
Fundamenta Informaticae XX (2003) 1–26 1

IOS Press

Center-Based Indexing in Vector and Metric Spaces

Arkadiusz Wojna

Institute of Informatics, Warsaw University

ul. Banacha 2, 02-097 Warsaw, Poland

wojna@mimuw.edu.pl

Abstract. The paper addresses the problem of indexing data for k nearest neighbors (k-nn) search.

Given a collection of data objects and a similarity measure the searching goal is to find quickly

the k most similar objects to a given query object. We present a top-down indexing method that

employs a widely used scheme of indexing algorithms. It starts with the whole set of objects at the

root of an indexing tree and iteratively splits data at each level of indexing hierarchy. In the paper

two different data models are considered. In the first, objects are represented by vectors from a

multi-dimensional vector space. The second, more general, is based on an assumption that objects

satisfy only the axioms of a metric space. We propose an iterative k-means algorithm for tree node

splitting in case of a vector space and an iterative k-approximate-centers algorithm in case when

only a metric space is provided. The experiments show that the iterative k-means splitting procedure

accelerates significantly k-nn searching over the one-step procedure used in other indexing structures

such as GNAT, SS-tree and M-tree and that the relevant representation of a tree node is an important

issue for the performance of the search process. We also combine different search pruning criteria

used in BST, GHT nad GNAT structures into one and show that such a combination outperforms

significantly each single pruning criterion. The experiments are performed for benchmark data sets

of the size up to several hundreds of thousands of objects. The indexing tree with the k-means

splitting procedure and the combined search criteria is particularly effective for the largest tested

data sets for which this tree accelerates searching up to several thousands times.

1. Introduction

The problem of similarity based searching is an extension of the exact searching widely used in text and

database applications. It is assumed that a distance measure is defined on objects and the problem is to

find k objects from a given set of objects that are nearest to a given query object. The problem plays

an important role for multimedia, machine learning and data mining applications, in particular k-nn is

one of the most popular classification models [13], [15] used by researchers and practitioners. For a

long time k-nn was not used for real-life applications because of its large computational complexity but

2

(c)

splitting splitting

splitting

(a) (b)

Figure 1. Indexing and searching in a data set: (a) a hierarchical structure of data clusters (b) an indexing tree

with nodes corresponding to data clusters (c) search pruning in an indexing tree

the technology advance in recent decade allowed to apply the method to numerous domains like spatial

databases, text information retrieval, image, audio and video recognition, DNA and protein sequence

matching, planning and time series matching (e.g., in stock market prognosis and weather forecasting)

[2, 33].

We restrict our consideration to application of k-nn mainly for object classification. It requires fast

access to data therefore we concentrate on the case when data are kept in the main memory. With growing

size of the main memory in data servers this case attracts more and more attention of people working in

different application areas.

The basic approach to searching for nearest neighbors in a collection of objects is to compute the

distance from a query object to each data object in the collection and to select the objects with the

smallest distance. If the size of the collection is n and the number of queries is m the computational

cost of finding the nearest neighbors to all queries is O(mn). In many applications the size of a database

is large (e.g., hundreds of thousands of objects) and then the cost O(mn) is not acceptable. To reduce

the cost of searching one can construct an indexing structure. The general idea of indexing is based on

splitting the whole collection of objects into clusters in such a way that each cluster contains objects

from the same region of a data space (Figure 1a). Each cluster has a compact representation that allows

to check quickly whether the cluster can contain the nearest neighbors of a query object (Figure 1b).

Instead of comparing a query object directly with each data object first it is compared against some

whole regions. If it occurs that a region does not contain the nearest neighbors it is discarded from

searching and in this way time for a large number of distance computations is saved (Figure 1c).

An important issue for indexing method construction are the initial assumptions made about a data

space. Two models are used. The first one assumes that data objects are represented by vectors from

a vector space. This model is applicable to structural databases and complex multimedia objects trans-

formable to feature vectors. It allows an indexing algorithm to use algebraic operations on objects:

summation and scaling and to construct new objects, e.g. the mean of a set of objects. However, not all

databases fit to the model of a vector space. In particular, there are spaces for which a distance function

is provided (so called metric spaces) not based on feature vectors, e.g., texts with the editing distance,

DNA or time dependent sequences or plans. This model is based on an assumption that only a positive

distance function is defined for all pairs of data objects and structural properties of data are not used. In

the paper, we present two variants of the same tree-based indexing method: for the case of a vector space

3

(c)

c
i

n
j

c

qrq

qrq

n
j

c

qrq

c
n

nr

n

n

j

j
n

i
ni

n m

M
i,j

i,j

(a) (b)

n

Figure 2. Three search pruning criteria: (a) the covering radius from BST (b) the hyperplane cut from GHT (c)

the rings based from GNAT

and for the case of a metric space.

The tree structure considered in the paper is similar to the tree structures reported in BST [21], GHT

[32], GNAT [9], SS-tree [38] and M-tree [11]. It is constructed using a top-down strategy that starts

with the whole data set at the root of a tree and recursively at each node splits data objects into a fixed

number k of smaller clusters (Figures 1a,1b). The main features that differentiate our tree structure from

the above indexing structures are the node splitting procedure (Figure 1b) and the search pruning criteria

(Figure 1c).

All the above mentioned methods from the literature use a one-step clustering procedure to split a

node in a tree. Such procedure selects a number of cluster centers among objects at the node and assigns

each data object from the node to the nearest center. We propose a similar procedure but for every

splitting step the clustering procedure is repeated iteratively until the cluster centers become stable. The

experiments with real-life data sets described in Section 11 show that our iterative splitting procedure

improves the effectiveness of the indexing tree. This empirical fact is supported by the theoretical result

of Savaresi and Boley [28] who have proved that for an infinite elliptical model the iterative 2-means

clustering procedure converges to a partition across the principal direction of data distribution.

As the search pruning criterion we propose the combination of three criteria from BST [21], GHT

[32] and GNAT [9]. All three structures use the same clustering procedure that selects a number of centers

and assigns each data object to the nearest center. However, each of the methods uses a different pruning

criterion. BST keeps the center cn and the covering radius rn for each tree node n and uses the covering

radius criterion to prune branches of the tree (see Figure 2a). The branch is discarded when the distance

ρ(cn, q) between the center cn and the query object q is larger than the sum rn +rq of the covering radius

rn and the distance rq := ρ(q, xnearest) between the query object q and the previously found nearest

neighbor xnearest. GHT is constructed analogously as BST but it uses hyperplanes separating subnodes

of the same parent as the pruning criterion instead of the covering radius (see Figure 2b). Assume that cni

and cnj
are the centers of two nodes ni and nj and h is the hyperplane midperpendicular to the segment

connecting cni
and cnj

. Then the node ni is discarded if the whole query ball is placed beyond the

hyperplane h on the side of the node nj , i.e., if ρ(cni
, q) − rq > ρ(cnj

, q) + rq. GNAT pruning criterion

4

is also based on mutual relation between clusters but it is more complex (see Figure 2c). If the degree of a

tree node is k then each child node ni keeps the minimal mi,1, . . . , mi,k and the maximal Mi,1, . . . , Mi,k

distances from its elements to the centers of the remaining child nodes. Then the node ni is discarded if

there is a node nj centered in cnj
such that either ρ(q, cnj

)+rq < mi,j or ρ(q, cnj
)−rq > Mi,j . Since all

the above methods are based on the nearest center clustering procedure the search method presented in

the paper combines all three pruning criteria into one. The experiments with real-life data sets described

in Section 10 show that such a combination is more effective than any single criterion.

