Local Attribute Value Grouping for Lazy Rule
Induction

Grzegorz Géra and Arkadiusz Wojna

Institute of Informatics
Warsaw University
ul. Banacha 2, 02-097 Warszawa, Poland
{ggora, wojna}@mimuw.edu.pl

Abstract. We present an extension of the lazy rule induction algorithm
from [1]. We extended it to deal with real-value attributes and gener-
alised its conditions for symbolic non-ordered attributes. The conditions
for symbolic attributes are defined by means of a metric over attribute
domain. We show that commonly used rules are a special case of the pro-
posed rules with a specific metric. We also relate the proposed algorithm
to the discretisation problem. We illustrate that lazy approach can omit
the discretisation time complexity.

1 Introduction

One of the main goals of machine learning, knowledge discovery and data mining
is to induce the description of a target concept from its instances. The instances
can be represented, e.g., in the form of a decision table. Objects from a decision
table are represented by values of some features, also called attributes.

In order to obtain an approximation of a concept with good quality, search-
ing for relevant primitive concepts is required. Feature extraction is a problem
of searching for relevant primitive concepts. Two important cases of a feature
extraction problem are those of presence of real value attributes and symbolic
(nominal) value attributes with large cardinality of domain. In these cases we
look for new features like age € [30, 50] and color € {green, yellow, blue} respec-
tively.

A well known approach in machine learning is the lazy learning (see e.g. [4],
[1]). We base our research on the lazy rule induction algorithm presented in [1].
It classifies objects equivalently to the algorithm considering all minimal decision
rules, i.e., the most general rules consistent with training examples. We propose
extension of this algorithm to deal with real-value attributes and generalisation
for symbolic non-ordered attributes. In the latter case we propose descriptors
for symbolic attributes grouping the values of the attribute domain. For both
kinds of attributes the partition of attribute domains is made locally for a tested
object.

Our algorithm is related to the problem of discretisation of the numerical
attributes and the methods for grouping attribute values (see e.g. [8], [9]). Our

approach does not require a previous discretisation. A similar approach for nu-
merical attributes was presented in [6]. However, in our approach discretisation
is done during classification locally for a test example. Also our approach is
parameterised by the choice of a metric on non-ordered attributes.

The paper is organised as follows. Section 2 outlines the basics of rule induc-
tion and discretisation. In Section 2.3 the algorithm for lazy rule induction is
introduced. Our modification of this algorithm is presented in Section 3. Section
4 concludes the paper with a discussion of possible directions for future research.

2 Preliminaries

Let A = (U, AU {d}) be a decision table, where U is a finite set of examples.
Each example is described by a finite set of attributes (features) A U {d}, i.e.
a:U — V, fora € AU {d}, where d ¢ A denotes the decision attribute and V,
is the value domain of an attribute a. The domain of a symbolic (discrete-value)
attribute is a finite set, while the domain of a numerical (real-value) attribute is
an interval. We denote by Class(v) a subset of training examples with a decision
v. We also assume that Vy = {1,...,m}, where m = |V} is finite.

2.1 Minimal Rule Induction

Rule induction algorithms induce decision rules from a training set. A decision
rule consists of a conjunction of attribute conditions and a consequent. The
commonly used conditions for symbolic attributes are equations attribute =
value, while for numerical attributes are specified by interval inclusions, e.g.:

IF (a3 =2Aas € [3;7|Aag =5) THEN (d = 1)

A rule is said to cover an example, and vice versa the example is said to match it,
if all the conditions in the rule are true for the example. The consequent (d = v)
denotes a decision value that is assigned to an object if it matches the rule.

From the knowledge discovery perspective, an important problem is to com-
pute a complete set of consistent and minimal decision rules denoted by Min-
Rules (see e.g. [10]), i.e. all rules (matched at least by one training example) that
are maximally general and consistent with the training set. In order to discover
MinRules, rough set methods could be used (see e.g. [10]).

