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Abstract. It is known that the first-order theory with a single predicate
→ that denotes one-step rewriting reduction on terms is undecidable
already for formulae with ∃∀ prefix. Several decidability results exist
for the fragment of the theory in which the formulae start with the ∃
prefix only. This paper considers a similar fragment for a predicate →p

which denotes the parallel one-step rewriting reduction. We show that
the theory is related to the type entailment problem and prove that the
first-order theory of→p is undecidable already for formulae with ∃ prefix.

1 Introduction

The first-order one-step parallel rewriting theory is a first-order theory which
has only one relation symbol →p. The logical value of formulae in this theory
is checked in a structure of ground terms over a signature Σ. Two terms s, t
are in the relation →p when s can be rewritten in one parallel step to t using
rewrite rules from a fixed finite set R. It is worth noting that the formulae of the
theory cannot use the equality relation = and function symbols from Σ. There
is also no direct way to express the fact that a particular rewriting is done with
a specific set of rules from R.

The notion of the parallel term rewriting emerged in the studies on compu-
tational frameworks [GKM87]. This model of computation allows to investigate
computations in the context of concurrent or parallel programming [AK96]. Effi-
cient implementations of parallel rewriting systems rely on various graph rewrit-
ing techniques which were intensely studied (for an overview see e.g. [Ass00]).
Parallel rewriting has also been used as a basis for the logical framework of
rewriting logic [MOM02] as well as in the context of regular tree languages
[STT97].

The first-order theory of one-step rewriting, but in the non-parallel case, has
been proved to be undecidable by Treinen [Tre96,Tre98]. This result was further
strengthened to work for various weak classes of rewriting systems: linear, shallow
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[STT97,STTT01]; linear, terminating [Vor97,Mar97]; right-ground, terminating
[Mar97]; and finitely-terminating, linear, confluent [Vor02]. The proofs in (most
of) the papers above showed undecidability of ∃∗∀∗ fragment of the theory.
The strongest of them was [Tre96] where already ∃2∀ fragment is undecidable.
However, this was not obtained for a fixed rewrite system. Vorobyov in [Vor02]
showed a fixed system for which ∃∀3 fragment is undecidable.

Despite the negative results in the general case, researchers investigated a spe-
cial case in which the existential formulae of the one-step rewriting theory were
considered. The currently existing results show decidability of certain subclasses
of the theory. Early papers considered more general results. The theorems there
in particular imply that the theory is decidable in case of left-linear right-ground
systems [Tis90] and for unary signatures [Jac96]. A more specific consideration
of the problem resulted in the decidability for quasi-shallow rewriting systems
[CSTT99]; linear, non left-left-overlapping; and non ε-left-right-overlapping sys-
tems [LR99]. The problem is also decidable for arbitrary rewriting system, but
in case the formulae are positive [NPR97].

The parallel rewriting theory we discuss here is also related to the non-
structural type entailment problem. This open problem has been extensively
studied in the literature [HR97,HR98,NP99,NP03]. We show here that an in-
stance of the type entailment problem can be encoded as a term rewriting system
and an existential formula in the one-step parallel rewriting theory.

This paper is organised in the following way. We fix the notation in Sec-
tion 2. This is followed by a link with the type entailment problem in Section 3.
Subsequently, we present the undecidability proof in Section 4. The presentation
of the proof is divided into two subsections. The first of them (4.1) presents a
slightly modified version of the Turing machine, which is easier to handle in the
proof, and the second (4.2) presents a class of rewriting systems that simulates
the work of the machine which leads to a proof of undecidability of the rewriting
theory we deal with here. We conclude the paper with a discussion in Section 5.

2 Preliminaries

This section recalls preliminary notions used in the rest of the paper and fixes
the notation.

The function symbols belong to signatures which are usually denoted by
Σ, Σ′, etc. Each signature is equipped with an arity function ar : Σ → N.
The symbols of non-zero arity in Σ are usually denoted by letters such as f, g
etc. The zero arity symbols are denoted by c, d etc. Let X be disjoint with Σ.
The symbols from X can be treated as symbols of arity 0 to form terms with
variables (open types). The variables are by convention written as x, y etc. When
convenient, we do not distinguish between terms, types, and trees labelled with
the symbols from Σ or Σ ∪X. The set of all finite ground terms (closed types)
over a signature Σ is denoted by T (Σ). The set of terms with variables in X is
denoted by T (Σ, X). The terms are usually denoted by small Latin letters such
as t, s, u, etc. The types are denoted by small Greek letters such as τ, σ, etc. The
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set of variables that occur in a term t is denoted by FV(t). A substitution can
replace occurences of variables in a term t with some other terms. Substituations
are usually noted as S, T etc. and the result of the application of a substitution
S to a term t is written as S(t). We denote by C[−1, . . . ,−n] a context which
contains n > 0 placeholders (each occurring exactly once). The placeholders may
be replaced by particular terms t1, . . . , tn which is denoted as C[t1, . . . , tn].

In order to address positions in a tree we use sequences of natural numbers.
The addresses are denoted by small Greek letters like γ, ρ, etc. The root address
(empty sequence) is denoted by ε. The subtree of t at an address γ is denoted by
t|γ . We compose addresses so that f(t1, t2)|i·γ = ti|γ . The result of replacement
of the subtree at an address γ in t with a tree s is denoted by t[γ ← s].

Let R be a finite set of pairs of terms 〈l, r〉 over a signature Σ such that
FV(r) ⊆ FV(l). We call such pairs rewrite rules over Σ and write them l → r.
We say that a term t rewrites to a term s with a rule l → r when there is an
address γ in both t and s and a substitution S such that t = t[γ ← S(l)] and
s = t[γ ← S(r)]. We say that a term t rewrites to a term s (written s→ t) when
t rewrites to s with some rule l→ r ∈ R.

2.1 One-step parallel rewriting theory

This subsection presents the notions concerning the first-order parallel one-step
rewriting theory. We fix a signature Σ which contains at least one symbol of
arity 0.

Definition 1. (definition of →p)
Let R be a set of rewrite rules over Σ. We consider a relational structure AR =
〈T (Σ),→p〉 where the symbol →p represents the one-step parallel rewriting and
is defined as follows: t→p As for t, s ∈ T (Σ) iff there is a context C[−1, . . . ,−k]
with k > 0 such that t = C[t1, . . . , tk] and s = C[s1, . . . , sk] and for i = 1, . . . , k
we have ti → si. Additionally, we use the symbol →p

∗ to denote the reflexive-
transitive closure of →p.

The atomic formulae of the first-order one-step paralell rewriting theory are
of the shape x→p y only (no formulae of the form x = y). These atomic formulae
can be combined with ¬,∧ and ∨. Free variables can be bound by quantifiers
∃,∀. We write x 6→p y as a shorthand for ¬x→p y.

