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Abstract. We discuss the framework for applying knowledge about in-
ternal structure of data values to better handle alphanumeric attributes
in one of the analytic RDBMS engines. It enables to improve data stor-
age and access with no changes at the data schema level. We present
the first results obtained within the proposed framework with respect to
data compression ratios, as well as data (de)compression speeds.
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1 Introduction

Data volumes that one needs to operate on daily bases, as well as the costs of
data transfer and management are continually growing [6]. This is also true for
analytic databases designed for advanced reports and ad hoc querying [3].

In this study, we discuss how the domain knowledge about data content may
be taken into account in an RDBMS solution. By injecting such knowledge into
a database engine, we expect influencing data storage and query processing. On
the other hand, as already observed in our previous research [8], the method of
injecting domain knowledge cannot make a given system too complicated.

As a specific case study, we consider the Infobright’s analytic database engine
[IT/T2], which implements a form of adaptive query processing and automates
the task of physical database design. It also provides minimized user interface
at a configuration level and low storage overhead due to data compression.

We concentrate on alphanumeric data attributes whose values have often rich
semantics ignored at the database schema level. The results obtained for appro-
priately extended above-mentioned RDBMS engine prove that our approach can
be useful for more efficient and faster (de)compression of real-life data sets.

The paper is organized as follows: Section 2 introduces the considered analytic
database platform. Section 3 describes our motivation for developing the pro-
posed framework for alphanumeric attributes. Sections 4 and 5 outline the main
steps of conceptual design and implementation, respectively. Section 6 shows
some experimental results. Section 7 summarizes our research in this area.
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Fig. 1. Loading and querying in ICE/IEE. Rough values can be used, e.g., to
exclude data packs that do not satisfy some query conditions.

2 Starting Point

In our opinion, the approach proposed in this paper might be embedded into
a number of RDBMS engines that store data in a columnar way, to achieve
faster data access while analytic querying [3I10]. Infobright Community Edition
(ICE) and Infobright Enterprise Edition (IEE) are just two out of many possible
database platforms for investigating better usage of domain knowledge about
data content. On the other hand, there are some specific features of ICE/IEE
architecture that seem to match with the presented ideas particularly well.
ICE/IEE creates granulated tables with rows (called rough rows) correspond-
ing to the groups of 26 original rows and columns corresponding to various forms
of compact information. We refer to the layer responsible for maintaining gran-
ulated tables as to Infobright’s Knowledge GridEl Data operations involve two
levels: 1) granulated tables with rough rows and their rough values corresponding
to information about particular data attributes, and 2) the underlying repository
of data packs, which are compressed collections of 2'6 values of particular data
attributes. Rough values and data packs are stored on disk. Rough values are
small enough to keep them at least partially in memory during query sessions.
A relatively small fraction of data packs is maintained in memory as well. Data
packs are generally accessed on demand. We refer to [11J12] for more details.

! Our definition of Knowledge Grid is different than, e.g., in grid computing or seman-
tic web [I], though the framework proposed in this paper exposes some analogies.
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3 Challenges

ICE/IEE runs fast when rough values are highly informative and when data
packs are highly compressed and easy to decompress. As already mentioned,
that second aspect can be considered for some other RDBMS platforms as well.
Also the first aspect might be analyzed for other databases although their usage
of information analogous to rough values is relatively limited (see e.g. [5]).

By informativeness of rough values we mean that they should possibly often
classify data packs as fully irrelevant or relevant at the moment of requesting
those packs’ status by the query execution modules. In case of full irrelevance
or full relevance, the execution modules are usually able to continue with no
need of decompression [12]. For the remaining suspect packs that require to be
accessed value by value, the size of data portions to be taken from disk and the
speed of making them processable by the execution modules are critical.