The rules induced from training examples are then used to classify objects.
For a given test object the subset of rules matched by the object is selected.
If the object matches only rules with the same decision, then the decision pre-
dicted by those rules is assigned to the example. If the test object matches rules
corresponding to different decisions, the conflict has to be resolved (see e.g. [2]).
A common approach is to use a measure for conflict resolving. Then the decision
with the highest measure value is chosen. In this paper we focus on a commonly

used measure, i.e.:

Strength(tst,v) = U supportSet(r)|, (1)
r€MatchRules(tst,v)

where v denotes the v-th decision (v = 1, ...,|V4|), tst is a test example, support-
Set(r) is the set of training examples matching the rule r, MatchRules(tst,v) is
the subset of minimal rules MinRules, such that the premise is satisfied by tst
and the consequent is a decision v. For each decision Strength measure counts
the number of training examples that are covered by the minimal rules with the
decision matching a test example ¢st.

The minimal rule induction classifier based on the Strength measure predicts
the decision that is most frequent in the set of training examples covered by the
rules matched by a test example, i.e.:

decision yrinRuies (tst) = arg max Strength(tst,v) .
veEVy

Algorithms for computing all minimal rules (MinRules) are very time con-
suming, especially when the number of training objects or attributes is large.
This is due to the fact that the size of the MinRules set can be exponential
with respect to the size of the training set. There are also other approaches to
induce a set of rules, which cover the input examples using e.g. smallest number
of rules (see e.g. [5], [2]). However, we focus in this paper on the MinRules set.

2.2 Discretisation and Value Partitioning

When data are described with real-value attributes, they must undergo a pro-
cess called discretisation (or quantisation), which divides the range of attribute
values into intervals. Such intervals form new values for the attribute and, in
consequence, allow to reduce the size of the attribute value set.

Let a be a real-value attribute. A cut is defined as a pair (a, c), where ¢ € V.
A set of cuts over attribute a defines a partition on V, into sub-intervals. Any set
of cuts transforms A = (U, AUd) into a new decision table AP = (U, AP U {d}),
where AP = {a” :a € A} and a”(z) =i & a(z) € [¢},c},,) for any z € U and
i €{0,...,k,}, where k, is the number of cuts over the attribute a. A set of cuts
is said to be consistent with A if and only if the generalised decisions of A and
AP are identical. For more details on discretisation the reader is referred to [8].
Our attention in the paper is focused on the following theorem (see e.g. [8]):

Theorem 1. The problem of searching for a consistent partition with the min-
imal number of cuts is NP-hard.

It shows that the problem of discretisation from the global point of view is a
complex task. We will show in the Subsection 3.2 that it is in a sense possible
to overcome this problem if one focuses on a local area instead of the whole
universe. This is the case with the presented lazy rule induction algorithm.

Sometimes it is also desired to partition not only real-value attributes, but
also symbolic non-ordered attributes. Formally the partition over an attribute a
is any function P, : V;, = {1, ...,m,}. There is a similar theorem to the presented
above (see e.g. [9]):

Theorem 2. The problem of searching for a consistent family of partitions with
the minimal), 4 mq is NP-hard.

2.3 Lazy Rule Induction

In the previous section we have discussed an approach based on calculating
MinRules. Another approach can be based on construction of algorithms that
do not require calculation of the decision rule set in advance. These are memory
based (lazy concept induction) algorithms. An example of such an algorithm is
presented in [1]. Below we briefly describe this algorithm.

Definition 1. For objects tst, trn we denote by rulell,(trn) the local rule with
decision d(trn) and the following conditions t; for each symbolic attribute a;:

P T a;(trn) if a;(tst) = a;(trn)
T e =+ if a;(tst) # a;(trn)

where * denotes any value (such a condition is always true).

The conditions are chosen in such a way that both the training and the test
example satisfy the rule and the rule is maximally specific. Please note that it
is formed differently then minimal rules that are minimally specific. But, the
important thing is that if only such local rule is consistent with the training
data then it can be extended to a minimal rule. Thus, we have the following
relation between MinRules and local rules (see e.g. [1]):

Proposition 1. Premise of the rulell,(trn) implies a premise of a rule from
the set MinRules if and only if rulell,(trn) is consistent with a training set.

