
Constraint Based Inremental Learning of

Classi�ation Rules

Arkadiusz Wojna

Institute of Informatis, Warsaw University

ul. Banaha 2, 02-097 Warsaw, Poland

http://www.mimuw.edu.pl/~awojna

wojna�mimuw.edu.pl

Abstrat. We present a modi�ation of a simple inremental proedure

maintaining the set of all urrent redut rules. It redues searhing to

the part of the rule spae limited by a dynami monotoni onstraint.

EÆieny problems and their solutions for the lass of overage based

onstraints are disussed and an illustrative example is provided.

Keywords: rough sets, mahine learning, inremental learning, deision

algorithms.

1 Introdution

In reent years rough sets were intensively studied as a method for approximative

onept synthesis from data tables. Many data soures have dynami harater

and their size is still inreasing. In order to maintain the validity of knowledge ex-

trated from dynamially hanging data one should develop inremental learning

strategies.

Inremental learning has been already widely studied in mahine learning

and for the exhaustive overview of these methods the reader is referred e.g.

to [1℄ and [3℄. This paper examines the problematis on the ground of rough sets

introdued by Pawlak [5℄. Di�erent inremental algorithms maintaining reduts

were proposed e.g. [4℄, [7℄ and experimental results omparing noniremental and

inremental methods for redut generation may be found in [9℄.

The subjet of the paper is an inremental method maintaining a set of redut

rules. Shan and Ziarko [7℄ desribed an algorithm generating all redut rules.

This paper presents its more pratial version based on the notion of dynami

monotoni onstraint that redued the size of the rule spae to be searhed. The

idea of searhing for rules satis�ng user requirements has been already used in

noninremental approah e.g. [2℄, [8℄. Di�erent properties and aelerating meth-

ods of the proposed solution are desribed and an experimental example that

demonstrates potential advantages of the onstraint based approah is provided.

2 Classi�ation Rules and Constraints

We denote a �nite set of binary attributes by A and a �nite set of deisions by V:

The domain of all objets is de�ned by U = f0; 1g

A

. The input of an inremental

algorithm is a �nite sequene of pairs (u

i

; d

i

) alled a sample, where u

i

2 U is an

objet and d

i

2 V is a deision for u

i

. The notion of a sample orresponds to the

notion of a deision table [5℄ in noninremental approah. For a given sample s

we denote the set of all examples from s with a deision d by Class

s

(d).

A lassi�ation rule is an impliation �) d where � is a onjuntion of

literals of attributes from A and d 2 V . The support of a sample s for a on-

juntion � is de�ned by [�℄

s

= f(u; d) 2 s : u satis�es �g and for a rule �) d

is de�ned by [�) d℄

s

= [�℄

s

\ Class

s

(d

_

).

A rule �) d is ertain for a sample s if for eah pair (u

i

; d

i

) in s suh that

u

i

satis�es � the deisions are equal d

i

= d. A ertain rule �) d is a redut

rule if � is a minimal onjuntion in the sense of literal set inlusion among

all onjuntions ourring on the lefthand side of a ertain rule with the same

deision d. The set of all redut rules with the deision d for a sample s is denoted

by RedRul

s

(d). We use two measures for rules: on�dene and overage [2℄, [5℄,

[6℄, [8℄:

onfidene

s

(�) d) =

(

0 if [�℄

s

= ;

k

[�)d℄

s

k

k

[�℄

s

k

if [�℄

s

6= ;

overage

s

(�) d) =

k[�) d℄

s

k

kClass

s

(d)k

Usually the set of all redut rules is very large and only a small subset, that

an be desribed by a monotoni onstraint, is relevant. A monotoni onstraint

is a set of rules C suh that if a rule �) d belongs to C then for eah B �

Literals (�) the rule

V

B) d also belongs to C. We restrit the spae of redut

rules to bounded by C: RedRul

C

s

(d) = C \RedRul

s

(d). Throughout the paper,

somewhat informally, we denote the desription of a monotoni onstraint and

the set of rules de�ned by the monotoni onstraint with the same symbol C.

In the next setions we fous our attention on two types of a monotoni

onstraint: the �rst one RedRul

overage>�

s

(d) bases on a �xed overage threshold

� 2 [0; 1℄:

fr 2 RedRul

s

(d) : overage

s

(r) > �g

and the other one RedRul

best�k

s

(d) inludes always the set of exatly k best

redut rules:

fr 2 RedRul

s

(d) : kfr

0

2 RedRul

s

(d) : overage

s

(r

0

) > overage

s

(r)gk < kg

3 Inremental Constraint Based Algorithm

The algorithm [7℄ omputing all redut rules starts with the set of the most

general rules one for eah deision lass and after eah new example is added it

extends eah rule that is inonsistent with the example by adding the literals

exluding the example.