Achieving good quality of rough values and good (de)compression character-
istics becomes harder for more complex types of attributes. Given such applica-
tions as online, mobile, or machine-generated data analytics, the issues typically
arise with long varchar columns that store, e.g., URLSs, emails, or texts. More-
over, even for such fields as IP or IMSI numbers that could be easily encoded as
integers, the question remains at what stage of database modeling such encodings
should be applied and how they may affect the end users’ everyday work.

We examined many rough value structures that summarize the collections of
long varchars. The criteria included high level of the above-mentioned informa-
tiveness and small size comparing to the original data packs. Some of those rough
values are implemented in ICE/IEE. However, it is hard to imagine a universal
structure representing well enough varchars originating from all specific kinds
of applications. The same can be observed for data compression. We adopted
and extended quite powerful algorithms compressing alphanumeric data [4JT1].
However, such algorithms would work even better when guided by knowledge
about the origin or, in other words, the internal semantics of input values.

In [8], we suggested how to use the attribute semantics while building rough
values and compressing data packs. We noticed that in some applications the
data providers and domain experts may express such semantics by means of the
data schema changes. However, in many situations, the data schemas must re-
main untouched because of high deployment costs implied by any modifications.
Moreover, unmodified schemas may provide the end users with conceptually
simpler means for querying the data [6]. Finally, the domain experts may prefer
injecting their knowledge independently from standard database model levels,
rather than cooperating with the database architects and administrators.

An additional question is whether the domain experts are really needed to
let the system know about the data content semantics, as there are a number
of approaches to recognize the data structures automatically [2]. However, it is
unlikely that all application specific types of value structures can be detected
without a human advise. In any way, the expert knowledge should not be ignored.
Thus, an interface at this level may be useful, if it is not overcomplicated.
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4 Ideas

When investigating the previously-mentioned machine-generated data sets, one
may quickly realize that columns declared as varchars have often heterogenous
nature. Let us refer to Figure [2] precisely to a data pack related to MaybeURL
column. Within the sequence of 2!¢ values, we can see sub-collections of NULLs,
integers, strings that can be at least partially parsed along the standard URI
structure | as well as outliers that do not follow any kind of meaningful structure.
Following [8], our idea is to deliver each of such data packs as the original string
sequence to the query execution modules but, internally, store it in form of
homogeneous sub-collections compressed separately. The consistency of a data
pack can be secured by its match table, which encodes membership of each
of 216 values to one of sub-collections. This is an extension of our previously
implemented method of decomposing data packs onto their NULL and not-NULL
portions [I1], applied in various forms in other RDBMS approaches as well. The
difference is that here we can deal with multiple sub-types of not-NULLs.

For a given data pack, each of its corresponding sub-collections is potentially
easier to compress than when trying to compress all 2'6 values together. Each
of sub-collections can be also described by separate higher-quality statistics that
constitute all together the pack’s rough value available to the execution modules
that do not even need to be aware of its internal complexity. Data compression
and rough value construction routines can further take into account that par-
ticular sub-collections gather values sharing (almost) the same structure. Going
back to Figure [2] each of the values in the URI sub-collection can be decom-
posed onto particles such as scheme, path, authority, and so on. Sub-collections
of specific particles can be compressed and summarized even better than sub-
collections of not decomposed values. Again, such decompositions can be kept
as transparent to the query execution modules, which refer to rough values via
standardly looking functions hiding internal complexity in their implementation
and, if necessary, work with data packs as sequences of recomposed values.

Surely, the above ideas make sense only if the domain knowledge about data
content is appropriately provided to the system. According to the available lit-
erature [6] and our own experience, there is a need for interfaces enabling the
data providers to inject their domain knowledge directly into a database engine,
with no changes to data schemas. This way, the end users are shielded from the
complexity of semantic modeling, while reaping most of its benefits. In the next
section, we present one of the prototype interfaces that we decided to implement.
The language proposed to express the structural complexity of attribute values
is a highly simplified version of the regular expressions framework, although in
future it may also evolve towards other representations [9]. The choice of repre-
sentation language is actually very important regardless of whether we acquire
data content information via interfaces or learn it (semi)automatically, e.g., by
using some algorithms adjusting optimal levels of decomposing the original val-
ues according to hierarchical definitions recommended by domain experts.

