
The Calabi Conjecture

notes by Aleksander Doan

These are notes to the talk given on 9th March 2012 at the Graduate Topology and
Geometry Seminar at the University of Warsaw. They are based almost entirely on [H]
and [J], where a much more competent and detailed exposition can be found.

Fundamentals of Kähler geometry

Let (M,J) be a complex manifold with a complex structure J . We call M a Kähler
manifold if it is equipped with a Riemannian metric g such that:

1. g is an Hermitian metric, i. e. it is compatible with the complex structure:

g(v, w) = g(Jv, Jw).

2. The induced real 2-form ω defined by ω(v, w) = g(Jv,w) is closed, i. e. dω = 0.

In this case g is called a Kähler metric and ω is called the Kähler form of g.

Decomposition of the metric tensor. The complex structure J gives rise to a
decomposition of the complexified tangent bundle TM ⊗C into two subbundles T (1,0)M
and T (0,1)M . Namely, for a point p ∈M ,

TpM ⊗ C = T (1,0)
p M ⊕ T (0,1)

p M,

where T
(1,0)
p M,T

(0,1)
p M are the eigenspaces of Jp in TpM ⊗ C with eigenvalues i and

−i, respectively (these are the only eigenvalues of Jp since J2
p = −I). In holmorphic

coordinates z1, . . . , zn the first one is spanned by ∂/∂z1, . . . , ∂/∂zn and the second one
by ∂/∂z̄1, . . . , ∂/∂z̄n.

This gives us a similar decomposition of the complexified cotangent bundle

TM∗ ⊗ C = T ∗(1,0)M ⊕ T ∗(0,1)M

and, consequently, a decomposition of every complex tensor bundle into subbundles
coming from the decompositions of TM ⊗ C and T ∗M ⊗ C.
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In particular, the metric tensor gab can be split into four pieces:

gab = gαβ + gᾱβ + gαβ̄ + gᾱβ̄

Here, the Greek and overline indices denote tensors which are components of the decom-
position of gab, that is gαβ ∈ ⊗2T ∗(1,0)M , gᾱβ ∈ T ∗(0,1)M ⊗ T ∗(1,0)M etc.

By direct calculations it can easily be shown that g is Hermitian if and only if

gαβ = gᾱβ̄ = 0, i. e.

gab = gαβ̄ + gᾱβ.

Moreover, in that case the matrix gαβ̄ is Hermitian, that is, gαβ̄ = gβᾱ. It follows that
gαβ̄ has only real eigenvalues and det(gαβ̄) is a real function on M .

The Ricci form. Let g be a Kähler metric on M , ∇ – the Levi-Civita connection
associated with g and R = Rabcd – the Riemann curvature tensor, that is:

R(u, v) = ∇u∇v −∇v∇u −∇[u,v].

For each pair (u, v) of tangent vectors the Riemann curvature defines a linear map
w 7→ R(w, u)v from the tangent space to itself. We define the Ricci curvature tensor as
the trace of this endomorphism:

Ric(u, v) = tr(R(·, u)v).

In the index notation it is just a contraction of the curvature tensor: Rbd = Rabad. The
Ricci tensor is a symmetric tensor of the type (0, 2). Moreover, thanks to the J-invariance
of the metric g it is also J-invariant, i. e. Ric(u, v) = Ric(Ju, Jv). Thus we can use the
complex structure J to produce a 2-form in the same manner as we get a Kähler form
from an Hermitian metric. This real 2-form is denoted by ρ and called, not surprisingly,
the Ricci form:

ρ(u, v) = Ric(Ju, v).

A Kähler metric is called Ricci-flat when its Ricci form (or, equivalently, its Ricci tensor)
vanishes identically.

Theorem
The Ricci form ρ is closed and its cohomology class [ρ] in H2(M,R) is equal to 2πc1(M),
where c1(M) is the first Chern class of M . Therefore, it depends only on the complex
structure on M .

Moreover, in holomorphic coordinates we can express ρ explicitly as a differential:

ρ = −1

2
ddc

(
log det(gαβ̄)

)
.