Sine the spae of rules is usually too large for searhing for all redut rules,

we propose a modi�ed version of the inremental algorithm using a dynami

monotoni onstraint that may hange after eah new example is added. The

algorithm limits the set of maintained redut rules to rules satisfying the on-

straint. Let C denote the onsidered monotoni onstraint. During omputation

the algorithm always maintains the following sets: s | the set of training exam-

ples, Rules(d) | the set of redut rules with the deision d, CCand(d) | the

set of andidates for redut rules with the deision d satisfying the onstraint C

and nonCCand(d) | the set of andidates for redut rules with the deision d

not satisfying C.

Like in [7℄ the algorithm starts with the set of the most general rules one for

eah deision lass and for eah new example it exeutes proedure learn. The

di�erene is that the onstraint based algorithm extends andidates only from

the sets CCand set leaving the sets nonCCand unhanged:

Algorithm 1 learn(u,d)

s := s+ (u; d);

update the onstraint C;

for eah d

0

2 V do

step 1:

move all rules r 2 Rules(d

0

) suh that r =2 C to nonCCand(d

0

);

move all rules r 2 Rules(d

0

) inonsistent with (u; d) to CCand(d

0

);

move all ertain rules r 2 nonCCand(d

0

) suh that r 2 C to Rules(d

0

);

move all rules r 2 nonCCand(d

0

) suh that r 2 C to CCand(d

0

);

step 2:

while CCand(d

0

) 6= ; do

remove an arbitrary rule �) d

0

from CCand(d

0

);

�nd an example (u

00

; d

00

) inonsistent with the rule �) d

0

;

for eah attribute a 2 A nAttributes(�) do

l :=literal for a whih exludes u

00

;

if � ^ l) d

0

is not subsumed

by another rule from Rules(d

0

) [CCand(d

0

) [nonCCand(d

0

) then

if � ^ l) d

0

=2 C then nonCCand(d

0

) := nonCCand(d

0

) [f� ^ l) d

0

g

else if � ^ l) d

0

is ertain then Rules(d

0

) := Rules(d

0

) [f� ^ l) d

0

g

else CCand(d

0

) := CCand(d

0

) [f� ^ l) d

0

g;

At the beginning of the proedure learn(u; d) the sets Rules(d

0

) are assumed

to ontain all redut rules satisfying the onstraint C and nonCCand(d

0

) are

assumed to ontain all generated up to now rules not satisfying C, both aording

to a sample s before adding a new example (u; d). The sets CCand(d

0

) should

be empty.

In the step 1 the proedure moves rules aording to hanges in the sample

s and the onstraint C: redut rules for a previous sample may be inonsistent

with a new example (u; d) and the modi�ed onstraint may both inlude new

andidate and redut rules and exlude previously overed redut rules. Time

needed for this step may vary signi�antly in dependene on a used onstraint.

For the onstraint overage > 0 migration only for rules that over a new objet

u is possible, for onstraints with positive overage threshold other rules with

the deision d an migrate and for best� k onstraints heking onstraint sat-

is�ability beomes muh more omplex. In the last ase a good solution is to

assume the ranking based on the urrent set of redut rules and do the step 2

orreting the ranking every time when a new redut rule is found.

In the step 2 the proedure extends all andidates satis�ng C. Candidates

that were previously in nonCCand(d

0

) may be inonsistent with any example in

the sample s, not always with the last one (d; u). Therefore the proedure must

searh the sample s for an inonsistent example. In order to avoid searhing the

whole sample for eah andidate the proedure may assign to eah extended rule

� ^ l) d

0

the position in s where an inonsistent example for the previous rule

�) d

0

was found and ontinue searhing from this plae. After an inonsistent

example (u

00

; d

00

) is found, the andidate is extended with all literals exluding

u

00

. The next time onsuming operation is subsumption heking. If an extension

is not subsumed by another rule it is direted to the appropriate set, otherwise

it is removed.

Theorem 1. At the end of the proedure learn the union

S

d2V

Rules(d) is

always equal to the set of all redut rules satisfying the onstraint C for the

sample s.

4 Improving EÆieny

One of the properties of the algorithm presented in the previous setion is that it

never redues rules. Generating more and more new rules without any redution

prolongs heking for subsumptions and leads to the lak of memory. In order to

avoid the problem the following solution may be used. Every time after a rule

�) d

0

is added to the set nonCCand(d

0

) it is also redued as muh as it is

possible:

Algorithm 2 redue(�) d

0

)

redue the rule �) d

0

to �) d

0

where � is any minimal onjuntion subsuming � suh that �) d

0

=2 C;

The presented improvement applies to onstraints that have "shrinking"

property what means that new examples may lead to exluding a rule from

a onstraint. An example of a "shrinking" onstraint is overage > � for any

� > 0, whereas the onstraint overage > 0 does not have this property.