? URI stands for Uniform Resource Identifier (http://www.ietf.org/rfc/rfc3986.txt).
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Fig. 2. Storage based on the domain knowledge. Data packs are decomposed onto
sub-collections of values corresponding to different structures that can be fur-
ther decomposed along particular structure specifications. It leads to sequences
of more homogeneous (particles of) values that can be better compressed. For
example, it is shown how to store the scheme particles of the URI values.

5 Implementation

For practical reasons, the currently implemented framework differs slightly from
the previously-discussed ideas. We represent structures occurring for a given at-
tribute (like, e.g., URIs and integers for MaybeURL, Figure [2)) within a single
decomposition rule. Such decomposition rule might be treated as disjunction of
possible structures (e.g.: URI or integer or NULL or outlier), although its expres-
sive power may go beyond simple disjunctions. The main proposed components
are as follows: 1) dictionary of available decomposition rules, 2) applying decom-
position rules to data attributes, and 3) parsing values through decomposition
rules. These components are added to the ICE/IEE implementation integrated
with MySQL framework for the pluggable storage engines (Figure E|

The first component — the dictionary of available decomposition rules — cor-
responds to the newly introduced system table decomposition dictionary that
holds all available decomposition rules. The table is located in the system data-
base sys_infobright and is created at ICE/IEE’s installation. The table contains
three columns: ID (name of a decomposition rule), RULE (definition of a decom-
position rule), and COMMENT (additional comments, if any). The rules can be
added and modified with help of the following three stored procedures:

3 http://dev.mysql.com/doc/refman/5.1/en/storage-engines.html
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CONNECTORS: Native C APL, JDBC, ODBC, .NET, PHP, Python, Perl, Ruby, VB
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Connection Limits, Check Memory, Caches
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Fig. 3. Conceptual layout of the current ICE/IEE implementation (as of June
2011). The white box represents the components related to domain injections
that have significant impact on the load processes and the (meta)data layers. The
dark boxes are adapted from MySQL. (MySQL management services are applied
to connection pooling; MyISAM engine stores catalogue information; MySQL
query rewrite and parsing modules are used too.) MySQL optimization and
execution pieces are replaced by the code designed to work with the compressed
data packs, as well as their navigation information and rough values stored in
data pack nodes and knowledge nodes, respectively. (Not to be confused with
nodes known from MPP architectures [3].)

CREATE_RULE(id,rule,comment)
UPDATE_RULE(id,rule)
CHANGE_RULE_COMMENT (id, comment)

Currently, the decomposition_ dictionary table accepts rules defined in the sim-
plistic language accepting concatenations of three types of primitives:

— Numeric part: Nonnegative integers, denoted as %d.
— Alphanumeric part: Arbitrary character sequences, denoted as %s.
— Literals: Sequences of characters that have to be matched exactly.

For instance, the IPv4 and email addresses can be expressed as %d.%d.%d.%d
and %s@Ys, respectively, where "." and "@" are literals. Obviously, this language
requires further extensions, such as composition (disjunction) or Kleene closure
(repeating the same pattern). Also, the new types of primitives, such as single
characters, may be considered. Nevertheless, the next section reports improve-

ments that could be obtained even within such a limited framework.
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The next component — applying decomposition rules to attributes —is realized
by the system table columns that contains four columns: DATABASE NAME,
TABLE NAME, COLUMN NAME, and DECOMPOSITION. This table stores
assignments of rules to data attributes identified by its first three columns. The
forth column is a foreign key of ID from decomposition_ dictionary. There are
two auxiliary stored procedures provided to handle the rule assignments:

SET_DECOMPOSITION_RULE(database,table,column,id)
DELETE_DECOMPOSITION_RULE(database,table,column)

For example, the following statement
CALL SET_DECOMPOSITION_RULE(’NETWORK’,’CONNECTION’,’IP’,’IPv4’);

means that the column IP in the table CONNECTION will be handled by the
decomposition rule IPv4, due to its definition in decomposition_ dictionary.