It is worth pointing out that the context C used in the definition above has
at least one placeholder. This design solution makes the notion closer to the
notion of the usual one-step rewriting as in both cases at least one rewrite rule
is executed.

The existential fragment of the first-order one-step parallel rewriting theory
consists of closed formulae of the form ∃x1 · · · ∃xn.φ where φ does not contain
quantifiers.

This theory is strictly stronger than the non-parallel one i.e. each existential
formula φ that holds when →p is interpreted as the usual one-step rewriting
holds also when →p is interpreted as the parallel one-step rewriting — one can
use the same substitution and the same interpretation of rewrites to witness

3



the satisfaction of the formula in case of the parallel rewriting. Still, there are
formulae which are satisfied with the parallel interpretation, but not satisfied in
case of the non-parallel one. Indeed, let Σ = {f, a, b} where f is binary and a, b
are constants. Consider the rewrite system with the rules f(a, a)→ f(b, b), b→
a, f(x, x) → f(x, x). The formula ∃x, y.x →p x ∧ x →p y ∧ y →p x ∧ ¬y →p y
holds in case the interpretation with the parallel rewriting is used while it does
not hold for the interpretation with the non-parallel one.

The main decision problem we deal with in this paper is the following:

Definition 2. (satisfiability problem)
Input: 〈Σ,φ,R〉 where φ is a formula of the first-order one-step rewriting theory
and R is a rewrite system over Σ (Σ contains at least one constant).
Question: Is φ satisfied in the structure AR over the signature Σ?

3 Relation with type entailment

The non-structural type entailment problem can be exploited in type inference
engines with subtyping. Such systems operate efficiently when powerful simi-
plification procedures exist for typings. These simiplification procedures can be
expressed in terms of type entailment. In this section we show that the existen-
tial fragment of the theory of the one-step parallel rewriting is related to the
non-structural type entailment problem in such a way that type entailment in-
stances can be effectively translated to instances of the existential theory. This
construction works only in case the binary symbol in the type entailment prob-
lem is covariant in both arguments.

Consider type inequalities σ ≤ τ between types built of the symbols {⊥,>,
×}. The inequalities are defined using the axioms: ⊥ ≤ τ×τ ′,⊥ ≤ >, τ×τ ′ ≤ >,
and whenever σ1 ≤ τ1 and σ2 ≤ τ2 hold we have also σ1×σ2 ≤ τ1×τ2. Note that
these rules allow to determine inequality between the types with no variables.
Thus it makes sense to consider the following problem.1

Definition 3. (type entailment)
Input: A finite set E = {σ1 ≤ τ1, . . . , σn ≤ τn} of inequalities between open
types together with an inequality σ ≤ τ .
Question: Is there a substitution S such that for each i = 1, . . . , n the inequality
S(σi) ≤ S(τi) holds and S(σ) ≤ S(τ) does not?

W.l.o.g. we can assume that all the open types have one of the following forms:
>,⊥, x, x1×x2. The type entailment problem with inputs restricted in this way
can be reduced to the one-step parallel rewriting theory with a rewriting system
that is defined over a signature Σ = {>,⊥, f, f1, fL1, fL2, fR1,×} where >,⊥
have arity 0, symbols f∗ have arity 1 and × has arity 2. The logic we deal with
allows to use object variables only. This requires to provide a way to relate a

1 This is not the cannonical formulation of the type entailment problem, but it is
equivalent in case one is interesed in the (un)decidability of the problem.
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variable which represents a term of the form x1 × x2 with the variables which
represent x1 and x2. The symbols f, f1, fL1, fL2, fR1 facilitate this.

The reduction system has the following rules:

Order reductions:
⊥ → x× y, ⊥ → >, x× y → >
Well-formedness reductions:
fi(x)→ fi(x) for i = 1, L1, L2, R1
f(x1)× x2 → f(x1)× x2 x1 × f(x2)→ x1 × f(x2)

f on top reductions:
f(x)→ f1(x) f1(x)→ f(x)

Decomposition reductions:
f(x1 × x2)→ fL1(x1) fL1(x)→ fL2(x) fL2(x)→ f(x)
f(x1 × x2)→ fR1(x1) fR1(x)→ f(x).

(1)

The rules in the section Order reductions simulate the subtype order. The rules
in the section Well-formedness reductions allow to make sure that a term which
encodes a type σ does not contain f1, fL1, fL2, fR1 and that f can occur only at
the root position. The rules in f on top reductions are exploited to make sure
f indeed occurs at the root position so that the encoding of a type σ is f(σ).
At last the Decomposition rules serve to make sure that a term which encodes
x1 × x2 appropriately decomposes to terms encoding x1 and x2.

The existential formula we are interested in here looks as follows:

∃X.φwf ∧ φld ∧ φrd ∧ φent

where X contains all the variables in the formula. The intent behind the sub-
formulae is the following: φwf ensures that the encodings of the types are well-
formed; φld ensures that the term (f(t1 × t2)) which encodes x1 × x2 properly
decomposes on the left-hand side to a term which corresponds to x1 (f(t1)); the
role of φrd is similar to φld, but it deals with the right-hand side (f(t2)); at last
φent serves to encode the entailment problem instance at hand.

Let E ∪{σ ≤ τ} be an instance of the type entailment problem which we are
about to translate. Let x1, . . . , xm denote all the variables in the instance. The
precise definitions of the subformulae above are the following.

φwf =
∧m

i=1 φwfv(xi, x
′
i) ∧

∧m
i=1

∧m
j=1 φwfv(xxi×xj , x

′
xi×xj

)
φwfv(x, x′) = ¬x→p x ∧ x→p x′ ∧ x′ →p x ∧ x′ →p x′

φld =
∧m

i=1

∧m
j=1 φldv(i, j)

φldv(i, j) = xxi×xj →p xL1
xi
∧ ¬xL1

xi
→p xxi×xj∧

xL1
xi
→p xL2

xi
∧ ¬xL2

xi
→p xL1

xi
∧

xL2
xi
→p xi ∧ ¬xi →p xL2

xi

φrd =
∧m

i=1

∧m
j=1 φrdv(i, j)

φrdv(i, j) = xxi×xj →p xR1
xj
∧ ¬xR1

xj
→p xxi×xj∧

xR1
xj
→p xj ∧ ¬xj →p xR1

xj
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φent = σ1 →p τ1 ∧ · · · ∧ σn →p τn ∧ ¬σ →p τ
where the types are encoded as follows:
x = x
x× y = xx×y

Note that in the presentation above the formulae φwf , φld, φrd are composed
of the formulae φwfv, φldv, φrdv respectively which express the desired property
locally for a particular variable. All the properties enforced by the formulae
φwf , φld, φrd, φent can be expressed by appropriate lemmas. Due to space limits
we give here only the formulation of the least obvious lemma which captures the
guarantees ensured by the subformula φent:

Lemma 1. (rewriting and inequality)
For each σ, τ and a substitution S we have that S(σ) ≤ S(τ) iff S(σ) →p S(τ)
in the rewriting system (1) where S(xi) = f(S(xi)) and S(xxi×xj ) = f(S(xi)×
S(xj)).

