MAGIT Homework, Series 7

Exercise 1.

Let $F: \mathcal{C} \to \mathcal{D}$ be a right exact functor between good abelian categories. An object M of \mathcal{C} is F-acyclic, if $L_nF(M)=0$ for all n>0. Assume that the sequence

$$0 \to M_m \to P_m \to P_{m-1} \to \dots \to P_0 \to A \to 0$$

is exact and all P_i are F-acyclic. Prove that

1.
$$L_i F(A) \simeq L_{i-m-1} F(M_m)$$
 for $i \ge m+2$,

2.
$$L_{m+1}F(A) \simeq \ker(F(M_m) \to F(P_m))$$
.

Exercise 2.

Use the previous exercise to show that if $P_{\bullet} \to A \to 0$ is a left resolution of A and all P_i are F-acyclic, then

$$L_iF(A) = H_i(F(P_{\bullet})).$$

Exercise 3.

Let $\{F_n\}$ and $\{G_n\}$ be homological δ -functors from \mathcal{A} to \mathcal{B} and assume \mathcal{A} has enough projectives. Let $\varphi: F_0 \to G_0$ be a natural transformation. Assume that for all n > 0 we have $G_n(P) = 0$ for all projective P. Show that there exists exactly one sequence of natural transformations $\{\varphi_n: F_n \to G_n\}$ starting with $\varphi_0 = \varphi$ such that for every short exact sequence in \mathcal{A} the sequence $\{\varphi_n\}$ induces a map between long exact sequences associated to $\{F_n\}$ and $\{G_n\}$.

Exercise 4.

Show that if A and B are finite abelian groups then $Tor_m^{\mathbb{Z}}(A,B)=0$ for m>1 and $Tor_1^{\mathbb{Z}}(A,B)=A\otimes_{\mathbb{Z}}B$.

Exercise 5.

Let (X^*, d^*) be a cochain complex of R-modules. Assume $f: Y \to X^1$ and $g: X^2 \to Z$ are homomorphisms of R-modules and $gd^1f = 0$. Show that the sequence

 $\ker d^1f \to H^1(X^*) \to \ker gd^1/(\operatorname{Im} d^0 + \operatorname{Im} f) \to (\ker d^2 \cap \ker g)/\operatorname{Im} d^1f \to H^2(X^*) \to Z/\operatorname{Im} gd^1f \to H^2(X^*) \to Z/\operatorname{Im} gd^1f \to H^2(X^*) \to Z/\operatorname{Im} gd^1f \to Z/\operatorname{Im} gd^1f$

is exact.