The main result of the paper is the method of constructing the indexing tree with the k-means based

splitting procedure and the complex search pruning criteria as the new indexing structure. In Section 11

we show that searching based on the method presented in the paper is several times faster than in case

of the tree with a one-step splitting procedure and a single criterion. Hence, in case of large databases it

can accelerate searching even up to several thousands times in comparison to the linear search.

The paper is organized as follows. Section 2 describes results reported in literature that are related to

the subject. Section 3 introduces the distance function used for similarity measure. Section 4 presents the

general model of k-nn search. Section 5 describes the data sets used in tests. The general schemes of the

indexing and the searching methods are presented in Section 6. Section 7 defines the k-means for splitting

tree nodes in vector spaces and generalizes it to the k-approximate-centers for metric spaces. Section

8 discusses the problem of the initial centers selection in the k-means splitting procedure. Section 9

reports on experimental results and includes discussion related to selection of the degree of an indexing

tree node. Section 10 presents three criteria for search pruning and provides experimental results and

analysis of significance of particular criteria. Section 11 provides experimental results comparing the

performance of the iterative splitting procedures to a non-iterative one and to other methods known from

the literature. In Section 12 the costs of indexing and searching are compared and discussed. Section 13

concludes the paper with a brief summary and discussion of possible directions for future research.

2. Related Work

The fundamental notion for k-nn is a distance measure. As a distance we use a weighted version of the

Value Difference Metric (VDM) introduced by Stanfill and Waltz [31]. The VDM metric is an instance

of a metric induced from the Lp norm. Originally Stanfill and Waltz used the Euclidean distance. Cost

and Salzberg [12] used a simplified version of the VDM metric with the city block distance instead of

the Euclidean. Aggarwal et al. [1] examine the meaningfulness of the concept of similarity in high-

dimensional spaces with the Lp norm based metric and show that the smaller p the more effective metric

is induced from the norm Lp. Our experiments confirmed this theoretical result and in the paper we

use the metric with the city block distance definition. The experimental evaluation of the non-weighted

version of the VDM metric is contained in [18, 19]. As an attribute weighting method we use an original

algorithm described in Section 3. An exhaustive overview of other weighting methods is provided in

[37].

In many applications k-nn provides a classification model for a decision system. The foundations

of this model are described in [24]. Wettschereck in his PhD thesis [36] presents an exhaustive analysis

of different versions of k-nn with empirical evaluation of particular algorithms. In our work we use the

majority voting as the method for decision selection.

With the increasing interest in the similarity based searching strategies a considerable effort has been

5

made to accelerate searching techniques and a number of indexing methods both general and for partic-

ular applications have been developed. It was recognized that bottom-up constructions such as Ward’s

clustering [34] lead to a very good performance but the O(n2) complexity of such constructions has

made this approach too expensive for most of applications and the top-down scheme has remained more

popular in practice. As a future work Brin suggested to consider a scheme with a top-down construction

that is iteratively improved until it converges to a bottom-up type construction [9].

Since a great part of applications is associated with structural databases and multimedia objects

transformed to feature vectors a number of indexing techniques have been developed for vector spaces

(e.g., quad-trees [16] and k-d trees [4]). The cost of a distance computing operation between two vectors

is usually low so the methods such as grid-files [25], k-d-b tree [26], R-tree [20] and its variants R+-

tree [29] and R⋆-tree [3] were set on optimizing the number of I/O operations. The above techniques

generally work well for low dimensional problems, but the performance degrades rapidly with increasing

dimensionality. This phenomenon called the dimensional curse have been theoretically substantiated by

Beyer et al. [6]. They proved that under certain reasonable assumptions the ratio of the nearest and

the farthest neighbors converges to 1 while increasing dimensionality. In order to avoid the problem

some specialized methods for high-dimensional spaces have been proposed: X-trees [5], SR-trees [22],

TV-trees [23] and VA-files [35].

All the above tree based methods are based on regions that are hypercubes so the application of these

methods is strictly limited to vector spaces. However, a large number of databases with other kinds of

distance measures have raised an increase of interest in general distance-based indexing methods and

in our work we have focused on this more general case. An exhaustive overview of indexing methods

for metric spaces is contained in [10]. SS-tree [38] uses a more general clustering scheme with spheres

instead of rectangles as bounding regions but it is still limited because it uses the mean as the center of a

cluster. A general distance-based indexing scheme is used in BST [21] and GHT [32]. In both cases trees

have the same construction but different pruning criteria are used. GNAT [9], SS-tree [38] and M-tree

[11] are specialized versions of the BST/GHT tree. To balance the tree GNAT computes the number of

child nodes for each node separately. As the splitting procedure GNAT uses an algorithm that selects

from a sample a previously computed number of centers and assigns the objects from the parent node

to the nearest centers. SS-tree and M-tree are focused on optimizing the number of I/O operations so

they maintain a structure of nodes analogical to B-trees and allow a dynamic growth of the database.

Clustering in M-tree is similar to clustering algorithm in SS-tree but M-tree uses either a random or a

sampled set of centers instead of the means. Hence, it uses only a distance function and is applicable

to any metric space. All the above structures use a one-step procedure for splitting tree nodes. In our

method we propose an iterative procedure instead of the one-step and combine three search pruning

criteria from BST, GHT and GNAT into one.

3. Distance Function

We assume that data objects are given from a pseudometric space X with a distance function ρ : X
2 → R

such that for any x, y, z ∈ X:

1. ρ(x, y) ≥ 0 (positivity)

2. ρ(x, y) = ρ(y, x) (symmetry)

6

3. ρ(x, x) = 0 (reflexivity)

4. ρ(x, y) + ρ(y, z) ≥ ρ(x, z) (triangular inequality)

The triangular inequality is important for the performance of a searching process. All search pruning

criteria are based on this property. In many papers the definition of a distance function satisfies the strict

positivity: x 6= y ⇒ ρ(x, y) > 0. However, a number of important distance measures as the VDM

metric [31] does not satisfy the strict positivity and all the indexing methods mentioned in the previous

sections do not require this property to be satisfied.

The performance of the k-nn based classification method depends critically on the distance function

used to measure similarity among data objects. All the data sets used in our experiments have data

objects represented as vectors of attribute values x = (x1, . . . , xd) so we have assumed a d-dimensional

vector space with both numerical and symbolic attributes. As a general scheme of a distance measure

between two data objects x = (x1, . . . , xd) and y = (y1, . . . , yd) we have used the L1-norm based

distance definition:

ρ(x, y) =
d

∑

i=1

ρi(xi, yi)

where ρi(·, ·) is a measure of attribute value similarity. Aggarwal et al. [1] have examined the meaning-

fulness of the concept of similarity in high-dimensional spaces with the Lp-norm based metric and show

that the smaller p the more effective metric is induced from the norm Lp. In the context of this result

the L1-norm based distance is the optimal trade-off between the quality of the measure and the indexing

capabilities: the p = 1 is the minimal index among the Lp norms that preserves the triangular inequality.

The fractional distance measures (with p < 1) do not have this property.

In the paper we use a metric specialized for decision systems, i.e., we assume that a training data set

U is provided to induce the metric and each data object x ∈ U is labeled with a decision dec(x) from

a finite set Vd. The metric combines the distances specialized for numerical and for symbolic attributes

[14]. For numerical attributes we follow a widely used approach taking the difference between attribute

values normalized by its largest observed value difference [27]:

ρi(xi, yi) = wi

∣

∣

∣

∣

xi − yi

maxi − mini

∣

∣

∣

∣

(1)

where maxi and mini are the maximal and the minimal value observed for the attribute i in the training

set U. The values wi are the weights computed in the second phase of the metric induction process.