This proposition shows that instead of computing the support sets for rules con-
tained in MinRules and covering a new test case, it is sufficient to generate the
local rules formed by the test case with all the training examples and then check
their consistency against the training set. It is done by the lazy rule induction
algorithm (RIAH) presented below. The function isConsistent(r,verifySet)
checks if a local rule r is consistent with a verifySet.

Algorithm 3 RIAY(tst)
for each decision v € Vy
supportSet(v) = ()
for each trn € U with d(trn) = v
if isConsistent(rulell,(trn),U) then
supportSet(v) = supportSet(v) U {trn}
RIAY = argmax |supportSet(v)]

vEVy

From Proposition 1 it can be concluded that the algorithm RIA™ computes
the measure Strength and therefore the results of the mentioned algorithm are
equivalent to the results of the algorithm based on calculating MinRules and
using the Strength measure as a strategy for conflict resolving (see [1]).

Corollary 1. For any test object tst, RIA™ (tst) = decision rinRutes (tst).

The time complexity of the RIAH algorithm for a single test object is O(n?),
where n is the number of objects in training data. For more details related to
this algorithm the reader is referred to [1].

3 Lazy Rule Induction with Attribute Value Grouping

Here we present the extension of the algorithm presented in the previous section.
The idea is that we want to use more specific conditions forming a local rule
instead of the ”star” condition in case when attribute values of the examples
differ. In a sense star represents the group of all values from the domain of an
attribute. Our idea bases on the observation that it is possible to find smaller
groups of attribute values that can be more relevant for the classification.

We divide attributes into two groups according to whether domains of the
attributes are linearly ordered or not. In the first group there are numerical
attributes and some of linearly ordered symbolic attributes. For such attributes
we form the condition requiring the attribute to lay between the values of the
examples forming a local rule.

Non-ordered attributes are treated differently. For each such attribute we
require a metric to be defined (see example in Subsection 3.1). Such a metric
should measure the distance between two values belonging to the domain of the
attribute. Then we consider the group of values which are described as balls
B,(c,R) = {v € V, : §,(c,v) < R}, where a € A is an attribute, 4, is a metric
related to this attribute, ¢ € V, is a center of the ball and R is a radius of the
ball. Then one can measure the distance between values of examples and create
condition allowing only these attribute values that are close to a test example in
terms of the measured distance. Hence, we propose the following generalisation
of Definition 1.

Definition 2. For objects tst, trn we denote by rulel,(trn) the local rule with
decision d(trn) and the following conditions t; for each attribute a;:

_ Jmin <a; <max when a; is linearly ordered
! a; € B (a;(tst), Ry;) otherwise

where min = min(a;(tst), a;(trn)), maz = max(a;(tst), a;(trn)),
Ry, = b4, (a;(tst),a;(trn)) and 04, is a measure of attribute value similarity.

For both kinds of attributes the conditions are chosen in such a way that
both the training and the test example satisfy a rule and the conditions are
maximally specific. Using this definition one can use Algorithm 3 with local

rules rulef,,(trn) from Definition 2 instead of rules(trn) from Definition 1.
This algorithm groups attribute values during the classification and we denote
it by RIA’.

The advantage of the algorithm for lazy rule induction is that it does not
require generating rules in advance. Here we have another advantage, i.e. the
algorithm deals with numerical attributes without need of discretisation and it
groups symbolic attributes without prior searching for global partition.

3.1 Metrics for Attribute Value Grouping and Example

In this section we discuss the variety of the proposed local rules while changing
a metric. First, let us consider the case when all attributes are symbolic and
when we use Kronecker delta as a metric for all attributes (67 (vy,v2) = 1 if
v1 # ve and 0 otherwise). This case relates to the Hamming distance between
attribute vector values (counting the number of attributes for which examples
differ). Please note that in case when a;(trn) # a;(tst) then B(a;(tst), Ry,) = Va,
and in case when a;(trn) = a;(tst), we get B(a;(tst), Rq,;) = {a;(tst)}. Thus, the
conditions from Definition 2 are equivalent to the conditions from the Definition
1 when Kronecker metric is used.

