Constraint Based Incremental Learning of
Classification Rules

Arkadiusz Wojna

Institute of Informatics, Warsaw University
ul. Banacha 2, 02-097 Warsaw, Poland
http://www.mimuw.edu.pl/~awojna
wojna@mimuw.edu.pl

Abstract. We present a modification of a simple incremental procedure
maintaining the set of all current reduct rules. It reduces searching to
the part of the rule space limited by a dynamic monotonic constraint.
Efficiency problems and their solutions for the class of coverage based
constraints are discussed and an illustrative example is provided.
Keywords: rough sets, machine learning, incremental learning, decision
algorithms.

1 Introduction

In recent years rough sets were intensively studied as a method for approximative
concept synthesis from data tables. Many data sources have dynamic character
and their size is still increasing. In order to maintain the validity of knowledge ex-
tracted from dynamically changing data one should develop incremental learning
strategies.

Incremental learning has been already widely studied in machine learning
and for the exhaustive overview of these methods the reader is referred e.g.
to [1] and [3]. This paper examines the problematics on the ground of rough sets
introduced by Pawlak [5]. Different incremental algorithms maintaining reducts
were proposed e.g. [4], [7] and experimental results comparing nonicremental and
incremental methods for reduct generation may be found in [9].

The subject of the paper is an incremental method maintaining a set of reduct
rules. Shan and Ziarko [7] described an algorithm generating all reduct rules.
This paper presents its more practical version based on the notion of dynamic
monotonic constraint that reduced the size of the rule space to be searched. The
idea of searching for rules satisfing user requirements has been already used in
nonincremental approach e.g. [2], [8]. Different properties and accelerating meth-
ods of the proposed solution are described and an experimental example that
demonstrates potential advantages of the constraint based approach is provided.

2 Classification Rules and Constraints

We denote a finite set of binary attributes by A and a finite set of decisions by V.
The domain of all objects is defined by U = {0, 1}**. The input of an incremental

algorithm is a finite sequence of pairs (u;, d;) called a sample, where u; € U is an
object and d; € V is a decision for u;. The notion of a sample corresponds to the
notion of a decision table [5] in nonincremental approach. For a given sample s
we denote the set of all examples from s with a decision d by Classs(d).

A classification rule is an implication & = d where a is a conjunction of
literals of attributes from A and d € V. The support of a sample s for a con-
junction « is defined by [a], = {(u,d) € s : u satisfies a} and for a rule a = d
is defined by [a = d], = [a], N Class,(d).

A rule @ = d is certain for a sample s if for each pair (u;,d;) in s such that
u; satisfies v the decisions are equal d; = d. A certain rule a = d is a reduct
rule if a is a minimal conjunction in the sense of literal set inclusion among
all conjunctions occurring on the lefthand side of a certain rule with the same
decision d. The set of all reduct rules with the decision d for a sample s is denoted
by RedRuls(d). We use two measures for rules: confidence and coverage [2], [5],

[6], [8]:

{ 0 if[a],=0
confidences(a = d) = { ||[le=dl,|| .
||[O‘]s if [Oé]s 7£ 0
o =
coverages(a = d) = H

Usually the set, of all reduct rules is very large and only a small subset, that
can be described by a monotonic constraint, is relevant. A monotonic constraint
is a set of rules C such that if a rule @ = d belongs to C then for each B C
Literals () the rule A B = d also belongs to C. We restrict the space of reduct
rules to bounded by C: RedRulS (d) = C'N RedRuls(d). Throughout the paper,
somewhat informally, we denote the description of a monotonic constraint and
the set of rules defined by the monotonic constraint with the same symbol C'.

In the next sections we focus our attention on two types of a monotonic
constraint: the first one Red RulS°v¢m29¢>%(d) bases on a fixed coverage threshold
6 €10, 1]:

{r € RedRul,(d) : coverages(r) > 6}

and the other one RedRul’**~*(d) includes always the set of exactly k best
reduct rules:

{r € RedRuls(d) : ||{r" € RedRuls(d) : coverages(r') > coverages(r)}|| < k}

3 Incremental Constraint Based Algorithm

The algorithm [7] computing all reduct rules starts with the set of the most
general rules one for each decision class and after each new example is added it
extends each rule that is inconsistent with the example by adding the literals
excluding the example.

