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Abstra
t. We present a modi�
ation of a simple in
remental pro
edure

maintaining the set of all 
urrent redu
t rules. It redu
es sear
hing to

the part of the rule spa
e limited by a dynami
 monotoni
 
onstraint.

EÆ
ien
y problems and their solutions for the 
lass of 
overage based


onstraints are dis
ussed and an illustrative example is provided.

Keywords: rough sets, ma
hine learning, in
remental learning, de
ision

algorithms.

1 Introdu
tion

In re
ent years rough sets were intensively studied as a method for approximative


on
ept synthesis from data tables. Many data sour
es have dynami
 
hara
ter

and their size is still in
reasing. In order to maintain the validity of knowledge ex-

tra
ted from dynami
ally 
hanging data one should develop in
remental learning

strategies.

In
remental learning has been already widely studied in ma
hine learning

and for the exhaustive overview of these methods the reader is referred e.g.

to [1℄ and [3℄. This paper examines the problemati
s on the ground of rough sets

introdu
ed by Pawlak [5℄. Di�erent in
remental algorithms maintaining redu
ts

were proposed e.g. [4℄, [7℄ and experimental results 
omparing noni
remental and

in
remental methods for redu
t generation may be found in [9℄.

The subje
t of the paper is an in
remental method maintaining a set of redu
t

rules. Shan and Ziarko [7℄ des
ribed an algorithm generating all redu
t rules.

This paper presents its more pra
ti
al version based on the notion of dynami


monotoni
 
onstraint that redu
ed the size of the rule spa
e to be sear
hed. The

idea of sear
hing for rules satis�ng user requirements has been already used in

nonin
remental approa
h e.g. [2℄, [8℄. Di�erent properties and a

elerating meth-

ods of the proposed solution are des
ribed and an experimental example that

demonstrates potential advantages of the 
onstraint based approa
h is provided.

2 Classi�
ation Rules and Constraints

We denote a �nite set of binary attributes by A and a �nite set of de
isions by V:

The domain of all obje
ts is de�ned by U = f0; 1g

A

. The input of an in
remental



algorithm is a �nite sequen
e of pairs (u

i

; d

i

) 
alled a sample, where u

i

2 U is an

obje
t and d

i

2 V is a de
ision for u

i

. The notion of a sample 
orresponds to the

notion of a de
ision table [5℄ in nonin
remental approa
h. For a given sample s

we denote the set of all examples from s with a de
ision d by Class

s

(d).

A 
lassi�
ation rule is an impli
ation � ) d where � is a 
onjun
tion of

literals of attributes from A and d 2 V . The support of a sample s for a 
on-

jun
tion � is de�ned by [�℄

s

= f(u; d) 2 s : u satis�es �g and for a rule � ) d

is de�ned by [�) d℄

s

= [�℄

s

\ Class

s

(d

_

).

A rule �) d is 
ertain for a sample s if for ea
h pair (u

i

; d

i

) in s su
h that

u

i

satis�es � the de
isions are equal d

i

= d. A 
ertain rule � ) d is a redu
t

rule if � is a minimal 
onjun
tion in the sense of literal set in
lusion among

all 
onjun
tions o

urring on the lefthand side of a 
ertain rule with the same

de
ision d. The set of all redu
t rules with the de
ision d for a sample s is denoted

by RedRul

s

(d). We use two measures for rules: 
on�den
e and 
overage [2℄, [5℄,

[6℄, [8℄:


onfiden
e

s

(�) d) =

(

0 if [�℄

s

= ;

k

[�)d℄

s

k

k

[�℄

s

k

if [�℄

s

6= ;


overage

s

(�) d) =

k[�) d℄

s

k

kClass

s

(d)k

Usually the set of all redu
t rules is very large and only a small subset, that


an be des
ribed by a monotoni
 
onstraint, is relevant. A monotoni
 
onstraint

is a set of rules C su
h that if a rule � ) d belongs to C then for ea
h B �

Literals (�) the rule

V

B ) d also belongs to C. We restri
t the spa
e of redu
t

rules to bounded by C: RedRul

C

s

(d) = C \RedRul

s

(d). Throughout the paper,

somewhat informally, we denote the des
ription of a monotoni
 
onstraint and

the set of rules de�ned by the monotoni
 
onstraint with the same symbol C.