We will use this expression later to reformulate the Calabi conjecture.
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The holonomy group. Let (M, g) be a compact Riemannian manifold. Denote by
Hol(g) its holonomy group, that is, the subgroup of automorphisms of the tangent space
in a given point p ∈ M induced by the parallel transport around all closed loops based
at p. Berger’s theorem classifies all possible holonomy groups of compact Riemannian
manifolds which are simply-connected, irreducible (not locally a product of Riemannian
manifolds) and nonsymmetric (not locally a symmetric space). Among them, groups
U(n),SU(n) and Sp(n) ⊂ SU(2n) play an important role, as they are inseparably con-
nected with Kähler geometry. Namely, under the aforementioned conditions, we have

Theorem
Hol(g) ⊆ U(n) if and only if g is a Kähler metric. If g is a Kähler metric, then
Hol(g) ⊆ SU(n) if and only if g is Ricci-flat.

The proof is based on the so-called holonomy principle which establishes a bijective
correspondence between the Holp(g)-invariant tensors on TpM in a given point p ∈ M
and the parallel (with respect to the Levi-Civita connection) tensor fields on M . As both
U(n) and SU(n) can be described as subgroups of SO(2n) preserving certain tensors (the
complex structure and the holomorphic volume form on Cn = R2n, respectively), the
embeddings of Holp(g) into U(n) and SU(n) give rise to globally defined, parallel tensor
fields: a complex structure J and a holomorphic volume form Ω. The existence of such
tensor fields is equivalent for a metric to be, respectively, Kähler and Ricci-flat.

There is, however, some work to do, as, for example, J is a priori only an almost
complex structure and one has to check that it is actually a complex structure (that is,
it satisfies a certain integrability condition). Details may be found in [H].

The Calabi conjecture

We can now formulate the famous conjecture which was posed by Eugenio Calabi in
1954 and eventually proved by Shing-Tung Yau twenty years later.

The Calabi conjecture
Let M be a compact, complex manifold, and g a Kähler metric on M with Kähler form
ω. Then for each real, closed (1, 1)-form ρ′ on M such that [ρ′] = 2πc1(M) in H2(M,R)
there exists a unique Kähler metric g′ on M with Kähler form ω′, such that [ω] = [ω′]
in H2(M,R) and the Ricci form of g′ is ρ′.

In the specific case of c1(M) = 0 we can take ρ′ = 0 and obtain the following theorem:

Theorem
Let M be a compact Kähler manifold with vanishing first Chern class. Then there exists
a Ricci-flat Kähler metric on M . Every such a metric is uniquely determined by the
cohomology class of its Kähler form.

This theorem shows the importance of the Calabi conjecture. Berger’s list describes
all possible holonomy groups, whereas the result of Calabi and Yau proves that there
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actually exist compact manifolds with holonomy groups SU(n),Sp(n). They are called,
respectively, Calabi-Yau and hyperkähler manifolds and they are of great significance
in mathematics and theoretical physics, as they arise naturally in geometry and string
theory. There are in fact plenty of them and the theorem gives us an easy way to
recognise them: to decide wheter a given complex manifold admits a Calabi-Yau or
hyperkähler structure we just have to check if its first Chern class vanishes. In many
cases it is possible.

Reformulating the conjecture. One of the key step in proving the Calabi conjecture
was an observation by Calabi that it can be restated as an equivalent problem of the
existence and uniqueness of the smooth solution of a certain partial differential equation.
Subsequently, Yau used various methods of analysis to solve the problem. Before that,
some progress had been made by Calabi and Aubin.

Assume that Kähler metric g′ satisfies the thesis of the Calabi conjecture, that is
[ω] = [ω′] and g′ has Ricci form ρ′. We will find a partial differential equation for g′.

We will need the following important theorem from Kähler geometry.

ddc-Lemma
Let M be a compact Kähler manifold. Then a closed form η on M is exact if and only
if it is ddc-exact, that is, of the form η = ddcξ for some form ξ.

The next proposition follows immediately from the ddc-Lemma and the fact that the
kernel of ddc consists precisely of constant functions (for the proofs see [Ba]).

Lemma
Let M be a compact, complex manifold and let g, g′ be Kähler metrics with Kähler forms
ω, ω′, respectively. If ω and ω′ have the same cohomology class in H2(M,R), then there
exists a smooth, real function φ on M such that

ω′ = ω + ddcφ.

Such a function is unique up to the addition of a constant.

In particular, as [ω] = [ω′], there exists a smooth real function φ on M such that

ω′ = ω + ddcφ.