If one of the existing rules needs to be revised by a domain expert, there are
two possibilities: 1) altering the rule’s definition per se if its general pattern is
wrong, or 2) linking a specific data attribute to another rule. Once the rule’s
definition or assignment is changed, new data portions will be processed using
new configuration but already existing data packs will remain unmodified.

The last component — parsing values through decomposition rules — should
be considered for each data pack separately. Data packs contain in their headers
information about the applied rule. Therefore, at this level, the architecture
implements the above-mentioned flexibility in modifying decomposition rules —
for the given attribute, different packs can be parsed using different rules.

Currently, decomposition rules affect only data storage. There are no changes
at the level of rough values, i.e., they are created as if there was no domain knowl-
edge available. Internal structure of data packs follows Figure 2] In the match
table, given the above-described language limitations, there is a unique code for
all values successfully parsed through the decomposition rule, with additional
codes for NULLs and outliers. In future, after enriching our language with dis-
junctions, the codes will become less trivial and match tables will reoccur at
various decomposition levels. Sub-collections to be compressed correspond to
the %d and %s primitives of parsed values. A separate sub-collection contains al-
phanumeric outliers. At this stage, we apply our previously-developed algorithms
for compressing sequences of numeric, alphanumeric, and binary values [11]. The
original data packs can be reassembled by putting decompressed sub-collections
together, using the match tables and decomposition rules’ specifications.

As reported in the next section, the proposed framework has potential impact
on data load, data size, and data access. On the other hand, it also yields some
new types of design tasks. For example, the domain injections will eventually
lead towards higher complexity of Infobright’s Knowledge Grid, raising some
interesting challenges with respect to rough values’ storage and usage. One needs
to remember that the significant advantage of rough values lays in their relatively
small size. However, in case of long, richly structured varchar attributes, we
should not expect over-simplistic rough values to be informative enough.
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6 Experiments

We tested the described framework against alphanumeric columns in the real-
world tables provided by the ICE/IEE users. Decomposition rules were chosen
according to preliminary analysis of data samples. The rules are evaluated with
respect to the three following aspects that are crucial for the users:

— Load time: It includes parsing input files and compressing data packs. With
a decomposition rule in place, the parsing stage includes also matching the
values in each of data packs against the rule’s structure. For more complex
rules it takes more time. On the other hand, more complex rules lead to
higher number of simpler sub-collections that may be all together compressed
faster than collections of original varchar values.

— Query time: Currently, it is related to decompression speed and to the cost
of composing separately stored particles into original values. Decompression
and compression speeds are not necessarily correlated. For example, for sub-
collections of numeric particles our decompression routines are much faster
than corresponding compression [11]]. In future, query time will be reduced
due to higher informativeness of rough values, yielding less frequent data
pack accesses. We expect it to be more significant than any overheads related
to storing and using more compound rough values.

— Disk size: It is primarily related to data compression ratios. The rules
decompose values into particles, whose sub-collections are compressed inde-
pendently by better adjusted algorithms. For example, it may happen that
some parts of complex varchars are integers. Then, numeric compression
may result in smaller output, even though there is an overhead related to
representing packs by means of multiple sub-blocks.

Table [1f illustrates load time, query time, and disk size for the corresponding
decomposition rules, measured relatively to the situation with no domain knowl-
edge in use. We examined data tables containing single alphanumeric attributes.
Results were averaged over 10 runs. Load time is likely to increase when de-
composition rules are applied. However, we can also see some promising query
speedups. Compression ratios are better as well, although there are counterex-
amples. For instance, decomposition rule %s://%s.%s.%s/%s did not lead to
possibility of applying compression algorithms that would be adjusted signifi-
cantly better to particular URI components. On the other hand, URI decompo-
sition paid off by means of query time. In this case, shorter strings turned out
to be far easier to process, which overpowered the overhead related to a need of
concatenating them into original values after decompression.