However, this modi�ation brings another undesirable phenomenon a�eting

eÆieny namely "shimmering" of rules what means that a single rule may be

generated and redued many times while the onstraint is hanging dynamially

and repeated omputation of rule parameters signi�antly slowers the perfor-

mane. We present two methods to deal with this problem.

The �rst one onsists in maintaining two bu�ers: BufExt saves rules for

whih the extending operation was already performed and BufRed saves rules

that were redued. The bu�ers are usually too limited for keeping all rules that

appeared in the proess of learning. Therefore a ertain measure is applied to

estimate whih rules are the most probable to be reused in the near future.

For overage based onstraints overage is a good measure for it. The following

proedure saveExtended is exeuted eah time when a rule is extended:

Algorithm 3 saveExtended(r)

if the bu�er BufExt is not full then add r to BufExt;

else if overage

s

(r) < max

r

0

2BufExt

overage

s

(r

0

)

then replae a rule with the maximal overage in BufExt with r ;

The analogial proedure saveRedued is exeuted when a rule is redued:

Algorithm 4 saveRedued(r)

if the bu�er BufRed is not full then add r to BufRed;

else if overage

s

(r) > min

r

0

2BufRed

overage

s

(r

0

)

then replae a rule with the minimal overage in BufRed with r ;

When the proedure learn needs to ompute parameters for a new generated

or redued rule �rst it heks whether the rule is still available in the orrespond-

ing bu�er:

Another solution that redues "shimmering" is grouping examples. Instead

of learning eah new example separately �rst the algorithm gets a large group

of examples and then starts learning rules. The learning proess for a group of

examples may last muh longer than for a single example. However, notie that

the proedure learn may be easily split into two parts: the �rst one orrets

the ontents of the maintained sets and the parameters of rules aording to the

sample inluding a new group and the next one generates new rules. The �rst part

is always short hene the seond one is ritial for time performane. Therefore

a good assumption for the seond part is to be ready to stop learning and

lassify a new objet with a urrent set of rules every time when the lassi�ation

proedure is alled. It requires from the algorithm to use rules with on�dene

less than 1 for lassi�ation. In this proposition a strategy of hoosing rules for

extension is important. The higher on�dene a rule saves after updating by a

new group of examples the more reliable it is for the lassi�ation proedure.

Therefore a good strategy is to start extending with a rule having on�dene

nearest to 1 and move towards rules with lower on�dene. In this way more

reliable rules are adapted to a new group �rst. The latter solution provides also

a good bakground for distributed omputation.

The presented algorithm may be also adapted to the ase when it is given a

very large set of examples s at one. Like in the inremental algorithm it exeutes

the proedure learn for suessive examples in s. Beause of the size the ompu-

tation for the whole sample would last very long and would blok lassi�ation

proedure alls. To avoid it the learning proedure is always stopped when the

lassi�ation proedure is alled and waits until the lassi�ation is ompleted.

Classi�ation uses a urrent set of omputed rules. Many of them may be still

inonsistent with a number of examples, therefore before lassi�ation the algo-

rithm needs to alulate qualitative parameters of rules: on�dene and overage,

aording to the whole sample s. It imposes the additional ondition that a used

lassi�er aepts rules with on�dene less than 1.

Computing parameters for a set of rules onsumes muh less time than gener-

ating this set but omputing them every time when the lassi�ation proedure

is alled is usually still too expensive for a large set of rules and a large set of

objets. In order to avoid the problem the algorithm may perform the following

operations. For a partiular objet to lassify it may ompute parameters only

for rules overing the objet. One omputed parameters for a rule may be pre-

served as long as the rule is held in the orresponding union Rules(d)[Cand(d).

Independently of lassi�ation proedure alls the learning proedure may stop

at regular intervals and ompute parameters for rules generated sine the previ-

ous stop. The hoie of appropriate data strutures may signi�antly aelerate

omputation of parameters for rules and objets.

In ase when all methods of improving eÆieny fail, the exhaustive searh

may be replaed immediately by any heuristi searh.

5 Illustrative Example

We present experimental results for the data set Inome (13 attributes, 30162

training ases, 15060 testing ases) from the repository at University of Cali-

fornia, Irvine (http://kdd.is.ui.edu). In preproessing disretization was used

and 32 binary attributes were hosen by greedy heuristi algorithm optimizing

disernibility.

The learning proedure was exeuted for groups of examples. We used the

inremental onstraint based algorithm with the modi�ation that rules were

extended not in all possible diretions but only with rules that have the best

on�dene and the best overage if there are ties in on�dene for at least one

overed objet.