Proof. The proof is by induction over S(σ). The details are left to the reader.

We obtain the following theorem:

Theorem 1. The decidability of the existential theory of the parallel one-step
rewriting implies the decidability of the non-structural type entailment problem
in case types are built of >,⊥,×.

Although this reduction is not conclusive in the light of Theorem 4, this shows
that the problems potentially share much of the structure and that a decidability
proof for the type entailment problem can give hint on decidable subcases of the
theory we deal with here.

4 The undecidability construction

We reduce here the halting problem for a special kind of Turing machines —
left-terminal Turing machines — to the validity of existential formulae in the
first-order one-step parallel rewriting logic. Thus we obtain our undecidability.

4.1 Left-terminal Turing machines

Let M = 〈Q, qI , Qf , Σ, δ〉 be a deterministic Turing machine (DTM), where Q
is the set of its states, qI is the initial state, Qf is the set of its final states, Σ is
the alphabet of the Turing machine, and δ : Q×Σ ⇀ Q×Σ×D is a partial next
step function with D being the set of directions {L,R, S}. We assume a model
in which the Turing machine tape extends on demand with a cell that contains
0 when the machine tries to move rightwards while there is no next tape cell.

Definition 4. (left-terminal Turing machine)
We say that DTM M is a left-terminal Turing machine (LTTM) when

1. Σ = {0, 1},
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2. for each q such that δ(q, w) = (q′, l, d) we have d 6= S,
3. the final configuration is reached only at the left end of the tape.

The goal of the restriction (1) is to downsize the number of rewrite rules. The
restriction (2) allows to avoid the technical difficulties caused by moves that do
not change the machine tape. The restriction (3) allows to check by rewrite rules
that the terminal configuration has been reached.

A configuration of an LTTM M is a sequence ρ1 · (q, l) · ρ2 where ρ1, ρ2 ∈
Σ∗, l ∈ Σ, and q ∈ Q. The initial configuration of M is a configuration of the
form (qI , l) · γ where qI is the initial state of M and l · γ is the input sequence
for the Turing machine.

The equivalence ∼M is the symmetric, reflexive and transitive closure of the
→M relation. Let γ1 be an initial configuration and γn a final configuration. A
sequence γ1, . . . , γn of configurations that is a witness of γ1 ∼M γn equivalence
is called an eq-run. We consider the following equivalence problem

Definition 5. (the equivalence problem)
Input: An initial configuration (qI , l) · ρ of an LTTM M .
Question: Is there a final configuration (q, l′) · ρ′ where q ∈ Qf , and l′ · ρ′ ∈ Σ∗,
such that (qI , l) · ρ ∼M (q, l′) · ρ′?

We deal with this problem rather than with the reachability problem as it allows
us to express that certain term reductions (e.g. t3 →p t32 for terms in Def. 11 are
not caused by a move of an LTTM we simulate. The following theorem holds:

Theorem 2. (the undecidability of the equivalence)
The equivalence problem for LTTM is undecidable.

Proof. The proof is by a routine technique similar to the proof of undecidability
of Thue systems.

4.2 Rewriting and LTTM

We relate here the term rewriting and the existential fragment of the parallel
rewriting logic.

Definition 6. (existential formula)
Let

φform = x1 6→p x1

φstart = x1 →p x3 ∧ x3 6→p x1 ∧ x3 →p x3 ∧ φloop(3)
φrun = x1 6→p x2 ∧ x2 →p x1 ∧ x2 →p x2 ∧ φloop(2)
φend = x3 →p x2 ∧ x2 6→p x3

φloop(i) = xi →p xi1 ∧ xi1 →p xi ∧ xi1 →p xi2 ∧ xi2 →p xi ∧ xi 6→p xi2

The resulting existential sentence is:

φM = ∃x1x2x3x21x22x31x32.φform ∧ φstart ∧ φrun ∧ φend.
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x1

x2

x3

x21

x22

x31

x32

Fig. 1. The relationships between variables in the existential formula

To save the notational burden the parameter of the formula φloop is an index.
The formula φform guarantees that the terms we deal with here are appropri-
ate candidates for encodings of an eq-run. The formula φstart serves to ensure
that a simulation of the LTTM starts with a starting configuration of the ma-
chine, φend to ensure that the simulation ends with a final configuration of the
machine, and at last φrun serves to guarantee that the simulation will obey
the transition rules of the machine. The dependencies between the variables
x1, x2, x3, x21, x22, x31, . . . , x32 encoded by φM are presented on Fig. 1.

Let us fix an LTTM M . Based on that we construct a signature ΣM , a
rewriting system RM and a sentence φM such that M halts iff φM holds in ARM

.

Definition 7. (signature)
Now, we define the signature ΣM . It contains the following symbols

f, g of arity 2, ⊥g,⊥1
g,⊥2

g,⊥3
g of arity 1,

⊥f , 0, 1 of arity 0 .

Additionally, we use elements of the set Q × {0, 1} as symbols of arity 0 where
Q is the set of states of M .

Note that the restriction (1) from Def. 4 allows to use here the symbols 0, 1 only.
The intent of the formula φM is to enforce that the term t1 substituted on x1

contains an encoded eq-run of the LTTM we are interested in. Furthermore, it
ensures that the term t3 substituted on x3 will be almost the same with one
exception that ⊥g is replaced with ⊥1

g. The formula φloop(3) guarantees roughly
that ⊥1

g actually occurs there. The term t2 substituted on x2 also contains the
symbol which is guaranteed by φloop(2). The loop between x1, x3 and x2 guaran-
tees that t2 differs from t3 so that the terminal configuration at the top of t3 is
deleted from t2. In this way, we obtain the opportunity to compare subsequent
machine moves in the fashion presented on Fig. 2.

Now, we are able to define an encoding of a configuration and an eq-run.
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n−
1-th

configuration
⊥g

1-st
configuration

x1

1-st
configuration

x2

n−
1-th

configuration

n−
2-th

configuration
⊥1

g

n-th
configuration

Fig. 2. The mechanism for the next step simulation.

