Erratum to "On boundedness of semistable sheaves"

Adrian Langer

March 28, 2023

ADDRESS:

Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland e-mail: alan@mimuw.edu.pl

Unfortunately, the proof of [2, Theorem 3.4] contains a gap. The problem is that in the notation of the proof we have $\Delta(F)p^*\mathcal{O}_{\Lambda}(1)q^*H^{n-3} = \Delta(F_s)H_s^{n-3} \geq 0$. This proves that Bogomolov's inequality holds for the collection $q^*Hp^*\mathcal{O}_{\Lambda}(1)q^*H^{n-3}$ but it does not imply that it holds for the collection $p^*\mathcal{O}_{\Lambda}(1)q^*H^{n-2}$. Here we give a different proof of this theorem that is based on the idea coming from [1]. The same problem occurs in the proof of Theorem 3.13 and it can be repaired in the same way as below.

THEOREM 0.1. Let H be a hyperplane on \mathbb{P}^n and let E be a slope H-semistable torsion free coherent sheaf on \mathbb{P}^n . Then $\Delta(E)H^{n-2} \geq 0$.

Proof. The proof is by induction on the dimension n and the rank r of E. We keep notation from the proof of [2, Theorem 3.4]. Let $0 = E_0 \subset E_1 \subset \cdots \subset E_m = q^*E$ be the Harder–Narasimhan filtration with respect to $p^* \mathcal{O}_{\Lambda}(1)q^*H^{n-2}$. If m=1 then the restriction of E to a general hyperplane is semistable and the assertion follows by the induction assumption. So we can assume that m>1. Let us set $F_i=E_i/E_{i-1}$, $r_i=\operatorname{rk} F_i$ and let μ_i be the slope of F_i with respect to $p^*\mathcal{O}_{\Lambda}(1)q^*H^{n-2}$. There exist integers a_i,b_i such that $c_1(F_i)=a_iq^*H+b_iN$, where N is the exceptional divisor of q. Then we have $r_i\mu_i=c_1(F_i)p^*\mathcal{O}_{\Lambda}(1)q^*H^{n-2}=a_i+b_i$. Our induction assumption implies that Bogomolov's inequality holds on Y for the collection q^*H^{n-1} for sheaves of rank < r. Since F_j is $(p^*\mathcal{O}_{\Lambda}(1),q^*H^{n-2})$ -semistable, [2, Proposition 3.1] implies that $\Delta(F_j)q^*H^{n-2} \geq 0$. Therefore using $a_i=r_i\mu_i-b_i$

we get

$$\frac{\Delta(E)H^{n-2}}{r} = \sum \frac{\Delta(F_i)q^*H^{n-2}}{r_i} - \frac{1}{r} \sum_{i < j} r_i r_j \left(\frac{c_1(F_i)}{r_i} - \frac{c_1(F_j)}{r_j} \right)^2 q^*H^{n-2}
\geq \frac{1}{r} \sum_{i < j} r_i r_j \left(\left(\frac{b_i}{r_i} - \frac{b_j}{r_j} \right)^2 - \left(\frac{a_i}{r_i} - \frac{a_j}{r_j} \right)^2 \right) = 2 \sum b_i \mu_i - \frac{1}{r} \sum_{i < j} r_i r_j (\mu_i - \mu_j)^2.$$

On the other hand $q_*E_i \subset E$, so

$$\frac{\sum_{j \le i} a_j}{\sum_{j < i} r_j} \le \mu = \mu(E).$$

Hence $\sum_{j < i} b_j \ge \sum_{j < i} r_j (\mu_j - \mu)$ and we have

$$\sum b_i \mu_i = \sum_i (\sum_{j \le i} b_j) (\mu_i - \mu_{i+1}) \ge \sum_i (\sum_{j \le i} r_j (\mu_j - \mu)) (\mu_i - \mu_{i+1}) = \sum_i r_i \mu_i^2 - r \mu^2 = \sum_{i < j} \frac{r_i r_j}{r} (\mu_i - \mu_j)^2.$$

Summing up, we get

$$\Delta(E)H^{n-2} \ge \sum_{i < j} \frac{r_i r_j}{r} (\mu_i - \mu_j)^2 \ge 0.$$

Acknowledgements

The author would like to thank Yuan Yao for pointing out the gap in proof of [2, Theorem 3.4].

References

- [1] Langer, Adrian Semistable sheaves in positive characteristic. *Ann. of Math.* (2) **159** (2004), 251–276.
- [2] Langer, Adrian On boundedness of semistable sheaves, *Doc. Math.* **27** (2022), 1–16.