Because φ is unique up to the addition of a constant, we may specify it uniquely by
adding the condition ∫

M
φ dVg = 0,

where dVg is the Riemannian volume form induced by g. As φ specifies ω′, and ω′, if it
is positive, specifies the Hermitian metric g′, we would like to find a partial differential
equation satisfied by φ. We have already used the condition [ω] = [ω′], so now we should
make use of the fact that the Ricci form of g′ is ρ′.
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To do this, we will need some equations connecting the Kähler form, the Ricci form
and the metric. Denote by n the complex dimension of M . Then the n-th exterior power
ωn = ω ∧ . . .∧ω of the symplectic form is proportional to the Riemannian volume form:

ωn = n! dVg,

or, in local holomorphic coordinates z1, . . . , zn,

ωn = inn! det(gαβ̄) dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n. (1)

As regards the Ricci form, we have already mentioned the following local expression:

ρ = −1

2
ddc

(
log det(gαβ̄)

)
. (2)

Now, as previously, from [ρ] = [ρ′] = 2πc1(M) we deduce the existence of a real
smooth function f on M , unique up to the addition of a constant, such that

ρ′ = ρ− 1

2
ddcf.

Define a smooth, positive function F on M by the condition (ω′)n = Fωn. From equation
(1) for ω and ω′ we can see that F = det(g′

αβ̄
)/det(gαβ̄) and using equation (2) we get

1

2
ddc(logF ) =

1

2
ddc

(
log det(g′αβ̄)− log det(gαβ̄)

)
= ρ− ρ′ = 1

2
ddcf.

Thus ddc (f − logF ) = 0 and it follows that the function f − logF is constant on M
(once more we use the fact that ker ddc consists precisely of constant functions). Define
a constant A > 0 by f − logF = − logA. Then F = Aef and we obtain an equation for
φ:

(ω + ddcφ)n = (ω′)n = Aefωn,

where f is given (because ρ′ is given) and the constant A can be easily expressed using
f . Since [ω′] = [ω], by equation (1) and Stokes’ theorem we have

A

∫
M
ef dVg =

1

n!

∫
M

(ω′)n =
1

n!

∫
M
ωn = volg(M).

Therefore, as this reasoning can be easily reversed, we have found the following equivalent
version of the Calabi conjecture.
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The Calabi Conjecture
Let M be a compact, complex manifold of the dimension n, and g a Kähler metric on
M with the Kähler form ω. Let f be a smooth real function on M and define A > 0 by
A
∫
M ef dVg = volg(M). Then there exists a unique smooth real function φ such that

(a) ω + ddcφ is a positive (1, 1)-form,

(b)
∫
M φ dVg = 0,

(c) (ω + ddcφ)n = Aefωn.

Moreover, in local holomorphic coordinates z1, . . . , zn condition (c) can be expressed in
the following way:

det

(
gαβ̄ +

∂2φ

∂zα∂z̄β̄

)
= Aef det

(
gαβ̄
)
. (3)

Remark
Condition (a) actually follows from condition (c) (see [J]).

Notice that equation (3) is an elliptic, second-order partial differential equation of a
kind known as a Monge-Ampére equation. Therefore we have reformulated the purely
geometric Calabi conjecture into the equivalent problem from analysis. The theory of
elliptic partial differential equations is very rich and well-developed and there are many
sophisticated methods for proving the existence, uniqueness and regularity of solutions
for such equations. The main problem, however, is that equation (3) is highly nonlinear,
as it is nonlinear in the derivatives of the highest order. This is the difficulty of the
Calabi conjecture and the reason it remained unsolved for so many years.

Outline of the proof

A detailed exposition of the proof can be found in [J]. The idea is as follows.

The continuity method. We want to prove that our equation

(ω + ddcφ)n = Aefωn

has a solution φ for every f . However, in the special case of f = 0 we get the equation

(ω + ddcφ)n = ωn,

which certainly has a solution φ = 0. The idea, which is called the continuity method, is
to consider a one-parameter family of equations

(ω + ddcφ)n = Ate
tfωn

connecting our original equation with the equation which has a solution. Then we
consider a set S ⊆ [0, 1] of these t ∈ [0, 1] for which there exists a solution φt of the
corresponding equation. Of course 0 ∈ S, so if we are able to prove that S is both closed
and open in [0, 1], the theorem is proved as S is nonempty and the interval is connected.
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Auxiliary theorems. Everywhere M is supposed to be a compact, complex manifold
and g is a Kähler metric on M with the Kähler form ω.