Definition 8. (encoding of configurations)
Let ρ be a configuration of M . We define the encoding enc(ρ) of the configuration
in the term algebra over the signature from Def. 7 as follows:

– enc(ε) = ⊥f ;
– enc(l · ρ′) = f(l, enc(ρ′)) for l ∈ {1, 0};
– enc((q, l) · ρ′) = f(〈q, l〉, enc(ρ′)) where l ∈ {1, 0}.

Definition 9. (encoding of an eq-run)
Let ρ1, . . . , ρn be an eq-run of M . The term e2t(ρ1, . . . , ρn) is defined as:

– e2t(ρ1) = g(⊥g(t), t), where t = enc(ρ1);
– e2t(ρ1, . . . , ρi) = g(e2t(ρ1 . . . , ρi−1), enc(ρi)).

Given an LTTM M and its initial state qI together with the input word
l · ρ1, we can define a rewriting system which has the behaviour equivalent to
the behaviour of M on l · ρ1.

Definition 10. (rewrite system)
The rewrite rules can be divided as follows:

1. The rules relevant to the detection of the starting configuration:

⊥g(enc((qI , l) · ρ1))→ ⊥1
g(enc((qI , l) · ρ1)) ,

⊥1
g(x)→ ⊥1

g(x), ⊥1
g(x)→ g(⊥g(x), x)

where (qI , l) · ρ1, as above, is the initial configuration of M .
2. The rules relevant to detection of the final configuration:

g(g(x, y), f(〈q, l〉, z))→ g(x, y)

where l ranges over {0, 1}, and q ∈ Qf (Qf contains the final states of M).

9



3. The rules that check the form of an eq-run:

f(f(x, y), z)→ f(f(x, y), z), g(x, g(y, z))→ g(x, g(y, z)),
f(g(x, y), z)→ f(g(x, y), z), f(x, g(y, z))→ f(x, g(y, z)),
g(f(x, y), z)→ g(f(x, y), z), g(x,⊥g(y))→ g(x,⊥g(y)),
f(⊥g(x), y)→ f(⊥g(x), y), f(x,⊥g(y))→ f(x,⊥g(y)),
g(c1, x)→ g(c1, x), g(x, c2)→ g(x, c2),
⊥g(⊥g(x))→ ⊥g(⊥g(x)), ⊥g(g(x, y))→ ⊥g(g(x, y)),
⊥g(c2)→ ⊥g(c2), f(x, c2)→ f(x, c2),
f(⊥f , x)→ f(⊥f , x), ⊥i

g(x)→ ⊥i
g(x) for i = 1, 2, 3,

g(g(x, f(〈q, l〉, y)), f(〈q, l〉, z))→ g(g(x, f(〈q, l〉, y)), f(〈q, l〉, z))

where c1 ranges over all symbols of arity 0, c2 over all symbols of arity 0
except from ⊥f , l ranges over {0, 1}, and q ranges over Qf .

4. The rules which check that an eq-run obeys the state transitions: all the
rules of the form

f(〈q1, l1〉, f(l2, x))→ f(l3, f(〈q2, l2〉, x)),
f(〈q1, l1〉,⊥f )→ f(l3, f(〈q2, 0〉,⊥f )) (2)

in case δ(q1, l1) = (q2, l3, R); and rules of the form

f(l1, f(〈q1, l2〉, x))→ f(〈q2, l1〉, f(l3, x)), (3)

in case δ(q1, l2) = (q2, l3, L) (note that this is the place where the point 2
of the definition of LTTM is used). Additionally, all the rules of the form
t1 → t2 where t2 → t1 occurs in (2) or (3) above.

5. The rules that allow to have loops defined by φloop(i):

⊥i
g(x)→ ⊥i′

g (x) ⊥2
g(x)→ ⊥1

g(x)

where i = 1, 2, 3 and i′ = (i + 1 mod 3) + 1.

Now that we see the rewriting system, we can prove one direction of the
equivalence between the rewriting and the LTTMs.

Definition 11. (terms that satisfy φM)
We can now define the terms t1, t2, t3, t31, t32, t21, t22 which are used to satisfy

the formula φM :

– t1 = e2t(ρ1, . . . , ρn),
– t2 = e2t(ρ1, . . . , ρn−1)[γ ← ⊥1

g(t)] where e2t(ρ1, . . . , ρn−1)|γ = ⊥g(t),
– t3 = t1[γ ← ⊥1

g(t)] where t1|γ = ⊥g(t),
– t21 = t2[γ ← ⊥2

g(t)] where γ is such that t2|γ = ⊥1
g(t),

– t22 = t2[γ ← ⊥3
g(t)] where γ is such that t2|γ = ⊥1

g(t),
– t31 = t3[γ ← ⊥2

g(t)] where γ is such that t3|γ = ⊥1
g(t),

– t32 = t3[γ ← ⊥3
g(t)] where γ is such that t3|γ = ⊥1

g(t).
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Lemma 2. (from runs of machines to witnesses of the formula)
If ρ1, . . . , ρn is a run of an LTTM M then terms t1, t2, t3, t21, t22, t31, t32 from

Def. 11 substituted for x1, x2, x3, x21, x22, x31, x32 respectively witness that the
formula φM holds.

Proof. The proof is by a routine case analysis.
The reduction t1 →p t1 is guaranteed not to hold as the only rules which

allow the self-rewriting are in the group [3] and in the third rule of the group [1]
while none of the patterns in the left-hand sides of the rules occur in t1. This
proves that φform holds.

For the reductions in φstart, the reduction t1 →p t3 is guaranteed by the first
rule in the group [1]. The reduction t3 →p t3 is guaranteed by the second rule in
the same group. The reduction t3 →p t1 is impossible as the only way to dispose
of the symbol ⊥1

g is either to use the third rule in [1], but then the number of
gs must increase, or to use the rule in [5], but using this you cannot obtain ⊥g.
The rewrites in the subformula φloop(3) are possible because of the rules in [5].
The rewrite t3 →p t32 is impossible as there is no rule which exchanges ⊥1

g with
⊥3

g. Thus φstart holds.
For the reductions in φrun, the reduction t1 →p t2 is impossible for the same

reasons as in the case of the reduction t3 →p t1. The reduction t2 →p t1 is
possible because t2|(1i)2 represents the configuration of M one step before the
configuration represented by t1|(1i)2 and the rules in the group [4] can be applied
at an appropriate position in t2 to obtain the corresponding part of t1. Moreover,
the third rule in [1] can be used to dispose of ⊥1

g. The rewrites in the subformula
φloop(2) hold for the reasons similar to the case of φloop(3). Thus φrun holds.