But the proposed generalisation of local rules opens a variety of possibilities
for grouping the attributes. Let us now present more informative alternative of
a metric than Hamming distance, i.e. Simple Value Difference Metric (SVDM):

§SVDM (41 1) Z |P(Class(v)|a = v1) — P(Class(v)|a = v2)|?,
veEVy

where v1,v; € V,, a € A and ¢ is a natural-value parameter (¢ = 1,2,3,...).
SVDM considers two symbolic values to be similar if they have similar decision
distribution, i.e. if they correlate similarly with the decision. Different variants
of this metric have been successfully used previously (see e.g. [3]).

As an example let us consider the following training set and the test example:

Object|Age|Weight|Gender|BloodGroup| Diagn ||Object|Age|Weight|Gender|BloodGroup| Diagn
trny 35| 90 M A Sick || trns [45| 75 M B Sick
trns 40| 65 F AB Sick trne | 35| 70 F B Healthy
trns |45| 68 F AB Healthy|| trny 45| 70 M O Healthy
trng 40| 70 M AB Healthy|| tst [50| 72 F A ?

Age and Weight are numerical while Gender and BloodGroup (BG) are sym-
bolic non-ordered attributes. Let us take SVDM metric for attributes BG and
Gender. We have 63V.PM (A, AB) = |1 | +10-2| =3, 056°M(4,B) =1,

SpePM(A,0) = 2. Let us con51der rule,i‘t/?) (trny) and ruletss‘t/DM(trm):

if (A € [35;50] AW € [72;90] A BG € {A}) then Diagn = Sick

if (A € [40;50] AW € [65;72] A Gen = F A BG € {A, AB, B})then Diagn = Sick

The former rule is consistent just because no other object from the training set
satisfy the premise of this rule. The latter rule is inconsistent because the object
trns satisfies the premise of the rule and has a different decision.

3.2 Relation to Discretisation

In this section we are going to relate the proposed algorithm to the local dis-
cretisation (in the area of a tested object). First, we will introduce definitions
analogous to the presented in Section 2. Let us consider a decision table with all
real-value attributes. We will say that a set of cuts is locally consistent with A
for a case u if AP preserves the generalised decision of an object u. The set of
cuts is locally irreducible if any proper subset of cuts is not locally consistent.

For each training object we consider all possible consistent and irreducible
sets of local cuts. Please note that there are many possible local cuts for a single
example and different sets of local cuts are possible for different examples. Every
set of local cuts defines a rule. The set of all such rules over the training objects
is denoted by MinRulesr,c. This is analogous to the construction of MinRules,
where each rule is created locally.

We have the following relation between MinRulesyc and local rules:

Proposition 2. For decision tables with real-value attributes the premise of the
rulel,,(trn) implies premise of a rule from the set MinRulespc if and only if
rulel,(trn) is consistent with a training set.

Proof. 1f rulel,,(trn) is inconsistent then no rule from MinRules,c could be im-
plied by this rule. In other case the local cuts would not preserve the consistency.
If ruled,, (trn) is consistent then let us maximally lengthen each interval so that
consistency is preserved. Such extended rule is contained in the set MinRulesyc
(from the definition of MinRulesrc).

This is the proposition analogous to Proposition 1. It shows that instead of
computing the support sets for rules contained in MinRulesy,c and covering a
new test case, it is sufficient to generate the local rules ruled for all training
examples and then check their consistency against the training set. We have also
the analogy to the Corollary 1:

Corollary 2. For any test object tst, RIA®(tst) = decisionirinRutes, (t5t).

Again it can be concluded that the results of the algorithm RIA° are equivalent
to the results of the algorithm based on calculating MinRulesrc and using the
Strength measure as a strategy for conflict resolving. It shows that in a sense
one can overcome the complexity of discretisation problem by using lazy discreti-
sation with lazy rule induction. Finally, let us note that the presented results
hold true for a decision table with mixed real-value and symbolic non-ordered
attributes with Kronecker delta as a measure of attribute value similarity. In
such case the proof of Proposition 2 would be analogous to the presented one.