For α ∈ (0, 1) and an integer k ≥ 0 we denote by Ck,α the Banach space of k-
differentiable functions on M with α-Hölder continuous k-th derivatives. Since the defi-
nition of the norm must be global, we cannot use coordinates and expressions like ∂f/
∂zk, hence the precise definition is somewhat complicated.

We call the following equations∫
M
φ dVg = 0, (ω + ddcφ)n = Aefωn

the Calabi equations for (f,A).

Theorem C1 (a priori estimates)
Let Q ≥ 0. Then there exists a constant P ≥ 0 depending only on M, g and Q such that
the following holds.

Suppose f ∈ C3, A > 0 and φ ∈ C5 satisfies the Calabi equations for (f,A). If
‖f‖C3 ≤ Q, then

‖φ‖C0 ≤ P, ‖ddcφ‖C0 ≤ P and ‖∇ddcφ‖C0 ≤ P.

Theorem C2 (regularity)
Let Q ≥ 0 and α ∈ (0, 1). Then there exists a constant P ≥ 0 depending only on M, g,Q
and α such that the following holds.

Suppose f ∈ C3, A > 0 and φ ∈ C5 satisfies the Calabi equations for (f,A). If

‖f‖C3,α ≤ Q, ‖φ‖C0 ≤ Q, ‖ddcφ‖C0 ≤ Q and ‖∇ddcφ‖C0 ≤ Q

then φ ∈ C5,α and ‖φ‖C5,α ≤ P . Moreover, if f ∈ Ck,α for k ≥ 3 then φ ∈ Ck+2,α, and
if f ∈ C∞ then φ ∈ C∞.

Theorem C3 (openess)
Fix α ∈ (0, 1) and suppose that f0 ∈ C3,α, A0 > 0 and φ0 ∈ C5,α satisfies the Calabi
equations for (f0, A0).

Then whenever f ∈ C3,α and ‖f −f0‖C3,α is sufficiently small, there exist A > 0 and
φ ∈ C5,α which satisfies the Calabi equations for (f,A).

Theorem C4 (uniqueness)
Let f ∈ C1 and A > 0. Then there is at most one function φ ∈ C3 which satisfies the
Calabi equations for (f,A).
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The proof of the Calabi conjecture. In the situation of the previous paragraph,
fix α ∈ (0, 1) and define S to be the set of all numbers t ∈ [0, 1] for which there exist
A > 0 and φ ∈ C5,α satisfying∫

M
φ dVg = 0, (ω + ddcφ)n = Aetfωn.

We will show that S is both closed and open in [0, 1]. For that we need the following
well-known result of the Rellich-Kondrashov type.

Theorem
Let (M, g) be a Riemannian manifold, k ∈ N and α ∈ (0, 1). The natural embedding
Ck,α(M) ↪→ Ck(M) is compact, that is every bounded subset of Ck,α(M) is relatively
compact in Ck(M).

Take a sequence of numbers ti from S convergent to t ∈ [0, 1]. By the definition of
S there exist Ai > 0 and φi ∈ C5,α satisfying the Calabi equations for (tif,Ai). Define
Q = ‖f‖C3,α . Then for all i we have ti ∈ [0, 1] and ‖tif‖C3,α ≤ Q, hence we can apply
Theorem C1 to obtain the existence of P such that

‖φi‖C0 ≤ P, ‖ddcφi‖C0 ≤ P and ‖∇ddcφi‖C0 ≤ P

for all i. By Theorem C2, there exists R > 0 such that ‖φi‖C5,α ≤ R. The sequence
(φi) is therefore bounded in C5,α and consequently, by the previous theorem, it has a
subsequence convergent in C5. Take a subsequence of functions φi in such a way that it
converges and the corresponding subsequence of numbers Ai also converges. Denote the
limit of the former by φ, and of the latter by A. It can easily be seen that φ satisfies the
Calabi equations for (tf, A). Theorems C1 and C2 guarantee that φ ∈ C5,α, hence the
set S contains its limit points, and is closed.

Openess of S follows immediately from Theorem C3. As S is nonempty (because,
obviously, 0 ∈ S) and [0, 1] is connected, S must be the whole interval. In particular,
1 ∈ S, so there exists φ ∈ C5,α satisfying the Calabi equations for (f,A). Theorem C2
shows that φ is actually smooth, and Theorem C4 that it is unique. This ends the proof
of the Calabi conjecture.
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