For the reductions in φend, the reduction t3 →p t2 is possible by the rules in
[2] while the reduction t2 →p t3 is impossible as the only rule which increases
the number of occurences of the symbol g is the third rule in [1], but this rule
can be applied only at one place in t2 (as there is only one occurrence of ⊥1

g),
but then it is impossible to obtain t3 as t3 contains ⊥1

g which is removed by the
rule. Thus φend holds. The details are left for the reader.

The lemma above establishes one direction of the relation between M and
φM . In order to establish the other direction we have to define several forms
of terms which can be enforced by certain graph structures expressed in the
formula. The first set of forms of interest are the forms which can be defined
by means of the formula x 6→p x (i.e. forms where certain local patterns are
forbidden) and which are close enough to the encoding of the configuration and
run. In addition we define several forms which are similar and are used in the
proof for technical reasons.

Definition 12. (pseudo-configuration form)
The set of terms in the pseudo-configuration form is defined inductively as the

smallest set that contains terms: ⊥f , and f(c, t) where c ∈ Q × {0, 1} ∪ {0, 1}
and t is in the pseudo-configuration form.
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Definition 13. (pseudo-run form)
The set of terms in the pseudo-run form is defined inductively as the smallest
set that contains terms:

1. ⊥g(t) where t is in the pseudo-configuration form,
2. g(t1, t2) where the subterm t1 is in the pseudo-run form and t2 is in the

pseudo-configuration form

and in which the pattern g(g(x, f(〈q, l〉, y)), f(〈q, l〉, z)) does not occur.
The terms in the weak pseudo-run form are defined as above, but the final

requirement about the pattern is dropped. A term is in the (weak) ⊥1
g-pseudo-

run form when after replacing symbols ⊥1
g with ⊥g it is in the (weak) pseudo-run

form.

Definition 14. (x1-form and x∗-form)
We say that a term t is in the x1-form when it is either a constant, or is in the
pseudo-configuration form, or is in the pseudo-run form.

A term t is in the x∗-form when it is either in the x1-form or is in the weak
⊥1

g-pseudo-run form.

We have now a bunch of technical lemmas that relate the topological structures
in the formula φM with the forms defined above. The proofs of these lemmas are
by a routine case analysis combined with induction. The details of the proofs
are in Appendix A.

We start with a characterisation of terms that cannot be reduced to them-
selves. This is expressed by the subformula φform of φM .

Lemma 3. (formula and the pseudo-run form)
A term t satisfies the formula x 6→p x iff t is in x1-form.

The following lemma characterises both the reduction in formulae φloop(i)
for i = 2, 3 and the reductions between x1, x3 and x2.

Lemma 4. (loop and the pseudo-configuration form)
If t is in the pseudo-configuration form then there are no t1, t2 such that the

substitution S = {x∗ := t, x∗1 := t1, x∗2 := t2} satisfies the formula

x∗ →p x∗1 ∧ x∗1 →p x∗2 ∧ x∗2 →p x∗ ∧ x∗ 6→p x∗2.

The following lemma characterises the reductions of pseudo-configuration
and weak pseudo-run terms.

Lemma 5. (reduction of the pseudo-configuration and -run forms)
(1) Let t1 be in the pseudo-configuration form. If t1 →p t2 then t2 is in the

pseudo-configuration form.
(2) Let t1 be in the weak pseudo-run form. If t1 →p t2 then t2 is in the weak
pseudo-run form or in the weak ⊥1

g-pseudo-run form.

The following lemma allows to enforce that the reduction x1 →p x3 results
in a term substituted for x3 which contains ⊥1

g.

12



Lemma 6. (reduction in a loop)
If t is in the weak pseudo-run form then there are no t1, t2 such that the

substitution S = {x∗ := t, x∗1 := t1, x∗2 := t2} satisfies the formula φloop(∗).
The following lemma allows to enforce that the redution x2 →p x3 does not

lose ⊥1
g.

Lemma 7. (on x∗-form)
Let t1 →p t2. If t1 is in the x∗-form and there are t21 and t22 such that the

substitution S = {x∗ := t2, x∗1 := t21, x∗2 := t22} satisfies the formula φloop(∗)
then t2 is in the weak ⊥1

g-pseudo-run form.

This lemma allows to construct a run of M based on the witnesses for φM .

Lemma 8. (from witnesses of the formula to runs of machines)
Let R be a rewriting system from Def. 10 constructed for an LTTM M . If the

formula φM from Def. 6 holds for the rewriting with R, then there is an eq-run
of M .

Proof. Let t1, t2, t3, t21, t22, t31, t32 be the witnesses that the formula φM holds.
Note that the terms t1, t2 and t3 are pairwise different. Since t1 6→p t1, we obtain
by Lemma 3 that t1 is in the pseudo-run form or pseudo-configuration form, or
is a constant. It cannot be a constant since we have t1 →p t3 and there is no
rewriting rule with a constant on the left-hand side. Moreover, t1 cannot be in
the pseudo-configuration form as this contradicts Lemma 4 applied to t1, t2, and
t3. Thus, t1 may only be in the pseudo-run form (*).

Lemma 7 implies that t2 and t3 are in the weak ⊥1
g-pseudo-run form. This

implies that the reduction t1 →p t3 must be done with the use of the first rule in
the group [1] of Def. 10. This together with (*) implies that the reduction t2 →p

t1 must use the third rule in the group [1]. Since the third rule in [1] increases
the number of gs on the leftmost branch, one of the rewrites →p t2 →p t1 must
decrease it. The only rules that can decrease the number of gs are the rules from
[2]. This, however, can be used only in the rewriting t3 →p t2 as otherwise the use
of the third rule from [1] in t2 →p t1 is impossible. Let γ be the address where a
rule from [2] is applied to t3. Let γ · 1n2(ti) = un

i where i = 1, 2, 3. The terms un
i

are in the pseudo-configuration form (as un
i are and by Lemma 5). This means

that only the rules in the group [4] can be applied to them. Additionally, we
have the dependencies ui

1 →
p
∗ ui

3 = ui−1
2 →p

∗ ui−1
1 (ui

3 = ui−1
2 as a rule is applied

at γ in t3 →p t2). This justifies that ui
1 →

p
∗ ui−1

1 . Let γ · 0m+1 be the address
of ⊥1

g in t3. Note that um
1 is the encoding of an initial configuration, as the first

rule from [1] is used in t1 →p t3. The term um
1 is a properly formed encoding of

a configuration. By induction on i we obtain that all pseudo-configuration forms
um−i

1 are proper encodings as well as the rules in [4] directly encode forward and
backward transitions of M . Further, we obtain by the downwards induction on
i that each ui

1 is in the relation ∼M with um
1 . The application of a reduction

from [2] in t3 →p t2 enforces that u0
3 represents a final configuration of M by

the point (3) of Def. 4. In this way, we obtain from a solution of the formula φM

two configurations ρ1, ρ2 such that ρ1 is the initial one, ρ2 is the final one and
ρ1 ∼M ρ2 holds.
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As the result of this lemma we obtain the theorem:

Theorem 3. (translation between machines and rewrite systems)
For each LTTM M and its initial configuration ρ there is a rewrite system R
such that ρ ∼M ρ′ for some final configuration ρ′ iff the formula φM holds.