In the next se
tions we fo
us our attention on two types of a monotoni



onstraint: the �rst one RedRul


overage>�

s

(d) bases on a �xed 
overage threshold

� 2 [0; 1℄:

fr 2 RedRul

s

(d) : 
overage

s

(r) > �g

and the other one RedRul

best�k

s

(d) in
ludes always the set of exa
tly k best

redu
t rules:

fr 2 RedRul

s

(d) : kfr

0

2 RedRul

s

(d) : 
overage

s

(r

0

) > 
overage

s

(r)gk < kg

3 In
remental Constraint Based Algorithm

The algorithm [7℄ 
omputing all redu
t rules starts with the set of the most

general rules one for ea
h de
ision 
lass and after ea
h new example is added it

extends ea
h rule that is in
onsistent with the example by adding the literals

ex
luding the example.



Sin
e the spa
e of rules is usually too large for sear
hing for all redu
t rules,

we propose a modi�ed version of the in
remental algorithm using a dynami


monotoni
 
onstraint that may 
hange after ea
h new example is added. The

algorithm limits the set of maintained redu
t rules to rules satisfying the 
on-

straint. Let C denote the 
onsidered monotoni
 
onstraint. During 
omputation

the algorithm always maintains the following sets: s | the set of training exam-

ples, Rules(d) | the set of redu
t rules with the de
ision d, CCand(d) | the

set of 
andidates for redu
t rules with the de
ision d satisfying the 
onstraint C

and nonCCand(d) | the set of 
andidates for redu
t rules with the de
ision d

not satisfying C.

Like in [7℄ the algorithm starts with the set of the most general rules one for

ea
h de
ision 
lass and for ea
h new example it exe
utes pro
edure learn. The

di�eren
e is that the 
onstraint based algorithm extends 
andidates only from

the sets CCand set leaving the sets nonCCand un
hanged:

Algorithm 1 learn(u,d)

s := s+ (u; d);

update the 
onstraint C;

for ea
h d

0

2 V do

step 1:

move all rules r 2 Rules(d

0

) su
h that r =2 C to nonCCand(d

0

);

move all rules r 2 Rules(d

0

) in
onsistent with (u; d) to CCand(d

0

);

move all 
ertain rules r 2 nonCCand(d

0

) su
h that r 2 C to Rules(d

0

);

move all rules r 2 nonCCand(d

0

) su
h that r 2 C to CCand(d

0

);

step 2:

while CCand(d

0

) 6= ; do

remove an arbitrary rule �) d

0

from CCand(d

0

);

�nd an example (u

00

; d

00

) in
onsistent with the rule �) d

0

;

for ea
h attribute a 2 A nAttributes(�) do

l :=literal for a whi
h ex
ludes u

00

;

if � ^ l) d

0

is not subsumed

by another rule from Rules(d

0

) [ CCand(d

0

) [ nonCCand(d

0

) then

if � ^ l) d

0

=2 C then nonCCand(d

0

) := nonCCand(d

0

) [ f� ^ l) d

0

g

else if � ^ l) d

0

is 
ertain then Rules(d

0

) := Rules(d

0

) [ f� ^ l ) d

0

g

else CCand(d

0

) := CCand(d

0

) [ f� ^ l) d

0

g;

At the beginning of the pro
edure learn(u; d) the sets Rules(d

0

) are assumed

to 
ontain all redu
t rules satisfying the 
onstraint C and nonCCand(d

0

) are

assumed to 
ontain all generated up to now rules not satisfying C, both a

ording

to a sample s before adding a new example (u; d). The sets CCand(d

0

) should

be empty.

In the step 1 the pro
edure moves rules a

ording to 
hanges in the sample

s and the 
onstraint C: redu
t rules for a previous sample may be in
onsistent

with a new example (u; d) and the modi�ed 
onstraint may both in
lude new


andidate and redu
t rules and ex
lude previously 
overed redu
t rules. Time

needed for this step may vary signi�
antly in dependen
e on a used 
onstraint.



For the 
onstraint 
overage > 0 migration only for rules that 
over a new obje
t

u is possible, for 
onstraints with positive 
overage threshold other rules with

the de
ision d 
an migrate and for best� k 
onstraints 
he
king 
onstraint sat-

is�ability be
omes mu
h more 
omplex. In the last 
ase a good solution is to

assume the ranking based on the 
urrent set of redu
t rules and do the step 2


orre
ting the ranking every time when a new redu
t rule is found.

In the step 2 the pro
edure extends all 
andidates satis�ng C. Candidates

that were previously in nonCCand(d

0

) may be in
onsistent with any example in

the sample s, not always with the last one (d; u). Therefore the pro
edure must

sear
h the sample s for an in
onsistent example. In order to avoid sear
hing the

whole sample for ea
h 
andidate the pro
edure may assign to ea
h extended rule

� ^ l) d

0

the position in s where an in
onsistent example for the previous rule

�) d

0

was found and 
ontinue sear
hing from this pla
e. After an in
onsistent

example (u

00

; d

00

) is found, the 
andidate is extended with all literals ex
luding

u

00

. The next time 
onsuming operation is subsumption 
he
king. If an extension

is not subsumed by another rule it is dire
ted to the appropriate set, otherwise

it is removed.