For symbolic attributes we have used the VDM metric [12, 31] that considers two symbolic values to be

similar if they imply similar decision distribution, i.e. if they correlate similarly with the decision:

ρi(xi, yi) = wi

∑

v∈Vd

|P (Class(v)|xi) − P (Class(v)|yi)| (2)

where Class(v) = {x ∈ U : dec(x) = v} is the decision class of v. Different variants of this metric

have been successfully used previously (see e.g. [31], [12], [7]). An experimental analysis of the quality

of the non-weighted version of this metric for a classification task is provided in [18, 19]. The results

in [18, 19] show that this metric with k-nn gives classification accuracy at least as good as other widely

used methods such as C5.0.

7

Algorithm 1 Weighting procedure

for each attribute wi := 1.0
modifier := 0.9
convergence := 0.9
repeat l times

Utrn := a random training sample from U

Utst := a random test sample from U

QR =
∑

x∈Utst: dec(x)=dec(nearesttrn(x)) ρ(x,nearesttrn(x))
∑

x∈Utst
ρ(x,nearesttrn(x))

for each attribute i

QR(i) =
∑

x∈Utst: dec(x)=dec(nearesttrn(x)) ρi(xi,nearesttrn(x)i)
∑

x∈Utst
ρi(xi,nearesttrn(x)i)

if QR(i) > QR then wi := wi + modifier

modifier := modifier ∗ convergence

As a weighting procedure we have used Algorithm 1. At the beginning it assigns the equal weights

wi := 1.0 to all attributes and iteratively improves the weights. At each iteration the algorithm selects

a random training and a random test samples Utrn and Utst, classifies each test object x from Utst with

its nearest neighbor in Utrn and computes the global quality ratio QR and the quality ratio QR(i) for

each attribute i. The quality ratio is the ratio between the sums of the distances to the nearest neighbors

ρ(x, nearesttrn(x)) for the correctly classified objects and for all training objects. All attributes i that

have the quality ratio QR(i) higher than the global quality ratio QR have the weights wi increased. In

order to make the procedure convergable the coefficient modifier used to modify weights is decreased

at each iteration of the algorithm.

4. K-nn

K-nn is a widely used classification method that for a given test object x assigns a decision that is inferred

from the decisions of the set S(x, k) of the k nearest training data objects from U according to similarity

measure ρ. In the paper we used one of the most popular procedures to determine a decision for a test

object x on the basis of the neighborhood S(x, k). For any decision value v the Strength measure

counts the number of training examples from S(x, k) with the decision v:

Strength(x, v) = |{y ∈ S(x, k) : dec(y) = v}|

As a decision for a test object x the algorithm assigns the most frequent decision in the set of the k nearest

neighbors S(x, k):
decisionk−nn(x) = arg max

v∈Vd

Strength(x, v)

In [18, 19] we have reported that classification accuracy can significantly depend on the value of k

used to test objects and a different k is appropriate for different problem domains. Therefore, in terms

of accuracy of the algorithm, it is important to find the optimal neighborhood size k. To estimate the

optimal value of k one may use the leave-one-out method applied to the training set U. The method

estimates the classification accuracy of the classifier for different values of k (1 ≤ k ≤ kmax) and the

8

Table 1. Classification error of k-nn with the best k selected from the range 1 ≤ k ≤ 100

Dataset Trn size Test size 1-nn Best k Best k-nn

segment 1 540 770 2,34% 1 2,34%

splice (DNA) 2 000 1 186 6,83% 18 5,65%

chess 2 131 1 065 1,98% 1 1,98%

satimage 4 435 2 000 10,85% 10 9,50%

mushroom 5 416 2 708 0% 1 0%

pendigits 7 494 3 498 2,69% 4 2,41%

nursery 8 640 4 320 1,14% 1 1,14%

letter 15 000 5 000 3,06% 1 3,06%

census94 30 162 15 060 20,50% 47 15,74%

shuttle 43 500 14 500 0,05% 1 0,05%

census94-95 199 523 99 762 6,79% 17 4,92%

covertype 387 308 193 704 3,64% 3 3,57%

value k for which the estimation is the greatest is selected. Applying it directly would require repeating

leave-one-out estimation kmax times. However, this process may be emulated in time comparable to the

single leave-one-out test for k equal to the maximal possible value k = kmax. The detailed description

of the procedure is provided in [18, 19].

5. Data Sets

We have performed experiments with different indexing and search methods for 12 benchmark data sets

from the UCI repository [8]. The size of data sets ranges from a few thousands to several hundreds of

thousands. The data sets provided as a single file (segment, chess, mushroom, nursery, covertype) have

been randomly split into a training and a test part with the ratio 2 to 1. The remaining data sets (splice,

satimage, pendigits, letter, census94, shuttle, census94-95) have been tested with the originally provided

partition. All experiments were performed on an AMD Athlon XP 2100+, with 1024Mb of RAM.

Table 1 presents an exemplary classification accuracy obtained with k-nn from a range of performed

tests. Classification accuracy does not depend on the selection of an indexing and a searching methods

to be used but there are other factors. For all data sets originally split into a training and a test parts

the only factor that causes different accuracy at different experiments is the weighting procedure from

Section 3 where the final weight values depend on a random selection of a training and a test samples

for each weighting iteration. For data sets to be randomly split the accuracy depends also on a partition

used. To make the results comparable for each issue discussed in the next sections we have performed

the experiments with the same distance weights and the same partition for each data set. To provide

some information about significance of the accuracy results we have compared classification error from

5 experiments and noticed that for 1-nn the differences in the classification error were up to 1% and for

9

Algorithm 2 Indexing schema

k - the splitting degree of tree nodes

root - the top node with all training data objects from U

priorityQueue - the priority queue of leaf nodes used

for selection of the next node to be split

priorityQueue := {root}
repeat

parent := the next node from priorityQueue to be split

splitCluster(parent, k)
add k child nodes of parent to priorityQueue

until the ratio between

the number of nodes in priorityQueue and |U| is ≥ 1
5

the best k-nn the differences were up to 0,5%. The goal of our work is not to analyze the quality of

the used metric. If one is interested in this issue a statistically significant analysis of the used distance

function is provided in [18, 19].

For each data set the classification error was measured for different values of k and in Table 1 the

highest accuracy among all tested k is given. It is impossible to know the best k before tests but one can

use the estimation procedure described in Section 4 in order to provide a good estimation of the best k

[18, 19].

6. Indexing and Searching

Most of the distance based indexing methods reported in the literature [16, 4, 26, 20, 29, 3, 5, 22, 23, 21,

32, 9, 38, 11] and all the methods presented in the paper are based on a tree data structure. Algorithm 2

presents a general indexing scheme introduced by Fukunaga and Narendra [17]. All indexing algorithms

presented in the paper fit to this scheme. It starts with the whole training data set U and recursively

splits data objects into a fixed number k of smaller clusters. The main features that distinguish different

indexing trees are the splitting degree of tree nodes k, the splitting procedure splitCluster and the

pruning criteria used in a search process.

Algorithm 2 assumes that the splitting degree k is the same for all nodes in the tree. An exception

to this assumption is Brin’s GNAT structure that balances the tree by selecting the degree of a node

proportional to the number of data objects it contains [9]. However, on the ground of experiments Brin

has concluded that good balance was not crucial for the performance of the structure. In Section 9 we

present the results that have confirmed this observation.