Theorem 4. (the undecidability of one-step parallel rewriting
theory)
There is no algorithm that given a signature Σ, an existential formula φ, and

a rewrite system R over Σ can decide if φ is satisfied in the parallel rewriting
structure AR from Def. 1. In particular, the existential fragment of the theory
of one-step parallel rewriting is undecidable.

5 Discussion

The use rewrite rules of the form t→ t in [Tre98] has been criticised. The current
paper also uses such rules. It is an open question if this can be avoided here.

Vorobyov in [Vor02] distinguishes weak and strong undecidability for this
kind of theory. The strong one holds when the undecidability is proved for a
fixed rewriting system while weak holds in other cases. In the sense, this paper
presents a weak undecidability. However, the current construction works with a
fixed formula. I conjecture that the strong version in the Vorobyov’s sense also
holds for the existential fragment of the theory. I did not prove this strong version
as the plans of such constructions that I could develop were very complicated.

The paper [CSTT99] uses a one-step rewriting theory with → predicate re-
placed by predicates →r, one for each rewriting rule r. The main result of the
current paper can be straghtforwardly adapted to this version of the theory even
in case of Vorobyov’s strong sense.
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A Proofs of lemmas

We present here the proofs of the lemmas omitted from the main text.
Proof of Lemma 3:
Let us recall the formulation of the lemma first.

A term t satisfies the formula x 6→p x iff t is in the x1-form.

First note that when t is in the x1-form then it is either in the pseudo-configu-
ration form, or in the pseudo-run form, or is one of the symbols of arity 0.

(⇒) Induction on the structure of t.
(A) If t is a constant then the result is trivial.
(B) If t = ⊥g(t′) then as t′ also satisfies the formula x 6→p x we can conclude

by induction hypothesis that t′ is in the pseudo-configuration form, or in the
pseudo-run form, or is one of the symbols of arity 0. The term t′ cannot be
in the pseudo-run form as R contains the rules ⊥g(g(x, y)) → ⊥g(g(x, y)) and
⊥g(⊥g(x))→ ⊥g(⊥g(x)). Since the rules ⊥g(c3)→ ⊥g(c3) for all c3 ∈ Σ0

M\{⊥f}
are in R, the only constant that can be equal to t′ is ⊥f . This means that t′ is in
the pseudo-configuration form which in turn implies that t is in the pseudo-run
form.

(C) The situation that t = ⊥i
g(t

′) for i = 1, . . . , 3 is impossible since R

contains the rules ⊥i
g(x)→ ⊥i

g(x) for i = 1, . . . , 3.
(D) If t = f(t1, t2) then as ti for i = 1, 2 also satisfy the formula x 6→p x we

can conclude by induction hypothesis that each ti is in the pseudo-configuration
form, or in the pseudo-run form, or is a constant. The term t1 cannot be in the
pseudo-run or pseudo-configuration form as R contains the rules f(f(x, y), z)→
f(f(x, y), z), f(⊥f , x) → f(⊥f , x), f(g(x, y), z) → f(g(x, y), z), f(⊥g(x), y) →
f(⊥g(x), y). Thus, t1 can only be a constant different than ⊥f which means
t1 ∈ {0, 1} ∪Q × {0, 1}. The term t2 must be in the pseudo-configuration form
as R contains the rules f(x, g(y, z))→ f(x, g(y, z)), f(x,⊥g(y))→ f(x,⊥g(y)),
and f(x, c3) → f(x, c3) where c3 ∈ Σ0

M\{⊥f}. This verifies that t is in the
pseudo-configuration form.

(E) If t = g(t1, t2) then the proof is similar to the previous case. We use
the rules g(f(x, y), z) → g(f(x, y), z), g(c1, x) → g(c1, x) where c1 ∈ Σ0

M to
check the form of t1 and g(x, g(y, z)) → g(x, g(y, z)), g(x, c2) → g(x, c2) where
c2 ∈ Σ0

M\{⊥f}, g(x,⊥g(y))→ g(x,⊥g(y)) to check the form of t2. The last rule
in [3] guarantees that t is in the pseudo-run form.

(⇐) The proof in this direction is by induction on t.
(A) If t is a constant then the result is trivial as there is no rule l → r in

Def. 10 in which l is a constant.
(B) If t = ⊥g(t′) then t may only be in the pseudo-run form and then t′ is

in the pseudo-configuration form. By the induction hypothesis t′ 6→p t′. Thus,
the only possible redex is at the root address of t. This is impossible though,
as there is no reduction rule with the left-hand side equal to either ⊥g(⊥f ) or
⊥g(f(s1, s2)) where s1, s2 are terms, and as the only rule (the first rule in the
group [1]) with the left-hand side equal to ⊥g(x) has different right-hand side.
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(C) The cases when t = ⊥i
g(t

′) are impossible as t of this form cannot be a
constant or a term in the pseudo-configuration form or a term in the pseudo-run
form.

(D) If t = f(t1, t2) then t is in the pseudo-configuration form. This implies
that t1 ∈ Q×{0, 1}∪{0, 1} and t2 is in the pseudo-configuration form. We have
t1 6→p t1 as t1 is a constant. Additionally, t2 6→p t2 holds by induction hypothesis.
This means that the only possible redex for t →p t is at the root address of t.
Since t1 ∈ Q× {0, 1} ∪ {0, 1}, the only possible rule is f(x, c2) → f(x, c2) from
the point [3] of Def. 10. The reduction is impossible as c2 ∈ Σ0

M\{⊥f} and as
the corresponding t2 may be only ⊥f (t is in the pseudo-configuration form).

(E) If t = g(t1, t2) then t may only be in the pseudo-run form. This implies
that t1 is in the pseudo-run form and t2 is in the pseudo-configuration form.
The induction hypothesis for both t1 and t2 implies that t1 6→p t1 and t2 6→p t2
Thus, the only possible redex address is at the root of t. This means that only
the rules from the points [2]-[3] can be applied. The rules in the point [3] cannot
be applied because it would imply that t1 is not in the pseudo-run form or t2 is
not in the pseudo-configuration form, or that t is in the weak pseudo-run form
which is not the pseudo-run form. The applicability of the rules in [2] would
mean that t 6= t. ut

Proof of Lemma 4:
Let us recall the formulation of the lemma first.