For eah overage threshold 0, 0:05 and 0:2 we performed series of omputa-

tion in the following way. First the proedure learn was exeuted for the �rst

1=8 part of the training set and the testing set was lassi�ed. In eah next step

the number of examples equal to the number of examples reeived in all previous

steps was added and learned and the next test of the testing set was performed.

In this way the size of suessive groups of examples grew exponentially. Eah

test objet was lassi�ed with the deision of the best overing rule in the union

S

d2V

Rules(d) [nonCCand(d) aording to the on�dene and in ase of ties

to the overage.

The results are presented on the graphs below. Left side graphs present the

lassi�ation error, time and number of rules obtained in three series of in-

remental learning with di�erent onstraints: overage > 0:2 (light line with

boxes), overage > 0:05 (medium dark line with irles) and overage > 0

(dark line with diamonds). Right side graphs present the �nal results of in-

remental (medium dark line with rosses) and noninremental (dark line with

irles) learning for di�erent overage based onstraints.

16

17

18

19

20

21

22

0 5 10 15 20 25 30
objects (x1000)

Inome - lassi�ation error (%)

16

17

18

19

20

21

22

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
min. coverage

Inome - lassi�ation error (%)

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 30
objects (x1000)

Inome - time (se)

0

500

1000

1500

2000

2500

3000

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
min. coverage

Inome - time (se)

0

20

40

60

80

100

120

5 10 15 20 25 30
objects (x1000)

Inome - rules (�1000)

0

20

40

60

80

100

120

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
min. coverage

Inome - rules (�1000)

In the presented example the appliation of stronger onstraints brought a

signi�ant redution of used memory and time and very small deterioration of

auray or even improvement for low overage thresholds. The results show

also that auray obtained with the small part of the training set used in a

learning proess is not signi�antly lower than for the whole training set and

�nally inremental learning reahed better results than noninremental. Similar

properties of test results on other data sets (Shuttle, Letter) indiate that the

ombination of the inremental approah and a overage based onstraint may

be an e�etive tool for learning onepts from both dynami and large data sets.

6 Conlusions

We have shown how rough set methods an be adapted to dynamially hanging

data. We proposed a method based on a speial type of monotoni onstraints

that allowed us to redue searhing in the spae of rules without substantial

hanges in the lassi�ation quality. The presented method may be adapted to

large data sets espeially when one implements it using luster of omputers. The

experimental example indiates that the inremental approah may preserve all

advantages of noninremental methods and add new ones like redution in used

time and memory and ontinuous improvement.

The following related problems are the subjet for future study: methods

for oding arbitrary attributes by binary ones e.g. by disretization or value

grouping and eÆient methods for omputing on�dene and overage for large

rule sets beause this is the most time onsuming operation.

Aknowledgement The author is grateful to professor Andrzej Skowron for

useful remarks on this presentation. This work was supported by Researh Pro-

gram of European Union, CRIT 2 Esprit Projet No. 20288 and grants 8 T11C

025 19 and 8 T11C 009 19 from the Polish National Committee for Sienti�

Researh.

Referenes

1. P. Langley, Elements of mahine learning, The MIT Press, 1996

2. M. Kryszkiewiz, H. Rybi�nski, Knowledge disovery from large databases using

rough sets, in: Proeedings of the 6th European Congress on Intelligent Tehniques

and Soft Computing, Aahen, Germany, Vol. 1, 85-89.

3. R. Mihalski, A theory and methodology of indutive learning, Mahine Learning:

An Arti�ial Intelligene Approah, Tioga, 1983, Vol. 1, 83-134.

4. M. Or lowska, M. Or lowski, Maintenane of knowledge in dynami information

systems, in: R. S lowi�nski (editor), Intelligent deision support - handbook of ap-

pliations and advanes of the rough sets theory, Kluwer Aademi Publishers,

Dordreht, 1992, 315-330.

5. Z. Pawlak, Rough sets - theoretial aspets of reasoning about data, Kluwer Aa-

demi Publishers, Dordreht, 1991.

6. L. Polkowski, A. Skowron (editors), Rough sets in knowledge disovery, Physia-

Verlag, Heidelberg, 1998.

7. N. Shan, W. Ziarko, Data-based aquisition and inremental modi�ation of las-

si�ation rules, Computational Intelligene, 11(2), 1995, 357-370.

8. J. Stefanowski, On rough set based approahes to indution of deision rules, in:

L. Polkowski, A. Skowron (editors), Rough sets in knowledge disovery 1, Physia-

Verlag, Heidelberg, 1998, 500-529.

9. R. Susmaga, Experiments in inremental omputation of reduts, in: L. Polkowski,

A. Skowron (editors), Rough sets in knowledge disovery 1, Physia-Verlag, Hei-

delberg, 1998, 530-553.