Since the space of rules is usually too large for searching for all reduct rules,
we propose a modified version of the incremental algorithm using a dynamic
monotonic constraint that may change after each new example is added. The
algorithm limits the set of maintained reduct rules to rules satisfying the con-
straint. Let C' denote the considered monotonic constraint. During computation
the algorithm always maintains the following sets: s — the set of training exam-
ples, Rules(d) — the set of reduct rules with the decision d, CCand(d) — the
set of candidates for reduct rules with the decision d satisfying the constraint C'
and nonCCand(d) — the set of candidates for reduct rules with the decision d
not satisfying C.

Like in [7] the algorithm starts with the set of the most general rules one for
each decision class and for each new example it executes procedure learn. The
difference is that the constraint based algorithm extends candidates only from
the sets CCand set leaving the sets nonC'Cand unchanged:

Algorithm 1 learn(u,d)
s:=s+ (u,d);
update the constraint C;
for each d' € V do
step 1:
move all rules v € Rules(d") such that r ¢ C' to nonCCand(d');
move all rules r € Rules(d') inconsistent with (u,d) to CCand(d');
move all certain rules r € nonCCand(d') such that r € C to Rules(d');
move all rules r € nonCCand(d") such that r € C to CCand(d');
step 2:
while CCand(d') # 0 do
remove an arbitrary rule & = d' from CCand(d');
find an example (u”,d") inconsistent with the rule a = d';
for each attribute a € A\ Attributes(a) do
[:=literal for a which excludes u";
if a Nl = d' is not subsumed
by another rule from Rules(d') U CCand(d") UnonCCand(d') then
ifanNl=d ¢ C then nonCCand(d') := nonCCand(d')U{a ANl = d'}
else if a Nl = d' is certain then Rules(d') := Rules(d')U{a Al = d'}
else CCand(d') :== CCand(d YU {a Al =d'};

At the beginning of the procedure learn(u, d) the sets Rules(d') are assumed
to contain all reduct rules satisfying the constraint C' and nonCCand(d') are
assumed to contain all generated up to now rules not satisfying C', both according
to a sample s before adding a new example (u,d). The sets CCand(d') should
be empty.

In the step 1 the procedure moves rules according to changes in the sample
s and the constraint C": reduct rules for a previous sample may be inconsistent
with a new example (u,d) and the modified constraint may both include new
candidate and reduct rules and exclude previously covered reduct rules. Time
needed for this step may vary significantly in dependence on a used constraint.

For the constraint coverage > 0 migration only for rules that cover a new object
u is possible, for constraints with positive coverage threshold other rules with
the decision d can migrate and for best — k constraints checking constraint sat-
isfiability becomes much more complex. In the last case a good solution is to
assume the ranking based on the current set of reduct rules and do the step 2
correcting the ranking every time when a new reduct rule is found.

In the step 2 the procedure extends all candidates satisfing C. Candidates
that were previously in nonCCand(d") may be inconsistent with any example in
the sample s, not always with the last one (d,u). Therefore the procedure must
search the sample s for an inconsistent example. In order to avoid searching the
whole sample for each candidate the procedure may assign to each extended rule
a Al = d' the position in s where an inconsistent example for the previous rule
a = d' was found and continue searching from this place. After an inconsistent
example (u”,d") is found, the candidate is extended with all literals excluding
u. The next time consuming operation is subsumption checking. If an extension
is not subsumed by another rule it is directed to the appropriate set, otherwise
it is removed.

Theorem 1. At the end of the procedure learn the union |J,c, Rules(d) is
always equal to the set of all reduct rules satisfying the constraint C for the
sample s.

4 Improving Efficiency

One of the properties of the algorithm presented in the previous section is that it
never reduces rules. Generating more and more new rules without any reduction
prolongs checking for subsumptions and leads to the lack of memory. In order to
avoid the problem the following solution may be used. Every time after a rule
a = d' is added to the set nonCCand(d') it is also reduced as much as it is
possible:

Algorithm 2 reduce(a = d')
reduce the rule o = d' to 3 = d'
where 3 is any minimal conjunction subsuming such that 8= d ¢ C;

The presented improvement applies to constraints that have ”shrinking”
property what means that new examples may lead to excluding a rule from
a constraint. An example of a ”shrinking” constraint is coverage > 6 for any
f > 0, whereas the constraint coverage > 0 does not have this property.

However, this modification brings another undesirable phenomenon affecting
efficiency namely ”shimmering” of rules what means that a single rule may be
generated and reduced many times while the constraint is changing dynamically
and repeated computation of rule parameters significantly slowers the perfor-
mance. We present two methods to deal with this problem.