If t is in the pseudo-configuration form then there are no t1, t2 such that
the substitution S = {x∗ := t, x∗1 := t1, x∗2 := t2} satisfies the formula:

x∗ →p x∗1 ∧ x∗1 →p x∗2 ∧ x∗2 →p x∗ ∧ x∗ 6→p x∗2. (4)

Suppose, there are t1, t2 such that the substitution S satisfies the formula (4).
Note that if t, t1 and t2 satisfy the formula then they are pairwise different.
Otherwise we obtain contradiction as one pair should satisfy both x →p y and
x 6→p y. We continue by induction on the term t.

(A) t = ⊥f . This situation is impossible as there are no rules with ⊥f on the
left-hand side.

(B) t = f(c, s) where c ∈ Q × {0, 1} ∪ {0, 1} and s is in the pseudo-
configuration form. The rewriting t2 →p t cannot be performed with the use of
the rules in the group [1] as the right-hand sides there contain g or ⊥1

g and terms
in the pseudo-configuration form cannot contain these symbols. The rewriting
cannot be performed with the use of the rules in [2] either, as g does not occur
in t. The rules from [3] cannot be used as t1 6= t2 (in case the rules are used
together with other ones we may assume they are not used as left-hand sides are
equal to the right-hand ones). The rules in [5] cannot be used as there are no ⊥i

g

for i = 1, 2, 3 in t. The only remaining case is that only rules in [4] are used in
t2 → t. This is, however, impossible, as the rules in [4] are reversible. (Note that
this is a place where we exploit the fact that we use the equivanece ∼M .) ut

Proof of Lemma 5:
Let us recall the formulation of the lemma first.
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(1) Let t1 be in the pseudo-configuration form. If t1 →p t2 then t2 is in
the pseudo-configuration form.
(2) Let t1 be in the weak pseudo-run form. If t1 →p t2 then t2 is in the
weak pseudo-run form or in the weak ⊥1

g-pseudo-run form.

• The proof of (1). Induction on the term t1.
(A) t1 = ⊥f . As there are no rules with ⊥f on the left-hand side this case is

impossible.
(B) t1 = f(c, t′1) where c ∈ Q × {0, 1} ∪ {0, 1} and t′1 is in the pseudo-

configuration form. We have two subcases here.
(i) The reduction t1 →p t2 involves a redex in the root. The rules in groups

[1], [2], [5] in Def. 10 and most of the rules in the group [3] cannot be used as
their left-hand sides do not start with f . The remaining rules of the group [3]
cannot be used as c is a constant or because t1 is in the pseudo-configuration
form. If a rule in the group [4] is used then t2 remains in the pseudo-configuration
form. Thus we can conclude that t2 is in the pseudo-configuration form in this
subcase.

(ii) The reduction t1 →p t2 does not involve a redex in the root. We have
then t2 = f(c, t′2). In this case the only possible reduction is as t′1 →p t′2 since
c is a constant (there are no reductions with constants as left-hand sides). The
induction hypothesis gives here that t′2 is in the pseudo-configuration form and
by the definition of the pseudo-configuration form we have that t2 = f(c, t′2) is
in the pseudo-configuration form as well.
• The proof of (2). Induction on the term t1.

(A) t1 = ⊥g(t′1) where t′1 is in the pseudo-configuration form. We have two
subcases here.

(i) In case the reduction is at the root address, we can only apply the first
rule in the group [1] from Def. 10 (the rules in the group [3] cannot be applied
as this would imply t1 is not in the pseudo-run form, the rules in other groups
have no ⊥g in the left-hand sides). Then t2 = ⊥1

g(t
′
1) which is a term in the weak

⊥1
g-pseudo-run form.

(ii) In case the reduction is not at the root address we have that t2 = ⊥g(t′2)
and t′1 →p t′2. The claim (1) of the current lemma implies that t′2 is in the
pseudo-configuration form as well. It immediately follows, then, that t2 is in the
weak pseudo-run form.

(B) t1 = g(t′1, t
′′
1) where t′1 is in the pseudo-run form and t′′1 in the pseudo-

configuration form. We have two subcases here.
(i) The reduction t1 →p t2 involves a redex in the root. The rules in groups

[1], [4], and [5] in Def. 10 and most of the rules in the group [3] cannot be used
as their left-hand sides do not start with g. The remaining rules of the group [3]
cannot be used as t1 is in the pseudo-run form. If a rule in the group [2] is used
then t2 = t′1 while t′1 is in the pseudo-run form.

(ii) The reduction t1 →p t2 does not involve a redex in the root. We have
then t2 = g(t′2, t

′′
2) where t′1 →

p
∗ t′2 and t′′1 →

p
∗ t′′2 and at least one of t′1 →p t′2 and

t′′1 →p t′′2 holds. By the case (1) of the current lemma or because t′′1 = t′′2 we have
that t′′2 is in the pseudo-configuration form. Similarly, by induction hypothesis
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or because t′1 = t′2 we obtain that t′2 is in the pseudo-run form or weak ⊥1
g-

pseudo-run form. These two facts are enough to conclude that t2 is in the weak
⊥1

g-pseudo-run form. ut

Proof of Lemma 6:
Let us recall the formulation of the lemma first.

If t is in the weak pseudo-run form then there are no t1, t2 such that
the substitution S = {x∗ := t, x∗1 := t1, x∗2 := t2} satisfies the formula
φloop(∗).

Suppose s satisfies φloop(∗). We analyse here the reductions between t, t1 and
t2. First note that t, t1, t2 must be pariwise different as otherwise we obtain two
terms (not necessarily different) for which both x→p x′ and x 6→p x′ is required.
In this light, we may assume the rules from the group [3] are not used in the
reductions among the terms as their left-hand sides are equal to the right-hand
ones.

The reductions in the groups [1], [2], [5] are not reversible in one step, or are
not applicable at all. So the reduction t→p t1 must be done with the rules from
the group [4]. This means that t1 is in the weak pseudo-run form too.

We can analyse then the reduction t1 →p t2 now. As t1 is in the weak pseudo-
run form, the only possible reduction from the group [1] is the first one. This
rule, however, introduces ⊥1

g and the only way to get rid of ⊥1
g is either by

the third rule in [1] or by the rule ⊥1
g(x) → ⊥2

g(x). The former rule introduces
additional g and, in order to dispose of both g and ⊥1

g, one has to use more than
one step so it is impossible to get back to t. Similarly, the latter rule introduces
⊥2

g which does not occur in t2 and in order to replace ⊥2
g with ⊥g one has to

use more than one step.
The rules from [2] in the reduction t1 →p t2 would decrease the number of

occurrences of g. This can only be compensated by the use of the third rule in
[1]. Then one has to use yet another step to introduce ⊥1

g and it is impossible
to accomplish both these steps before t2 is reached.