We have also assumed that the algorithm stops when the number of leaf nodes exceeds 1
5 of the size

of the training set |U|, in other words when the average size of the leaf nodes is 5. It reflects the trade-off

between the optimality of a search process and the memory requirements. In order to make a search

process effective the splitting procedure splitCluster has a natural property that data objects that are

close each to other are assigned to the same child node. It causes that small nodes at the bottom layer of

10

Algorithm 3 Searching schema

q - query data object

root - the root node of an indexing tree to be searched

nodeStack - the stack of nodes to be searched

nearestQueue - the queue of the data objects nearest to q

sorted according to the distance ρ

discard(n : node, q : query, rq : range) - the procedure

checks whether pruning criteria apply to a node n

while searching neighbors of q in the range rq

nodeStack := {root}
repeat

n := pull the top node from nodeStack

rq := maxx∈nearestQueue ρ(q, x)
if nearestQueue is not full or not discard(n, q, rq)

if n is a leaf

for each data object x ∈ n

check x against the farthest

object y ∈ nearestQueue

and replace y with x if ρ(q, x) < ρ(q, y)
else

sort child nodes of n according to the relevance

to the query q and push them to nodeStack

in the increasing order according to the relevance

until nodeStack is empty

return nearestQueue

a tree have usually very close objects and splitting such nodes until singletons are obtained and applying

search pruning criteria to such small nodes do not save many distance comparisons. On the other hand,

in our implementation the memory usage for the node representation is 2-3 times larger than for the data

object representation so the model with the number of leaf nodes equal to 1
5 of the number of data objects

does not increase memory requirements as significantly as the model where nodes are split until the leafs

are singletons and the number of all tree nodes is almost twice as the size of the training data set U.

Algorithm 3 is a searching schema [17] assumed to find a fixed number k of data objects nearest to

the query q. It traverses an indexing tree rooted at root in the depth-first order and applies a heuristic

procedure to determine the order of visiting child nodes. An important issue is that the heuristic pro-

cedure guides the algorithm first to child nodes that are more probable to have data object close to the

query q. In nearestQueue it stores the nearest data objects, maximally k, from already visited nodes.

At each tree node n the algorithm checks with pruning criteria whether n should be visited, i.e., whether

n can contain an object that is closer to the query q than any previously found nearest neighbor from

nearestQueue. If so and the node n is a leaf, it compares each data object x ∈ n against data objects in

nearestQueue and replaces the farthest object y from nearestQueue if x is closer to the query q than

11

Algorithm 4 The iterative k-centers splitting procedure splitCluster(objects, k)

objects - a collection of data objects to be split

into k clusters

Cl1, . . . , Clk - partition of data objects from objects

into a set of clusters

centers - the centers of clusters

prevCenters - the centers of clusters

from the last but one iteration

getCenter(Cli) - the procedure computes

the center of the i-th cluster

repeat

centers :=select k initial seeds from objects

for each x ∈ objects

assign x to the cluster Cli
with the nearest center ci ∈ centers

prevCenters := centers

centers := ∅
for each cluster i

ci := getCenter(Cli)
add ci to centers

until prevCenters = centers

y. In case when the node n is an inner node it adds the child nodes to nodeStack as to be visited in the

future.

7. K-means and K-approximate-centers

Algorithm 4 presents the iterative splitting procedure splitCluster(objects, k) that is a generalization of

the k-means algorithm. Initially it selects k objects as the centers c1, . . . , ck of clusters. Then it assigns

each object x to the cluster with the nearest center and computes the new centers c1, . . . , ck. It iterates

the assignment procedure until the same set of centers is obtained in two subsequent iterations.

The procedure getCenter(·) computes the center of a cluster of objects and we propose different

solutions depending on the space type. In the case of a vector space we propose the means as the centers

of clusters. In this case Algorithm 4 becomes the well known k-means procedure. Boley and Savaresi

have proved the following property of the k-means algorithm:

Theorem 1. [28] If a data set is an infinite set of data points uniformly distributed in a 2-dimensional

ellipsoid with the semi-axes of the length 1 and a (0 < a < 1) the 2-means iterative procedure with

random selection of initial centers has 2 convergence points: one is locally stable and one is locally

unstable. The splitting hyperplanes corresponding to the convergence points pass through the center of

12

c
1

c
2

Figure 3. The convergence of the 2-means procedure to the locally stable partition for data uniformly distributed

in an ellipse; the splitting line is orthogonal to the largest axis of the ellipse

the ellipsoid and are orthogonal to the main axes of the ellipsoid. The splitting hyperplane corresponding

to the stable convergence point is orthogonal to the largest axis of the ellipsoid (see Figure 3).

This theorem shows that in an infinite theoretical model the 2-means procedure with random selection

of initial centers converges in a sense to the optimal partition of data what may indicate good splitting

properties of this procedure in practice and explain good experimental performance of a tree based on

the 2-means splitting procedure as presented in Section 11.

In general case of a metric space we propose the following approximation of the mean as the center

of a cluster. When a cluster Cli contains one or two data objects it selects any of them as the center

of Cli. Otherwise the algorithm constructs a sample Si that contains the center ci from the previous

iteration used to assign objects and randomly selected max(3,
⌊

√

|Cli|
⌋

) other objects from Cli. Then

it computes the distances among all pairs of objects from Si and as the new center of Cli it selects the

object ci ∈ Si that minimizes the second moment of the distance ρ in Si:

ci := arg min
x∈Si

E
(

ρ(x, y)2
)

In this way it selects the center from Si that minimizes the variance of Si. The assumption that the center

from the previous iteration is included into the sample Si in the next iteration makes it possible to use

the previous center in the next center selection. It provides a chance for the stopping condition to be

satisfied at each iteration and saves a significant number of unnecessary iterations. The computational

cost of a single iteration in center selection remains linear with respect to the cluster size |Cli| and thus

it is comparable to the case of the k-means procedure used for vector spaces.

The discussion and experimental analysis related to selection of initial centers and the degree of

nodes and experimental comparison of the indexing trees based on the k-means and the k-approximate

centers algorithms with other tree structures are presented in the next sections.

13

0

200

400

600

800

1000

1200

1400

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2means-global
2means-sampled
2means-random

0

1000

2000

3000

4000

5000

6000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2means-global
2means-sampled
2means-random

Figure 4. The average number of distance computations per single object of 1-nn (the left graph) and 100-nn (the

right graph) search algorithms with the use of the 2-means based indexing trees with three different methods of

selecting initial centers: the globally farthest, the sampled farthest and the random

8. Initial Seeding

One can consider three general approaches in selecting initial centers for clusters in Algorithm 4: random,

sampled [9] and exhaustive. The description of BST and GHT is quite general and either it does not

specify any particular selection of initial centers or it assumes a simple random model [21, 32]. M- [11]

and SS-trees [38] are the dynamic structures and the splitting procedures assume that they operate on an

existing inner node of a tree and they have access only to the information contained in a node to be split.

While splitting a non-leaf node the algorithm does not have access to all data objects from the subtree

of the node so the splitting procedures from M- and SS-trees are incomparable to the presented iterative

procedures.

In GNAT [9] a random sample of the size 3k is drown from a set of data objects to be clustered and

the initial k centers are picked from this sample. First the algorithm picks one of the sample data objects

at random. Then it picks the sample point that is farthest away from this one. Then it picks the sample

point that is farthest from these two, i.e., such that the minimum distance from the two previously picked

seeds is the greatest one among all unpicked sample objects. Then it picks the one farthest from these

three and so on until there are k data points picked.

