MAGIT Exercises, Series 8

Exercise 1.

Let $\{G_n\}$ be a homological δ -functor from \mathcal{A} to \mathcal{B} and assume \mathcal{A} has enough projectives. Assume that for all n > 0 we have $G_n(P) = 0$ for all projective P. Show that $G_n = L_n(G_0)$.

Exercise 2.

Let \mathcal{A} be an abelian category and let X_* be a chain complex in \mathcal{A} such that for any object Y of \mathcal{A} the chain complex $\operatorname{Hom}_{\mathcal{A}}(Y, X_*)$ is exact. Prove that X is homotopic to 0. Show an example when $X \neq 0$.

Exercise 3.

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be abelian categories. Assume that \mathcal{A} has sufficiently many projectives. Let $F: \mathcal{A} \to \mathcal{B}$ be a right exact functor and $G: \mathcal{B} \to \mathcal{C}$ an exact functor. Show that for all $n \geq 0$ we have $G \circ L_n F \simeq L_n(G \circ F)$.

Exercise 4.

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be abelian categories. Assume that \mathcal{A} has sufficiently many projectives. Let $F: \mathcal{A} \to \mathcal{B}$ and $G: \mathcal{B} \to \mathcal{C}$ be right exact functors. Is it true that $G \circ L_1 F \simeq L_1(G \circ F)$?

Exercise 5

Let M be a \mathbb{Z} -module such that $\operatorname{Hom}(M,\mathbb{Z}) = \operatorname{Ext}^1(M,\mathbb{Z}) = 0$. Show that M = 0. Use the following steps:

- 1. Show M is torsion-free.
- 2. Show that M is divisible.
- 3. Show that $M \simeq \mathbb{Q} \otimes_{\mathbb{Z}} M$.
- 4. If $M \neq 0$ then $M = \mathbb{Q} \oplus M'$ for some M'. But then we have $\operatorname{Ext}^1(\mathbb{Q}, \mathbb{Z}) = 0$, a contradiction.