Theorem 1. At the end of the pro
edure learn the union

S

d2V

Rules(d) is

always equal to the set of all redu
t rules satisfying the 
onstraint C for the

sample s.

4 Improving EÆ
ien
y

One of the properties of the algorithm presented in the previous se
tion is that it

never redu
es rules. Generating more and more new rules without any redu
tion

prolongs 
he
king for subsumptions and leads to the la
k of memory. In order to

avoid the problem the following solution may be used. Every time after a rule

� ) d

0

is added to the set nonCCand(d

0

) it is also redu
ed as mu
h as it is

possible:

Algorithm 2 redu
e(�) d

0

)

redu
e the rule �) d

0

to � ) d

0

where � is any minimal 
onjun
tion subsuming � su
h that � ) d

0

=2 C;

The presented improvement applies to 
onstraints that have "shrinking"

property what means that new examples may lead to ex
luding a rule from

a 
onstraint. An example of a "shrinking" 
onstraint is 
overage > � for any

� > 0, whereas the 
onstraint 
overage > 0 does not have this property.

However, this modi�
ation brings another undesirable phenomenon a�e
ting

eÆ
ien
y namely "shimmering" of rules what means that a single rule may be

generated and redu
ed many times while the 
onstraint is 
hanging dynami
ally

and repeated 
omputation of rule parameters signi�
antly slowers the perfor-

man
e. We present two methods to deal with this problem.

The �rst one 
onsists in maintaining two bu�ers: BufExt saves rules for

whi
h the extending operation was already performed and BufRed saves rules



that were redu
ed. The bu�ers are usually too limited for keeping all rules that

appeared in the pro
ess of learning. Therefore a 
ertain measure is applied to

estimate whi
h rules are the most probable to be reused in the near future.

For 
overage based 
onstraints 
overage is a good measure for it. The following

pro
edure saveExtended is exe
uted ea
h time when a rule is extended:

Algorithm 3 saveExtended(r)

if the bu�er BufExt is not full then add r to BufExt;

else if 
overage

s

(r) < max

r

0

2BufExt


overage

s

(r

0

)

then repla
e a rule with the maximal 
overage in BufExt with r ;

The analogi
al pro
edure saveRedu
ed is exe
uted when a rule is redu
ed:

Algorithm 4 saveRedu
ed(r)

if the bu�er BufRed is not full then add r to BufRed;

else if 
overage

s

(r) > min

r

0

2BufRed


overage

s

(r

0

)

then repla
e a rule with the minimal 
overage in BufRed with r ;

When the pro
edure learn needs to 
ompute parameters for a new generated

or redu
ed rule �rst it 
he
ks whether the rule is still available in the 
orrespond-

ing bu�er:

Another solution that redu
es "shimmering" is grouping examples. Instead

of learning ea
h new example separately �rst the algorithm gets a large group

of examples and then starts learning rules. The learning pro
ess for a group of

examples may last mu
h longer than for a single example. However, noti
e that

the pro
edure learn may be easily split into two parts: the �rst one 
orre
ts

the 
ontents of the maintained sets and the parameters of rules a

ording to the

sample in
luding a new group and the next one generates new rules. The �rst part

is always short hen
e the se
ond one is 
riti
al for time performan
e. Therefore

a good assumption for the se
ond part is to be ready to stop learning and


lassify a new obje
t with a 
urrent set of rules every time when the 
lassi�
ation

pro
edure is 
alled. It requires from the algorithm to use rules with 
on�den
e

less than 1 for 
lassi�
ation. In this proposition a strategy of 
hoosing rules for

extension is important. The higher 
on�den
e a rule saves after updating by a

new group of examples the more reliable it is for the 
lassi�
ation pro
edure.

Therefore a good strategy is to start extending with a rule having 
on�den
e

nearest to 1 and move towards rules with lower 
on�den
e. In this way more

reliable rules are adapted to a new group �rst. The latter solution provides also

a good ba
kground for distributed 
omputation.

The presented algorithm may be also adapted to the 
ase when it is given a

very large set of examples s at on
e. Like in the in
remental algorithm it exe
utes

the pro
edure learn for su

essive examples in s. Be
ause of the size the 
ompu-

tation for the whole sample would last very long and would blo
k 
lassi�
ation

pro
edure 
alls. To avoid it the learning pro
edure is always stopped when the


lassi�
ation pro
edure is 
alled and waits until the 
lassi�
ation is 
ompleted.