The rules in [4] cannot be used as then we arrive with a weak pseudo-run
form in t2 and the only way to obtain t back is to use rules in [4] again and
this is contradictory with the fact that t 6→p t2 and that the rules in [4] are
reversible. (Note that this is another place where we exploit the fact that we use
the equivanece ∼M .) ut

Proof of Lemma 7:
Let us recall the formulation of the lemma first.

Let t1 →p t2. If t1 is in the x∗-form and there are t21 and t22 such
that the substitution S = {x∗ := t2, x∗1 := t21, x∗2 := t22} satisfies the
formula φloop(∗) then t2 is in the weak ⊥1

g-pseudo-run form.

First note that if t2, t21 and t22 satisfy the formula φloop(∗) then they are pairwise
different as otherwise we obtain contradiction because for one pair we have both
x→p y and x 6→p y satisfied. The rest of the proof is by induction on the term t1.
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(A) t1 is a constant. There are no rules with a constant on the left-hand side
so the case is impossible.

(B) t1 = f(s1, s2). In this case, t1 can only be in the pseudo-configuration
form. Lemma 5 implies that t2 is in the pseudo-configuration form too. As the
formula φloop(∗) is satisfied by S Lemma 4 leads to contradiction.

(C) t1 = ⊥g(s1). In this case, t1 must be in the pseudo-run form. At the
same time, we have t1 6= t2 by Lemma 3. If the first rule from the group [1] in
Def. 10 is applied in the reduction step t1 →p t2 then t2 is in the ⊥1

g-pseudo-run
form. The remaining rules in the group cannot be applied to t1. The rules in the
group [2] cannot be applied either, as there is no occurrence of g in t1. The rules
in [3] cannot be applied as t1 6= t2.

In case a rule from [4] is applied, then it cannot be applied at the root address
of t1. This means that t2 = ⊥g(s2) and s1 →p s2 holds. Thus, Lemma 5 implies
that s2 is in the pseudo-configuration form so t2 is in the weak pseudo-run form
which leads to contradiction by Lemma 6 with the satisfiability of φloop(∗).

The rules from the remaining group [5] cannot be applied as t1 does not
contain ⊥i

g for i = 1, 2, 3.
(D) t1 = ⊥1

g(s1). In this case, t1 must be in the weak ⊥1
g-pseudo-run form. If

t1 = t2 then the claim of the lemma automatically holds. We assume in the rest
of the case that t1 6= t2.

The first rule from the group [1] in Def. 10 cannot be applied as the left-hand
side of the rule cannot match t1. The second rule is impossible as t1 6= t2. The
third rule cannot be applied as then t2 would be in the weak pseudo-run form
and this would lead to contradiction by Lemma 6. The rules in group [2] cannot
be applied to t1 either, as there is no occurrence of g in t1. The rules in [3] cannot
be applied as t1 6= t2.

In case a rule from [4] is applied, it cannot be applied at the root address of
t1. This means that t2 = ⊥1

g(s2) and s1 →p s2 holds. Thus, Lemma 5 implies
that s2 is in the pseudo-configuration form. This immediately gives that t2 is in
the weak ⊥1-pseudo-run form.

In case the rule ⊥1
g(x) → ⊥2

g(x) from [5] is used to obtain t2, we have two
possibilities: either all the reductions in t2 →p t21 →p t22 →p t2 are not at the
root address or some reduction at root address is used there. In the first case
we obtain a sequence of the pseudo-configuration forms that satisfy the formula
(4) which is impossible by Lemma 4. In the second case, we cannot use the
rule ⊥2

g(x) → ⊥2
g(x) to rewrite t2 →p t21 as t2 6= t21. Thus the only remaining

possibility is to use ⊥2
g(x)→ ⊥3

g(x), but then we have to obtain ⊥2
g back at the

end of the loop in t2. This is possible only when ⊥3
g(x)→ ⊥1

g(x) is used as this
is the only way to dispose of ⊥3

g. In this way we used up all 3 reduction steps in
the loop t2 →p t21 →p t22 →p t2. However, now we have also t2 →p t22 with the
rule ⊥2

g(x)→ ⊥1
g(x) so the formula φloop(∗) cannot be satisfied in this case.

(E) t1 = ⊥i
g(s1) for i = 2, 3. This case is impossible as terms of this form are

not in the x∗-form.
(F) t1 = g(s1, s2). In this case t1 and s1 are both in the pseudo-run form

or weak ⊥1
g-pseudo-run form while s2 is in the pseudo-configuration form. If
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t1 = t2 then the claim holds either because t2 is in the required form or because
the case can be discared by contradiction with Lemma 6. Thus, we assume now
that t1 6= t2.

If the rewriting t1 →p t2 is in the root then it can hold only due to the use of
a rule in the group [2] (other rules have left-hand side that either does not match
or results in t1 = t2). This means that either t2 is in the weak ⊥1

g-pseudo-run
form, which matches with our claim, or in the weak pseudo-run form. This last
situation is, however, impossible by Lemma 6.

If the rewriting t1 →p t2 is not in the root address then t2 = g(s′1, s
′
2) where

si = s′i or si →p s′i for i = 1, 2 and at least one of si →p s′i holds. The term s′2
is in the pseudo-configuration form either as it is equal to s2 or by Lemma 5.
We may also assume that s1 6= s′1 as otherwise we immediately obtain our claim
that t2 is in the weak ⊥1

g-pseudo-run form by Lemma 5. As t1 is in the x∗-form
it may be either in the pseudo-run form or in the weak ⊥1

g-pseudo-run form.
In case t1 is in the pseudo-run form Lemma 5 implies that t2 is either in the

pseudo-run form, but this is impossible by Lemma 6, or in the weak ⊥1
g-pseudo-

run form, which fulfils our claim.
In case t1 is in the weak ⊥1

g-pseudo-run form the only rule which changes
the form is the rule ⊥1

g(x) → ⊥2
g(x) (our claim is fulfiled when the form is

not changed). The only reversible step in the reduction t2 →p t21 can be done
according to the rules in [4]. Then the next step may be done either by the
rules in [4], or by the rules in [5]. In the first case, t22 contains ⊥2

g(x) and the
only possible rewriting is again only by [4] and as this is reversible it leads to
contradiction. In the second case, we have to perform at least two rewrites to get
⊥2

g(x) back which is impossible to accomplish in the one rewriting step t22 →p t2.
This concludes this case so that the reduction t1 →p t2 with the use of the rule
⊥1

g(x)→ ⊥2
g(x) is impossible. ut
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