Besides the data set containing web sites parsed with the above-mentioned
URI decomposition rule, we considered also IPv4 addresses and some identifiers
originating from the telecommunication and biogenetic applications. Such cases
represent mixtures of all types of the currently implemented primitives: numerics
(%d), strings (%s), and literals (such as AA or gi in Table[L).
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Table 1. Experiments with three aspects of ICE/IEE efficiency: load time, query
time, and disk size. Query times are reported for SELECT * FROM table INTO
OUTFILE. Results are compared with domain-unaware case. For example, query
time 50.1% in the first row means that the given query runs almost two times
faster when the corresponding decomposition rule is used. Five data sets with
single alphanumeric attributes are considered, each of them treated with at least
one decomposition rule. There are five rules studied for the last set.

data type| decomposition rule |load time|query time|disk size
IPv4 #d.%hd.%d.%d 105.8% 50.1% 105.9%
id 1 00%d%sAAYs%d-%d-%d | 156.4% 96.1% 87.6%
id_2 gi%d-Y%s_%s%d%s 92.7% 61.8% | 85.1%
URI hs://%s . hs.%hs/%s 135.3% 89.7% | 152.6%
notice 1 113.3% 88.1% 67.5%
notice 2 113.2% | 105.4% | 97.0%
logs notice 3 113.1% | 82.2% | 61.5%
notices 1,3 generalized | 103.6% 71.2% 40.9%
notices 1,2,3 generalized| 132.2% | 100.4% | 82.2%

The last case (denoted as logs) refers to the data set, where each value follows
one of three, roughly equinumerous distinct structures (denoted as notices 1, 2,
and 3) related to three subsystem sources. Given that the currently implemented
language of domain injections does not support disjunction, our first idea was
to adjust the decomposition rule to notice 1, 2, or 3. Unfortunately, fixing the
rule for one of notices results in 66% of values treated as outliers. Nevertheless,
Table[I]shows that for notices 1 and 3 it yields quite surprising improvements. We
also investigated more general rules addressing multiple notices but not going so
deeply into some of their details. (This means that some parts that could be finer
decomposed are now compressed as longer substrings.) When using such a rule
for notices 1 and 3, with 33% of outliers (for notice 2) and slightly courser way of
compressing 66% of values (for notices 1 and 3), we obtained the best outcome
with respect to load speed, query speed, and compression ratio. However, further
rule generalization aiming at grasping also notice 2 led us towards losing too
much with respect to values corresponding to structures 1 and 3.

The above example illustrates deficiencies of our current decomposition lan-
guage. It also shows that the same columns can be assigned with different rules
and that it is hard to predict their benefits without monitoring data and queries.
It emphasizes the necessity of evolution of the domain knowledge and the need
for adaptive methods of adjusting that knowledge to the data problems, which
can evolve as well. Regardless of whether the optimal approach to understanding
and conducting such evolution is manual or automatic, it requires gathering the
feedback related to various database efficiency characteristics and attempting to
translate it towards, e.g., the decomposition rule recommendations.
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7 Conclusions

Allowing domain experts to describe the content of their data leads to substantial
opportunities. In this paper, we discussed how to embed such descriptions into an
RDBMS engine. Experiments with data compression show significant potential
of the proposed approach. They also expose that more work shall be done with
respect to human-computer interfaces and the engine internals.

One of our future research directions is to use domain knowledge not only for
better data compression but also for better data representation. For the specific
database solution discussed in this article, one may design domain-driven rough
values summarizing sub-collections of decomposed data packs.

Another idea is to avoid accessing all sub-collections of required data packs.
In future, we may try to use data pack content information to resolve operations
such as filter or function computation, keeping a clear border between domain-
unaware execution modules and domain-aware data processing.
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