4 Conclusions and Further Research

We considered lazy rule induction algorithm. We presented local rules that can
deal with all types of attributes without prediscretisation of numerical attributes.

Moreover, the presented rules group values of symbolic attributes. The kind
of grouping depends on the metric used. For the special kind of a metric, i.e.
Kronecker delta metric, the proposed local rules coincide with the commonly
used rules.

The value grouping of the attributes is made locally, i.e. for each test exam-
ple different grouping is possible. It is parameterised by a metric used, thus it
opens many possibilities of forming rules and opens the field for a range of ex-
periments. Practical verification of the possible classifiers needs further research.
As a good starting step we propose SVDM metric, which gave good results in
many applications.

We also showed interpretation of the lazy rule induction algorithm for real-
value attributes. We showed analogous proposition known for symbolic attributes.

Further research requires explanation whether a specific distribution of train-
ing examples in domain space and the related position of a classified object may
influence performance of the created classifier. Also it is interesting how noise in
data may influence final results.

Acknowledgements. The authors are grateful to prof. Andrzej Skowron and
dr Marcin Szczuka for their useful remarks. This work was supported by grants
8 T11C 009 19 and 8 T11C 025 19 from the Polish National Committee for
Scientific Research.

References

1. Bazan, J.G. (1998). Discovery of decision rules by matching new objects against
data tables. In: L. Polkowski, A. Skowron (eds.), Proceedings of the First Interna-
tional Conference on Rough Sets and Current Trends in Computing (RSCTC-98),
Warsaw, Poland, pp. 521-528.

2. Bazan, J.G., Szczuka, M. (2000). RSES and RSESlib - A Collection of Tools for
Rough Set Computations. In: W. Ziarko, Y. Yao (eds.), Proceedings of the Sec-
ond International Conference on Rough Sets and Current Trends in Computing
(RSCTC-2000), Banf, Canada, pp. 106-113.

3. Biberman, Y. (1994). A context similarity measure. Proceedings of the Ninth Euro-
pean Conference on Machine Learning, pp. 49-63, Catania, Italy: Springer-Verlag.

4. Friedman, J.H., Kohavi, R., Yun, Y. (1996). Lazy Decision Trees. Proceedings
of the Thirteenth National Conference on Artificial Intelligence, Cambridge, pp.
717-724, MA: MIT Press.

5. GrzymalaBusse, JW. (1992). LERS—A system for learning from examples based
on rough sets. In: R. Slowinski (Ed.) Intelligent Decision Support. Handbook of Ap-
plications and Advances of the Rough Sets Theory. Kluwer Academic Publishers,
Dordrecht, Boston, London, pp. 3-18.

6. Grzymala-Busse, J.W., Stefanowski, J. (1997). Discretization of numerical at-
tributes by direct use of the LEM2 induction algorithm with interval extension.
Proceedings of the VI Int. Symp. on Intelligent Information Systems, Zakopane,
IPI PAN Press, pp. 149-158.

7. Michalski, R.S. (1983). A theory and methodology of inductive learning. Artificial
Intelligence, 20, pp. 111-161.

8.

10.

Nguyen, H. Son and Nguyen, S. Hoa. (1998). Discretization Methods in Data Min-
ing In: Polkowski, L., Skowron A. (eds.) Rough sets in knowledge discovery 1 -
methodology and applications, Physica-Verlag, Heidelberg, pp. 451-482.

Nguyen, S. Hoa (1999). Regularity analysis and its applications in data mining
Ph.D Dissertation, Warsaw University.

Skowron, A. and Rauszer, C. (1992). The Discernibility Matrices and Functions in
Information Systems. R. Stowiniski (ed.), Intelligent Decision Support. Handbook
of Applications and Advances of the Rough Set Theory, pp. 331-362, Dordrecht:
Kluwer.

