

3.1 Metri
s for Attribute Value Grouping and Example

In this se
tion we dis
uss the variety of the proposed lo
al rules while 
hanging

a metri
. First, let us 
onsider the 
ase when all attributes are symboli
 and

when we use Krone
ker delta as a metri
 for all attributes (Æ

H

a

(v

1

; v

2

) = 1 if

v

1

6= v

2

and 0 otherwise). This 
ase relates to the Hamming distan
e between

attribute ve
tor values (
ounting the number of attributes for whi
h examples

di�er). Please note that in 
ase when a

i

(trn) 6= a

i

(tst) then B(a

i

(tst); R

a

i

) = V

a

i

and in 
ase when a

i

(trn) = a

i

(tst), we get B(a

i

(tst); R

a

i

) = fa

i

(tst)g. Thus, the


onditions from De�nition 2 are equivalent to the 
onditions from the De�nition

1 when Krone
ker metri
 is used.

But the proposed generalisation of lo
al rules opens a variety of possibilities

for grouping the attributes. Let us now present more informative alternative of

a metri
 than Hamming distan
e, i.e. Simple Value Di�eren
e Metri
 (SVDM):

Æ

SVDM

a

(v

1

; v

2

) =

X

v2V

d

jP (Class(v)ja = v

1

)� P (Class(v)ja = v

2

)j

q

;

where v

1

; v

1

2 V

a

, a 2 A and q is a natural-value parameter (q = 1; 2; 3; :::).

SVDM 
onsiders two symboli
 values to be similar if they have similar de
ision

distribution, i.e. if they 
orrelate similarly with the de
ision. Di�erent variants

of this metri
 have been su

essfully used previously (see e.g. [3℄).

As an example let us 
onsider the following training set and the test example:

Obje
t Age Weight Gender BloodGroup Diagn Obje
t Age Weight Gender BloodGroup Diagn

trn

1

35 90 M A Si
k trn

5

45 75 M B Si
k

trn

2

40 65 F AB Si
k trn

6

35 70 F B Healthy

trn

3

45 68 F AB Healthy trn

7

45 70 M O Healthy

trn

4

40 70 M AB Healthy tst 50 72 F A ?

Age and Weight are numeri
al while Gender and BloodGroup (BG) are sym-

boli
 non-ordered attributes. Let us take SVDM metri
 for attributes BG and

Gender. We have Æ

SVDM

BG

(A;AB) =

�

�

1�

1

3

�

�

+

�

�

0�

2

3

�

�

=

4

3

, Æ

SVDM

BG

(A;B) = 1,

Æ

SV DM

BG

(A;O) = 2. Let us 
onsider rule

SVDM

tst

(trn

1

) and rule

SVDM

tst

(trn

2

):

if (A 2 [35; 50℄^W 2 [72; 90℄ ^ BG 2 fAg) then Diagn = Si
k

if (A 2 [40; 50℄ ^W 2 [65; 72℄^Gen = F ^ BG 2 fA;AB;Bg)then Diagn = Si
k

The former rule is 
onsistent just be
ause no other obje
t from the training set

satisfy the premise of this rule. The latter rule is in
onsistent be
ause the obje
t

trn

3

satis�es the premise of the rule and has a di�erent de
ision.



3.2 Relation to Dis
retisation

In this se
tion we are going to relate the proposed algorithm to the lo
al dis-


retisation (in the area of a tested obje
t). First, we will introdu
e de�nitions

analogous to the presented in Se
tion 2. Let us 
onsider a de
ision table with all

real-value attributes. We will say that a set of 
uts is lo
ally 
onsistent with A

for a 
ase u if A

P

preserves the generalised de
ision of an obje
t u. The set of


uts is lo
ally irredu
ible if any proper subset of 
uts is not lo
ally 
onsistent.

For ea
h training obje
t we 
onsider all possible 
onsistent and irredu
ible

sets of lo
al 
uts. Please note that there are many possible lo
al 
uts for a single

example and di�erent sets of lo
al 
uts are possible for di�erent examples. Every

set of lo
al 
uts de�nes a rule. The set of all su
h rules over the training obje
ts

is denoted by MinRules

LC

. This is analogous to the 
onstru
tion of MinRules,

where ea
h rule is 
reated lo
ally.

We have the following relation between MinRules

LC

and lo
al rules:

Proposition 2. For de
ision tables with real-value attributes the premise of the

rule

Æ

tst

(trn) implies premise of a rule from the set MinRules

LC

if and only if

rule

Æ

tst

(trn) is 
onsistent with a training set.

Proof. If rule

Æ

tst

(trn) is in
onsistent then no rule fromMinRules

LC


ould be im-

plied by this rule. In other 
ase the lo
al 
uts would not preserve the 
onsisten
y.

If rule

Æ

tst

(trn) is 
onsistent then let us maximally lengthen ea
h interval so that


onsisten
y is preserved. Su
h extended rule is 
ontained in the setMinRules

LC

(from the de�nition of MinRules

LC

).

This is the proposition analogous to Proposition 1. It shows that instead of


omputing the support sets for rules 
ontained in MinRules

LC

and 
overing a

new test 
ase, it is suÆ
ient to generate the lo
al rules rule

Æ

for all training

examples and then 
he
k their 
onsisten
y against the training set. We have also

the analogy to the Corollary 1:

Corollary 2. For any test obje
t tst, RIA

Æ

(tst) = de
ision

MinRules

LC

(tst).

Again it 
an be 
on
luded that the results of the algorithm RIA

Æ

are equivalent

to the results of the algorithm based on 
al
ulating MinRules

LC

and using the

Strength measure as a strategy for 
on
i
t resolving. It shows that in a sense

one 
an over
ome the 
omplexity of dis
retisation problem by using lazy dis
reti-

sation with lazy rule indu
tion. Finally, let us note that the presented results

hold true for a de
ision table with mixed real-value and symboli
 non-ordered

attributes with Krone
ker delta as a measure of attribute value similarity. In

su
h 
ase the proof of Proposition 2 would be analogous to the presented one.

4 Con
lusions and Further Resear
h

We 
onsidered lazy rule indu
tion algorithm. We presented lo
al rules that 
an

deal with all types of attributes without predis
retisation of numeri
al attributes.



Moreover, the presented rules group values of symboli
 attributes. The kind

of grouping depends on the metri
 used. For the spe
ial kind of a metri
, i.e.

Krone
ker delta metri
, the proposed lo
al rules 
oin
ide with the 
ommonly

used rules.

The value grouping of the attributes is made lo
ally, i.e. for ea
h test exam-

ple di�erent grouping is possible. It is parameterised by a metri
 used, thus it

opens many possibilities of forming rules and opens the �eld for a range of ex-

periments. Pra
ti
al veri�
ation of the possible 
lassi�ers needs further resear
h.

As a good starting step we propose SVDM metri
, whi
h gave good results in

many appli
ations.

We also showed interpretation of the lazy rule indu
tion algorithm for real-

value attributes. We showed analogous proposition known for symboli
 attributes.

Further resear
h requires explanation whether a spe
i�
 distribution of train-

ing examples in domain spa
e and the related position of a 
lassi�ed obje
t may

in
uen
e performan
e of the 
reated 
lassi�er. Also it is interesting how noise in

data may in
uen
e �nal results.
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