MAGIT Exercises, Series 9

Exercise 1.

Let G and H be groups. Show that if k is a field then

$$H_n(G \times H; k) \simeq \bigoplus_{p+q=n} H_p(G; k) \otimes_k H_q(H; k).$$

Exercise 2.

Prove that $\operatorname{Ext}^1\left(\mathbb{Z}\left[\frac{1}{p}\right],\mathbb{Z}\right) \simeq \hat{\mathbb{Z}}_p/\mathbb{Z}$.

Exercise 3.

Let I be the poset $\{a, b, c\}$, a < c and b < c. Let \mathcal{A} be an abelian category and assume it is complete and the product of any set of surjections is a surjection. Let $F: \mathcal{A}^I \to \mathcal{A}$ be the functor from the category \mathcal{A}^I of diagrams of shape I in \mathcal{A} to \mathcal{A} , associating to a diagram its limit over I. Show that

- 1. if $X \in \mathcal{A}^I$ then F(X) is the fiber product of X(a) and X(b) over X(c),
- 2. $R^1F(X)$ is the cokernel of a certain map $X(a) \times X(b) \to X(c)$,
- 3. $R^n F(X) = 0$ for $n \neq 0, 1$.

Exercise 4.

Let p be a prime number and let $m = 2023p^{2023}$. Show that for all $n \ge 0$ we have

- 1. $\operatorname{Ext}_{\mathbb{Z}/m}^n(\mathbb{Z}/p\mathbb{Z},\mathbb{Z}/p\mathbb{Z}) \simeq \mathbb{Z}/p\mathbb{Z}$.
- 2. $\operatorname{Ext}^n_{\mathbb{Z}/m}(\bigoplus_{i=1}^\infty(\mathbb{Z}/p\mathbb{Z}),\mathbb{Z}/p\mathbb{Z})$ is a free $(\mathbb{Z}/p\mathbb{Z})$ -module with an uncountable basis.

Exercise 5

Let $\cdots \to C_3^* \to C_2^* \to C_1^*$ be an inverse system of cochain complexes of abelian groups. Assume that for all n the inverse systems $\cdots \to C_3^n \to C_2^n \to C_1^n$ satisfy the Mittag–Leffler condition and set $C^* = \varprojlim C_i^*$. Prove that for all n we have a short exact sequence

$$0 \to \varprojlim^1 H^{n-1}(C_i^*) \to H^n(C^*) \to \varprojlim H^n(C_i^*) \to 0.$$