The first one consists in maintaining two buffers: BufFExt saves rules for
which the extending operation was already performed and Buf Red saves rules

that were reduced. The buffers are usually too limited for keeping all rules that
appeared in the process of learning. Therefore a certain measure is applied to
estimate which rules are the most probable to be reused in the near future.
For coverage based constraints coverage is a good measure for it. The following
procedure saveFEztended is executed each time when a rule is extended:

Algorithm 3 saveExtended(r)
if the buffer BufExt is not full then add r to BufExt;
else if coverages(r) < Max, ¢ BufEat cOVErages(r')
then replace a rule with the mazimal coverage in BufExt with r ;

The analogical procedure saveReduced is executed when a rule is reduced:

Algorithm 4 saveReduced(r)
if the buffer Buf Red is not full then add r to BufRed;
else if coverages(r) > min, ¢ gy red coverages(r')
then replace a rule with the minimal coverage in BufRed with r ;

When the procedure learn needs to compute parameters for a new generated
or reduced rule first it checks whether the rule is still available in the correspond-
ing buffer.

Another solution that reduces ”shimmering” is grouping examples. Instead
of learning each new example separately first the algorithm gets a large group
of examples and then starts learning rules. The learning process for a group of
examples may last much longer than for a single example. However, notice that
the procedure learn may be easily split into two parts: the first one corrects
the contents of the maintained sets and the parameters of rules according to the
sample including a new group and the next one generates new rules. The first part
is always short hence the second one is critical for time performance. Therefore
a good assumption for the second part is to be ready to stop learning and
classify a new object with a current set of rules every time when the classification
procedure is called. It requires from the algorithm to use rules with confidence
less than 1 for classification. In this proposition a strategy of choosing rules for
extension is important. The higher confidence a rule saves after updating by a
new group of examples the more reliable it is for the classification procedure.
Therefore a good strategy is to start extending with a rule having confidence
nearest to 1 and move towards rules with lower confidence. In this way more
reliable rules are adapted to a new group first. The latter solution provides also
a good background for distributed computation.

The presented algorithm may be also adapted to the case when it is given a
very large set of examples s at once. Like in the incremental algorithm it executes
the procedure learn for successive examples in s. Because of the size the compu-
tation for the whole sample would last very long and would block classification
procedure calls. To avoid it the learning procedure is always stopped when the
classification procedure is called and waits until the classification is completed.
Classification uses a current set of computed rules. Many of them may be still

inconsistent with a number of examples, therefore before classification the algo-
rithm needs to calculate qualitative parameters of rules: confidence and coverage,
according to the whole sample s. It imposes the additional condition that a used
classifier accepts rules with confidence less than 1.

Computing parameters for a set of rules consumes much less time than gener-
ating this set but computing them every time when the classification procedure
is called is usually still too expensive for a large set of rules and a large set of
objects. In order to avoid the problem the algorithm may perform the following
operations. For a particular object to classify it may compute parameters only
for rules covering the object. Once computed parameters for a rule may be pre-
served as long as the rule is held in the corresponding union Rules(d)UCand(d).
Independently of classification procedure calls the learning procedure may stop
at regular intervals and compute parameters for rules generated since the previ-
ous stop. The choice of appropriate data structures may significantly accelerate
computation of parameters for rules and objects.

In case when all methods of improving efficiency fail, the exhaustive search
may be replaced immediately by any heuristic search.

5 Illustrative Example

We present, experimental results for the data set Income (13 attributes, 30162
training cases, 15060 testing cases) from the repository at University of Cali-
fornia, Irvine (http://kdd.ics.uci.edu). In preprocessing discretization was used
and 32 binary attributes were chosen by greedy heuristic algorithm optimizing
discernibility.

The learning procedure was executed for groups of examples. We used the
incremental constraint based algorithm with the modification that rules were
extended not in all possible directions but only with rules that have the best
confidence and the best coverage if there are ties in confidence for at least one
covered object.

For each coverage threshold 0, 0.05 and 0.2 we performed series of computa-
tion in the following way. First the procedure learn was executed for the first
1/8 part of the training set and the testing set was classified. In each next step
the number of examples equal to the number of examples received in all previous
steps was added and learned and the next test of the testing set was performed.
In this way the size of successive groups of examples grew exponentially. Each
test object was classified with the decision of the best covering rule in the union
Uuev Rules(d) U nonCCand(d) according to the confidence and in case of ties
to the coverage.