In the paper we propose yet another method for selecting initial k centers. It is similar to GNAT’s

method but it selects the first center more carefully and for selection of the others it uses the whole set to

be clustered instead of a sample. First the algorithm computes the center of the whole set to be clustered

(as the mean in case of a vector space and as the approximate center in case of a metric space). As the

first seed it picks the object that is the farthest from the center of the whole data set. Then it repeats

selection of the farthest objects as in GNAT but from the whole set not a sample. The computational

cost is O(nk2) where n is the size of the set to be clustered and for small values of k this cost is still

acceptable.

One can consider the exhaustive procedure that checks all k-sets among objects to be clustered as the

sets of k centers and selects the best one according to a predefined quality measure but the computational

cost of this method does not allow us to use it in practice.

14

10

100

1000

10000

2 3 4 5 6 7 8 9

c94

c945

ches

covt

lett

mush

nurs

pend

sat

segm

shut

spl
100

1000

10000

2 3 4 5 6 7 8 9

c94

c945

ches

covt

lett

mush

nurs

pend

sat

segm

shut

spl

Figure 5. The average number of distance computations per single object of 1-nn (the left graph) and 100-nn (the

right graph) search algorithms with the use of the k-means based indexing trees for 2 ≤ k ≤ 9

Figure 4 presents the performance of the search algorithm for three different seeding procedures

used in the 2-means based indexing trees: a simple random procedure, GNAT’s sampled selection of the

farthest objects and the global selection of the farthest objects described above. The graphs indicate that

the indexing trees with all three methods have the comparable performance what may be explained with

the good convergence property of the 2-means algorithm. However, for a few larger data sets: census94,

census94-95, letter and pendigits the difference between the global and the two other selection methods

is noticeable (50% in comparison to the sampled and 60% in comparison to the random methods in case

of the data set census94-95).

In the experiment the city block metric described in Section 3 was used. For such a metric the k-

means algorithm does not have the convergence property: there is a configuration of data points in a

vector space that the k-means algorithm “flickers” for, i.e., it never reaches the point when the clusters

are the same at two subsequent iterations. Therefore the number of iterations at the splitting procedure

has been limited to 1000. We have checked whether this threshold is reached while constructing the

indexing trees. It has happened for the sampled and the random methods (for the case of the data sets

census94, census94-95 and covertype) but never for the global method.

Summing up, the global method seems to have a little advantage over the others and we decided to

use this one in farther experiments described in the next sections.

9. Degree of Tree Nodes

In order to analyze the performance of the k-means indexing trees (as a function of the degree of nodes

k) we have performed experiments for 8 successive values of k ranging from 2 to 9. Figure 5 presents

the performance graphs for particular data sets. As it is shown they are quite stable in the range of tested

values except for the value 2 and different values of k have the best performance for particular data sets.

At 1-nn search 7 data sets have the best performance at k = 3, 1 at k = 4 and 2 at k = 5 and k = 8. At

15

0

200

400

600

800

1000

1200

1400

c94 c945 ches covt lett mush nurs pend sat segm shut spl

5means-constant 5means-balanced

10means-constant 10means-balanced

20means-constant 20means-balanced

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

5means-constant 5means-balanced

10means-constant 10means-balanced

20means-constant 20means-balanced

Figure 6. The average number of distance computations per single object of 1-nn (the upper graph) and 100-nn

(the lower graph) search algorithms with the use of the k-means based indexing trees with the constant and the

balanced degree of tree nodes; for each data set the first pair of columns represents the performance for the constant

and the balanced degrees with k = 5, the second pair represents the performance for k = 10 and the third one for

k = 20

100-nn search 4 data sets have the best performance at k = 3, 2 at k = 4, 5 and 8 and 1 at k = 7 and 9.

These statistics indicate that the best performance is for small values of k (but greater than 2). Assuming

k equal to 3, 4 or 5 one may have the confidence to get almost optimal performance.

In the literature the splitting degree of tree nodes is usually assumed to be constant over all nodes

in a tree. The exception to this rule is the GNAT structure [9] that tries to balance the size of branches

by choosing different splitting degrees for nodes. It assumes a fixed k to be the average splitting degree

of nodes and applies the following procedure to construct a tree. The top node is allocated the degree

k. Then each of its children is allocated a degree proportional to the number of data points it contains

(with a certain minimum and maximum) so that the average is equal to the global degree k. This process

works recursively so that the children of each node have the average degree equal to k. In experiments

Brin set the minimum of the degree to 2 and the maximum to min(5k, 200). On the basis of experiments

he reported that good balance was not crucial to the performance of the structure.

We have implemented this balancing procedure too. In case of k = 2 the value 2 is both the average

and the minimal possible value of the splitting degree in the k-means balanced indexing tree so the

16

balancing procedure assigns the degree 2 to all nodes and thus it behaves identically as in the case of

the constant degree 2. Then the comparison of the balanced and the constant degree selections makes

sense for the value of k greater than 2. Figure 6 presents the comparison between the k-means based

balanced trees where k is the average degree of child nodes and the corresponding k-means trees with

the constant degree k. The results show that the balancing procedure does not improve performance of

a tree with a constant degree and in many experiments searching in a tree with a constant degree is even

faster. It indicates that in order to make profit from balancing more sophisticated procedures are required

and up to now it is not known whether there is a balancing policy within acceptable computational cost

that provides a significant advantage over non-balanced structures.

10. Search Pruning Criteria

Algorithm 3 presents a searching procedure that uses search pruning criteria to discard nodes while

traversing an indexing tree. The procedure discard(n, q, rq) checks whether a tree node n can contain

an object that is closer to the query q than any previously found near neighbor from nearestQueue. The

value rq is the distance ρ(q, x) between the query q and the farthest from q object x ∈ nearestQueue.

All search pruning criteria described in the literature [9, 11, 21, 32, 38] are based on the triangular

inequality.

The most common criterion applied in BST [21], SS-tree [38] and M-tree [11] uses the covering

radius (Figure 2a). Each node n keeps the center cn computed with the function getCenter(n) and the

covering radius rn:

rn := max
x∈n

ρ(cn, x).

A node n is discarded if the intersection between the ball around q containing all nearest neighbors from

nearestQueue and the ball containing all members of the node n is empty:

ρ(cn, q) > rq + rn

Uhlmann has proposed another criterion for his Generalized-Hyperplane Tree (GHT) [32] based on the

assumption that the splitting procedure assigns each object to the node with the nearest center. It uses

the hyperplanes separating the subnodes of the same parent (Figure 2b). A node ni is discarded if there

is a brother node nj of ni (another child node of the same parent node as ni) such that the whole query

ball is placed beyond the hyperplane separating ni and nj (midperpendicular to the segment connecting

the centers cni
and cnj

) on the side of the brother node:

ρ(cni
, q) − rq > ρ(cnj

, q) + rq.

GNAT pruning criteria [9] is also based on mutual relation among brother nodes but is more complex

(Figure 2c). If the degree of a tree node is k then each child node ni keeps the minimal mi,1, . . . , mi,k and

the maximal Mi,1, . . . , Mi,k distances from its elements to the centers of the remaining brother nodes:

mi,j = min
x∈ni

ρ(cnj
, x)

Mi,j = max
x∈ni

ρ(cnj
, x)

17

0

500

1000

1500

2000

2500

3000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

radius

hyperplanes

rings

radius+hp

radius+rings

hp+rings

radius+hp+rings

0

1000

2000

3000

4000

5000

6000

7000

8000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

radius

hyperplanes

rings

radius+hp

radius+rings

hp+rings

radius+hp+rings

Figure 7. The average number of distance computations per single object of 1-nn (the upper graph) and 100-nn

(the lower graph) search algorithms applied to the 2-means indexing tree with the use of different combinations of

three search pruning criteria: the covering radius, the hyperplanes and the rings

A node ni is discarded if there is a brother node nj such that the query ball is entirely placed outside the

ring around the center of nj containing all members of ni:

either ρ(cnj
, q) + rq < mi,j or ρ(cnj

, q) − rq > Mi,j .