Classi�
ation uses a 
urrent set of 
omputed rules. Many of them may be still



in
onsistent with a number of examples, therefore before 
lassi�
ation the algo-

rithm needs to 
al
ulate qualitative parameters of rules: 
on�den
e and 
overage,

a

ording to the whole sample s. It imposes the additional 
ondition that a used


lassi�er a

epts rules with 
on�den
e less than 1.

Computing parameters for a set of rules 
onsumes mu
h less time than gener-

ating this set but 
omputing them every time when the 
lassi�
ation pro
edure

is 
alled is usually still too expensive for a large set of rules and a large set of

obje
ts. In order to avoid the problem the algorithm may perform the following

operations. For a parti
ular obje
t to 
lassify it may 
ompute parameters only

for rules 
overing the obje
t. On
e 
omputed parameters for a rule may be pre-

served as long as the rule is held in the 
orresponding union Rules(d)[Cand(d).

Independently of 
lassi�
ation pro
edure 
alls the learning pro
edure may stop

at regular intervals and 
ompute parameters for rules generated sin
e the previ-

ous stop. The 
hoi
e of appropriate data stru
tures may signi�
antly a

elerate


omputation of parameters for rules and obje
ts.

In 
ase when all methods of improving eÆ
ien
y fail, the exhaustive sear
h

may be repla
ed immediately by any heuristi
 sear
h.

5 Illustrative Example

We present experimental results for the data set In
ome (13 attributes, 30162

training 
ases, 15060 testing 
ases) from the repository at University of Cali-

fornia, Irvine (http://kdd.i
s.u
i.edu). In prepro
essing dis
retization was used

and 32 binary attributes were 
hosen by greedy heuristi
 algorithm optimizing

dis
ernibility.

The learning pro
edure was exe
uted for groups of examples. We used the

in
remental 
onstraint based algorithm with the modi�
ation that rules were

extended not in all possible dire
tions but only with rules that have the best


on�den
e and the best 
overage if there are ties in 
on�den
e for at least one


overed obje
t.

For ea
h 
overage threshold 0, 0:05 and 0:2 we performed series of 
omputa-

tion in the following way. First the pro
edure learn was exe
uted for the �rst

1=8 part of the training set and the testing set was 
lassi�ed. In ea
h next step

the number of examples equal to the number of examples re
eived in all previous

steps was added and learned and the next test of the testing set was performed.

In this way the size of su

essive groups of examples grew exponentially. Ea
h

test obje
t was 
lassi�ed with the de
ision of the best 
overing rule in the union

S

d2V

Rules(d) [ nonCCand(d) a

ording to the 
on�den
e and in 
ase of ties

to the 
overage.

The results are presented on the graphs below. Left side graphs present the


lassi�
ation error, time and number of rules obtained in three series of in-


remental learning with di�erent 
onstraints: 
overage > 0:2 (light line with

boxes), 
overage > 0:05 (medium dark line with 
ir
les) and 
overage > 0

(dark line with diamonds). Right side graphs present the �nal results of in-




remental (medium dark line with 
rosses) and nonin
remental (dark line with


ir
les) learning for di�erent 
overage based 
onstraints.
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In the presented example the appli
ation of stronger 
onstraints brought a

signi�
ant redu
tion of used memory and time and very small deterioration of

a

ura
y or even improvement for low 
overage thresholds. The results show

also that a

ura
y obtained with the small part of the training set used in a

learning pro
ess is not signi�
antly lower than for the whole training set and

�nally in
remental learning rea
hed better results than nonin
remental. Similar

properties of test results on other data sets (Shuttle, Letter) indi
ate that the




ombination of the in
remental approa
h and a 
overage based 
onstraint may

be an e�e
tive tool for learning 
on
epts from both dynami
 and large data sets.

6 Con
lusions

We have shown how rough set methods 
an be adapted to dynami
ally 
hanging

data. We proposed a method based on a spe
ial type of monotoni
 
onstraints

that allowed us to redu
e sear
hing in the spa
e of rules without substantial


hanges in the 
lassi�
ation quality. The presented method may be adapted to

large data sets espe
ially when one implements it using 
luster of 
omputers. The

experimental example indi
ates that the in
remental approa
h may preserve all

advantages of nonin
remental methods and add new ones like redu
tion in used

time and memory and 
ontinuous improvement.

The following related problems are the subje
t for future study: methods

for 
oding arbitrary attributes by binary ones e.g. by dis
retization or value

grouping and eÆ
ient methods for 
omputing 
on�den
e and 
overage for large

rule sets be
ause this is the most time 
onsuming operation.
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