The results are presented on the graphs below. Left side graphs present the
classification error, time and number of rules obtained in three series of in-
cremental learning with different constraints: coverage > 0.2 (light line with
boxes), coverage > 0.05 (medium dark line with circles) and coverage > 0
(dark line with diamonds). Right side graphs present the final results of in-

cremental (medium dark line with crosses) and nonincremental (dark line with
circles) learning for different coverage based constraints.

22 22
21 21

20 20

3 = °
3 » o

w
16 0 5 10 objects I(%l()()()) 20 25 30 160 002 004 O'O%in.g'oql%rageo'l 0.12 0.14 0.16
Income - classification error (%) Income - classification error (%)
3000 3000
2500 2500

2000 2000
1500 1500

1000 1000

g
g

o

0 5 10 objects I(;l()()()) 20 25 30 0 0.02 004 O'O?nin. (g.o({,%mge().l 0.12 0.14 0.16
Income - time (sec) Income - time (sec)

120 120
100 100

80 80

60 60

40 40

20 20

= o a
0 5 10 objects I(;l()()()) 20 25 30 0 0.02 004 O'O?nin. (g.o({,%mge().l 0.12 0.14 0.16
Income - rules (x1000) Income - rules (x1000)

In the presented example the application of stronger constraints brought a
significant reduction of used memory and time and very small deterioration of
accuracy or even improvement for low coverage thresholds. The results show
also that accuracy obtained with the small part of the training set used in a
learning process is not significantly lower than for the whole training set and
finally incremental learning reached better results than nonincremental. Similar
properties of test results on other data sets (Shuttle, Letter) indicate that the

combination of the incremental approach and a coverage based constraint may
be an effective tool for learning concepts from both dynamic and large data sets.

6 Conclusions

We have shown how rough set methods can be adapted to dynamically changing
data. We proposed a method based on a special type of monotonic constraints
that allowed us to reduce searching in the space of rules without substantial
changes in the classification quality. The presented method may be adapted to
large data sets especially when one implements it using cluster of computers. The
experimental example indicates that the incremental approach may preserve all
advantages of nonincremental methods and add new ones like reduction in used
time and memory and continuous improvement.

The following related problems are the subject for future study: methods
for coding arbitrary attributes by binary ones e.g. by discretization or value
grouping and efficient methods for computing confidence and coverage for large
rule sets because this is the most time consuming operation.
Acknowledgement The author is grateful to professor Andrzej Skowron for
useful remarks on this presentation. This work was supported by Research Pro-
gram of European Union, CRIT 2 Esprit Project No. 20288 and grants 8 T11C
025 19 and 8 T11C 009 19 from the Polish National Committee for Scientific
Research.

References

1. P. Langley, Elements of machine learning, The MIT Press, 1996

2. M. Kryszkiewicz, H. Rybinski, Knowledge discovery from large databases using
rough sets, in: Proceedings of the 6th European Congress on Intelligent Techniques
and Soft Computing, Aachen, Germany, Vol. 1, 85-89.

3. R. Michalski, A theory and methodology of inductive learning, Machine Learning:
An Artificial Intelligence Approach, Tioga, 1983, Vol. 1, 83-134.

4. M. Orlowska, M. Ortowski, Maintenance of knowledge in dynamic information
systems, in: R. Slowinski (editor), Intelligent decision support - handbook of ap-
plications and advances of the rough sets theory, Kluwer Academic Publishers,
Dordrecht, 1992, 315-330.

5. Z. Pawlak, Rough sets - theoretical aspects of reasoning about data, Kluwer Aca-
demic Publishers, Dordrecht, 1991.

6. L. Polkowski, A. Skowron (editors), Rough sets in knowledge discovery, Physica-
Verlag, Heidelberg, 1998.

7. N. Shan, W. Ziarko, Data-based acquisition and incremental modification of clas-
sification rules, Computational Intelligence, 11(2), 1995, 357-370.

8. J. Stefanowski, On rough set based approaches to induction of decision rules, in:
L. Polkowski, A. Skowron (editors), Rough sets in knowledge discovery 1, Physica-
Verlag, Heidelberg, 1998, 500-529.

9. R. Susmaga, Ezperiments in incremental computation of reducts, in: L. Polkowski,
A. Skowron (editors), Rough sets in knowledge discovery 1, Physica-Verlag, Hei-
delberg, 1998, 530-553.