The covering radius and the hyperplane criteria require from each node n only to store the center cn and

the covering radius rn. The criterion based on rings requires more memory: each node stores the 2(k−1)
distances to the centers of brother nodes.

Figure 7 presents the experimental comparison of the performance for all possible combinations of

the three criteria. In a single form the most effective criterion is the covering radius, the least effective

is the hyperplane criterion and the differences in performance among all three criteria are significant. In

the case of the 100-nn search the covering radius alone is almost as powerful as all three criteria and

adding the remaining two does not increase the performance. The different behavior is observed in case

of the 1-nn search: none of them is comparable to the case when all three criteria are applied. Both the

covering radius and the hyperplane cut are crucial for the performance and only the rings based criterion

can be removed without loss in performance.

18

0

200

400

600

800

1000

1200

1400

1600

1800

c94 c945 ches covt lett mush nurs pend sat segm shut spl

3means-iterative-3criteria

3apx.centers-iterative-3criteria

2centers-onestep-3criteria

2centers-onestep-1criterion

0

1000

2000

3000

4000

5000

6000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

3means-iterative-3criteria

3apx.centers-iterative-3criteria

2centers-onestep-3criteria

2centers-onestep-1criterion

Figure 8. The average number of distance computations per single object of the 1-nn (the upper graph) and

the 100-nn (the lower graph) search algorithms in the indexing trees with the iterative 3-means, the iterative 3-

approximate-centers and two variants of the one-step 2-centers based splitting procedures: one with the combina-

tion of 3 search pruning criteria and one with the single covering radius criterion

The presented results indicate that the combination of different criteria improves the performance of

k-nn search over a single criterion at least for a small values of k. On the other hand, in both cases of the

1-nn and the 100-nn search adding the memory consuming criterion based on rings does not improve the

combination of the remaining two. This result may suggest that the covering radius and the hyperplanes

provide the optimal pruning combination and there is no need to search for more sophisticated pruning

mechanisms.

11. Comparative Study

The most interesting question is how much the search process profits from the additional cost due to

the iterative splitting procedure and the combined search pruning criterion in comparison to the one-

step case with a single pruning criterion. The iterative procedures select initial centers, assign the data

objects to the nearest centers and compute new centers of clusters. Then assignment of data objects to

centers and computation of new cluster centers is iterated as long as the same set of cluster centers is

19

generated in two subsequent iterations. The one-step procedure works as in the other indexing trees:

BST, GHT, GNAT, SS-tree and M-tree: it stops after the first iteration and uses the initial centers as the

final. The globally farthest data objects are used as the set of initial centers both for the iterative and the

non-iterative splitting procedures.

Figure 8 presents the cost of searching in the trees with the iterative k-means, the iterative k-

approximate-centers and two variants of the one-step k-centers splitting procedures. The results for

both trees with the iterative procedures and the first tree with the one-step procedure are obtained using

the combination of all three search pruning criteria. The fourth column at each data set presents the

performance of the one-step tree with the single criterion based on the covering radius. We chose this

criterion for comparison since it has the best performance among all three tested criteria (see Section 10).

Apart from a single case we have observed that the performance of the one-step based trees deteriorates

while increasing k (it has been checked for k = 2, 3, 5 and 7). Then for comparison we have selected the

most competitive value k = 2 (the exception was the 100-nn search in the data set splice, the case k = 5
has provided the best performance and hence this case has been presented at the graph instead of k = 2).

In case of both iterative procedures the value k = 3 was used since it is one of the most optimal values

(see Section 9).

While comparing the performance of the iterative 3-means (the first column) and the one-step 2-

centers (the third column) procedures the profit from applying the iterative procedure is visible. In case

of the 1-nn search the saving ranges from 20% (satimage) to 50% (nursery), in case of the 100-nn search

the saving is similar to the 1-nn case except for a single data set splice where the saving is 5%. These

results indicate that replacing the one-step procedure with the iterative 3-means procedure can improve

the performance even twice.

The comparison between the third and the fourth column presents the profit for the tree with the

one-step procedure only from applying the combined search pruning criteria. For the 1-nn search the

combined criterion outperforms a single one significantly, in particular for the largest data sets (consus94,

census94-95, covertype) the acceleration reaches up to several times. For the 100-nn search the difference

is not so large but still it is noticeable. These results show that for the tree with the one-step splitting

procedure the complex criterion is crucial for the performance of the tree. In case of the tree with the k-

means splitting procedure the results are different, i.e., the difference in performance between the single

covering radius and the combined criteria is much smaller (see Section 10). It indicates that the iterative

k-means procedure has very good splitting properties and the choice of the search pruning criterion for

this case is not as crucial as for the non-iterative case.

The comparison between the first and the fourth columns shows that the tree with the 3-means split-

ting procedure and the complex search pruning criteria is always at least several tens percent more effec-

tive than the tree with the one-step procedure and a single criterion. In case of the 1-nn search the former

tree is usually even several times more effective than the latter one. A particularly advanced acceleration

level has been reached for the largest data sets. The size of the data set covertype is almost 400 thousands

whereas the average number of distance comparisons per single object (the fourth data set from the right)

is less than 100 for the 1-nn search and close to 1300 for the 100-nn search. It means that the 3-means

based tree reduces the cost of searching 4000 times in case of the 1-nn search and 300 times in case of the

100-nn search. For the second largest data set census94-95 (the second data set from the right, the size

almost 200 thousands) the reductions in cost are 400 and 60 times, respectively. Such good performance

has been reached both due to the improved splitting procedure and due to the complex search criterion

described in Section 10.

20

0

2000

4000

6000

8000

10000

12000

14000

c94 ches lett mush nurs pend sat segm shut spl

2means

2apx.centers

vantage points

Figure 9. The average number of distance computations of the 100-nn search algorithm in the indexing trees with

the k-means, the k-approximate-centers and the vantage point based splitting procedures

We obtain a different situation comparing the iterative k-approximate-centers (the second column)

and the one-step (the third column) procedures. Although for most of data sets the iterative procedure

outperforms the non-iterative one, the differences in performance are usually insignificant and for three

large data sets (census94, census94-95, letter) the performance of the iterative procedure is even worse

than the performance of the non-iterative one. These results indicate that in the case of the tree with

the k-approximate-centers the profit in performance is mainly due to the complex search criteria. Since

the only feature that differentiates the k-means and the k-approximate-centers procedures is how the

algorithm selects and represents the center of a cluster of data objects this feature seems to be important

issue for the performance of the indexing trees.

Uhlmann has introduced another type of an indexing structure: the vantage point tree [32]. It is a

binary tree constructed in this way that at each node data objects are split with the use of a spherical

cut. Given a node n the splitting algorithm picks an object p ∈ n that is called the vantage point and

computes the median radius M such that half of the data objects from n fall inside the ball centered

at the vantage point p with the median radius M and half fall outside this ball. The objects inside the

ball {x ∈ n : ρ(p, x) ≤ M} are inserted into the left branch of the node n and the objects outside

the ball {x ∈ n : ρ(p, x) > M} are inserted into the right branch. The vantage point tree is balanced

and the construction takes O(n log n) time in the worst case. While searching for the nearest neighbors

of a query q the branch with objects inside the ball is pruned if M + ρ(q, xnearest) < ρ(p, q) and

the branch with the objects outside the ball is pruned if M − ρ(q, xnearest) > ρ(p, q). Yianilos has

described an implementation of the vantage point tree with sampled selection of the vantage point [40].

For experimental comparison we have implemented this structure as described by Yianilos.

Figure 9 presents the comparison of the performance of the trees with the 2-means, the 2-approximate-

centers and the vantage point based splitting procedures (since the vantage point tree is a binary tree we

used k = 2 for comparison). The results shows a large advantage of the trees based on the centers over

the tree based on the vantage points. In order to save the space we have not presented the results for the 1-

nn search but they are similar to the 100-nn case. The results indicate that the center based representation

of tree nodes provides better search pruning properties than the vantage point based representation.

21

0

500

1000

1500

2000

2500

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2means-indexing 2means-search

3means-indexing 3means-search

5means-indexing 5means-search

0

500

1000

1500

2000

2500

3000

3500

4000

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2apx.centers-indexing 2apx.centers-search

3apx.centers-indexing 3apx.centers-search

5apx.centers-indexing 5apx.centers-search

Figure 10. The average number of distance computations per single object in the indexing and the 100-nn search

processes for the indexing trees with the k-means (the upper graph) and the k-approximate-centers (the lower

graph) splitting procedures. For each data set the first pair of columns represents the costs of indexing and searching

for k = 2, the second pair represents the costs for k = 3 and the third one for k = 5

12. Indexing vs Searching

The results from the previous section have proved that the k-means indexing tree is a good accelerator in

searching for the nearest neighbors. The question arises whether the cost of constructing a tree is not too

large in comparison to the search process.

Figure 10 presents the comparison between the number of computed distances per single object in

the indexing process (in other words the average cost of indexing a single object) and the average number

of computed distances in the 100-nn search.

The results for the k-means and the k-approximate centers procedures are similar. For k = 2 they

are quite optimistic, for all tested data sets except shuttle the cost of indexing a single object is several

times lower than the cost of searching for the 100 nearest neighbors of a single object. It means that if

the size of the training and the test sets is of the same order the main workload remains on the side of

the search process. For the data sets shuttle and mushroom the differences in the cost are smaller but it

results from the fact that the search process is more effective for these two data sets than for the others.

The situation changes to worse while increasing the degree k. For the 5-means case the cost of

indexing for five data sets: chess, covertype, mushroom, segment and shuttle is at least comparable and

22

0

5

10

15

20

25

30

35

40

45

50

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2means 2apx.centers
3means 3apx.centers
5means 5apx.centers

0

5

10

15

20

25

30

35

40

c94 c945 ches covt lett mush nurs pend sat segm shut spl

2means 2apx.centers

3means 3apx.centers

5means 5apx.centers

Figure 11. The height of a tree (the upper graph) and the average number of iterations of a splitting procedure

(the lower graph) in the k-means based and the k-approximate-centers based indexing trees. For each data set

the first pair of columns represents the height (at the upper graph) and the iterations (at the lower graph) for the

2-means and the 2-approximate-centers based trees, the second pair represents these values for k = 3 and the third

one for k = 5

sometimes higher than the cost of searching. It has been mentioned in Section 9 that the computational

cost of searching is stable for k ≥ 3. On the other hand, the cost of indexing significantly increases while

increasing the degree k. It means that the larger degree k the lower profit from applying the advanced

indexing structure. The results from this section and Section 9 indicate that the best trade-off between

the indexing cost and the search performance is obtained for k = 3 and increasing the value of k more

increases the cost of indexing without any profit from searching.

We have analyzed the case of the 100-nn searching. In many application, e.g., while searching for

the optimal value of k or for geometrical properties in a data set, there is a need to search for a large

number of nearest neighbors and in this case the presented trees keep the appropriate balance between

the costs of construction and searching. We have not discussed the results for the 1-nn case since they

are not uniformly interpretable. The usefulness of the presented structures for queries with a small k

depends more on individual properties of a data set and on the number of queries to be performed.

The upper graph at Figure 11 provides some information about the shape of the indexing trees. The

fact that the height of a tree, i.e., the distance between the root and the deepest leaf, rarely exceeds 25

23

indicates that the shape of a tree is quite balanced: it does not contain very long thin branches. The lower

graph presents the average number of iterations in a splitting procedure. In many experiments, especially

for k = 2, this number does not exceed 5 what indicates that the construction cost for a tree with the

iterative splitting procedure is usually a few times larger than for a tree with the non-iterative splitting.

13. Conclusions and Future Research

The research reported in the paper attempts to analyze different properties of the indexing algorithms with

the center based splitting procedures and to work out the optimal parameters of the indexing algorithm.

For the analysis the well-known VDM metric [7, 12, 14, 18, 19, 27, 31] has been used as a distance

measure because the results from the literature indicate that it is one of the best measures used for k-nn.

We proposed the iterative procedure for splitting nodes of an indexing tree: the k-means algorithm in

the case of a vector space and the k-approximate-centers in the case of a metric space. We have compared

three methods for selection of initial centers in an iterative splitting procedure: the random, the sampled

and the global. Savaresi and Boley have reported that the 2-means algorithm has good convergence

properties [28] so the selection of initial centers is not very important. This result has been confirmed

by the experimental results for most of data sets. However, it was obtained for an infinite theoretical

model and there are real-life data sets where the global selection of initial centers gives a little better

performance than the other two methods. We have also observed that the performance of trees with

different splitting degrees is comparable except for the case that k = 2 has a little worse performance

than the remaining values k ≥ 3. On the other hand the cost of indexing increases significantly while

increasing the degree k. These observations lead to the conclusion that the value k = 3 is the optimal

trade-off between the performance of the search process and the cost of indexing.

The representation of tree nodes is based on the centers and we have compared the significance of

three different search pruning criteria based on this representation. Two of them are based on the covering

radius and the hyperplanes, the third one based on rings requires more information to be stored at tree

nodes. As the experimental results indicate the most important one is the covering radius. In case of

searching for the large number k = 100 of nearest neighbors this single criterion is equally efficient as

all three criteria combined together. In case of k = 1 none of the tree criteria alone is comparable to

all of them together but the combination of two of them: the covering radius and the hyperplane criteria

is. These results indicate that two simple criteria define the optimal combination and there is no need to

search for more sophisticated mechanisms like the rings based criterion.

The center based indexing trees outperform the vantage point trees. However, the performance of a

center based tree still depends much on how the center of a set of data objects is constructed or selected.

While comparing the iterative k-means algorithm to the non-iterative one the advantage of the former one

is visible but the k-means algorithm is applicable only to vector spaces. As a general solution we have

proposed the approximate centers with selection from a sample instead of the means. Although there

are some evidences that the approximate centers perform a little better than the non-iterative centers the

difference is small and does not seem to be significant whereas the gap between the performance of the

means and the approximate centers is much larger. These observations indicate that the representation of

the center of a set of data objects is crucial for the performance of the center based search pruning and

we consider the problem of the center selection as an important issue in our future research.

The experimental results show that the tree with the iterative 3-means splitting procedure and the

24

combined search pruning criteria is up to several times more effective than the one-step based tree with

a single criterion. A particularly advanced acceleration level in comparison to the linear search has been

reached in case of the largest tested data sets. The presented structure has reduced the 1-nn search cost

4000 times in case of the data set covertype and 400 times in case of the data set census94-95. For the

100-nn search the reductions in cost are 300 and 60 times, respectively. These results indicate that the

only constraint for the size of a data set to be searched is the memory capacity used for storing data.

It is known that bottom-up constructions give a very good performance but such an immediate con-

struction requires O(n2) time. On the other hand, the top-down constructions presented in the paper are

limited by strong assumptions and they may not fit to data well. Brin, in conclusions of [9], has consid-

ered the iterative transformation of a tree from a top-down construction to a bottom-up construction in

such a way that at each iteration the tree is constructed with the use of the structure from the previous

iteration. As a future work we consider to extend this idea and to develop a structure that reflects more

geometrical properties of a data set to be represented.

Acknowledgments

The indexing method described in the paper is used for the k-nn classifier included in the RSES system

[30]. The author is very grateful to professor Andrzej Skowron for useful remarks on this presentation.

This work was supported by the grant 4 T11C 040 24 from the Polish State Committee for Scientific

Research and by the grant from Ministry of Scientific Research and Information Technology of the

Republic of Poland.

References

[1] Aggarwal, Ch.C., Hinneburg, A., Keim, D.A. (2001), On the surprising behaviour of distance metrics in high

dimensional space. Proceedings of the Eighth Internatinal Conference on Database Theory (ICDT-2001),

London, UK, 420-434.

[2] Aha, D.W. (1998). The omnipresence of case-based reasoning in science and application. Knowledge-Based

Systems, 11 (5-6), 261-273.

[3] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B. (1990). The R⋆-tree: an efficient and robust access

method for points and rectangles. Proceedings of the 1990 ACM SIGMOD International Conference on

Management of Data, Atlantic City, NJ, 322-331.

[4] Bentley, J.L. (1975). Multidimensional binary search trees used for associative searching. Communications

of the ACM, 18(9), 509-517 .

[5] Berchtold, S., Keim, D., Kriegel, H.P. (1996). The X-tree: an index structure for high dimensional data.

Proceedings of the Twenty Second International Conference on Very Large Databases (VLDB-1996), 28-39.

[6] Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U. (1999). When Is “Nearest Neighbor” Meaningful?

Proceedings of the Seventh International Conference on Database Theory (ICDT-1999), Jerusalem, Israel,

217-235.

[7] Biberman, Y. (1994). A context similarity measure. Proceedings of the Ninth European Conference on Ma-

chine Learning (ECML-1994), Catania, Italy, 49-63.

[8] Blake, C.L., Merz, C.J. (1998). UCI Repository of machine learning databases

[http://www.ics.uci.edu/~mlearn/MLRepository.html], Department of Information and Computer Sci-

ence, University of California, Irvine, CA.

25

[9] Brin, S. (1995). Near neighbor search in large metric spaces. Proceedings of the Twenty First International

Conference on Very Large Databases (VLDB-1995), 574-584.

[10] Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L. (1999). Saerching in metric spaces. Technical

Report TR/DCC-99-3, Department of Computer Science, University of Chile.

[11] Ciaccia, P., Patella, M., Zezula, P. (1997). M-tree: an efficient access method for similarity search in metric

spaces. Proceedings of the Twenty Third International Conference on Very Large Databases (VLDB-1997),

426-435.

[12] Cost, S. and Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning with symbolic features.

Machine Learning, 10, 57-78.

[13] Cover, T.M. and Hart, P.E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information

Theory, 13, 21-27.

[14] Domingos, P. (1996). Unifying instance-based and rule-based induction. Machine Learning, 24(2), 141-168.

[15] Duda, R.O. and Hart, P.E. (1973). Pattern classification and scene analysis. Wiley, New York, NY.

[16] Finkel, R., Bentley, J. (1974). Quad-trees: A data structure for retrieval and composite keys. ACTA Infor-

matica 4(1), 1-9.

[17] Fukunaga, K., Narendra, P.M. (1975). A branch and bound algorithm for computing k-nearest neighbors.

IEEE Transactions on Computers, 24(7), 750-753.

[18] Góra, G., Wojna, A. (2002). RIONA: a classifier combining rule induction and k-nn method with automated

selection of optimal neighbourhood. Proceedings of the Thirteenth European Conference on Machine Learn-

ing (ECML-2002), Helsinki, Finland, Lecture Notes in Artificial Intelligence, 2430, Springer-Verlag 2002,

111-123.

[19] Góra, G., Wojna, A. (2002). RIONA: a new classification system combining rule induction and instance-

based learning. Fundamenta Informaticae, 51(4), 369-390.

[20] Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. Proceedings of the 1984 ACM

SIGMOD International Conference on Management of Data, Boston, MA, 47-57.

[21] Kalantari, I. and McDonald, G. (1983). A data structure and an algorithm for the nearest point problem.

IEEE Transactions on Software Engineering, 9 (5), 631-634.

[22] Katayama, N., Satoh, S. (1997). The SR-tree: an index structure for high dimensional nearest neighbor

queries. Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, Tucson,

Arizona, 369-380.

[23] Lin, K.I., Jagadish, H.V., Faloustos, C. (1994). The TV-tree: an index structure for high dimensional data.

VLDB Journal, 3(4), 517-542.

[24] Mitchell T.M. (1997). Machine learning. McGraw-Hill, Portland.

[25] Nievergelt, J., Hinterberger, H., Sevcik, K. (1984). The grid file: an adaptable symmetric multikey file struc-

ture. ACM Transactions on Database Systems, 9(1), 38-71.

[26] Robinson, J. (1981). The k-d-b-tree: A search structure for large multi-dimensional dynamic indexes. Pro-

ceedings of the 1981 ACM SIGMOD International Conference on Management of Data, ACM, New York,

10-18.

[27] Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine Learning, 2, 229-246.

[28] Savaresi, S.M., Boley D.L. (2001), On the performance of bisecting K-means and PDDP. Proceedings of the

First SIAM International Conference on Data Mining (ICDM-2001), Chicago, USA, 1-14.

26

[29] Sellis, T., Roussopoulos, N., Faloustos, C. (1987). The R+-tree: A dynamic index for multi-dimensional

objects. Proceedings of the Thirteenth International Conference on Very Large Databases (VLDB-1987),

574-584.

[30] Skowron, A. et al. (2003). Rough Set Exploration System [http://logic.mimuw.edu.pl/~rses], Institute of Math-

ematics, Warsaw University, Poland.

[31] Stanfill, C. and Waltz, D. (1986). Toward memory-based reasoning. Communications of the ACM, 29, 1213-

1228.

[32] Uhlmann, J. (1991). Satisfying general proximity/similarity queries with metric trees. Information Processing

Letters, 40(4), 175-179.

[33] Veloso, M. (1994). Planning and learning by analogical reasoning. Springer-Verlag.

[34] Ward, J.Jr (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical

Association, 58, 236-244.

[35] Weber, R., Schek, H.J., Blott, S. (1998). A quantitative analysis and performance study for similarity-search

methods in high-dimensional spaces. Proceedings of the Tenty Fourth International Conference on Very Large

Databases (VLDB-1998), 194-205.

[36] Wettschereck, D. (1994). A study of Distance-Based Machine Learning Algorithms. Doctor of Philosophy

dissertation in Computer Science, Oregon State University.

[37] Wettschereck, D., Aha, D.W., Mohri, T. (1997). A Review and Empirical Evaluation of Feature Weighting

Methods for a Class of Lazy Learning Algorithms. Artificial Intelligence Review 11, 273-314.

[38] White, D.A., Jain R. (1996). Similarity indexing with the SS-tree. Proceedings of the Twelve International

Conference on Data Engineering (ICDE-1996), New Orleans, USA, 516-523.

[39] Wojna, A. (2003). Center-based indexing for nearest neighbors search. Proceedings of the Third IEEE Inter-

national Conference on Data Mining (ICDM-2003), Melbourne, Florida, USA.

[40] Yianilos, P.N. (1993). Data structures and algorithms for nearest neighbor search in general metric spaces.

Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, Austin, Texas,

311-321.

