MAGIT Exercises, Series 6

Exercise 1.

Let k be a field and let $R = k[x]/(x^2)$. The category of R-modules is equivalent to the category of k-vector spaces V together with an endomorphism $\varphi: V \to V$ such that $\varphi^2 = 0$. In particular, if $\dim_k V = 1$ then $\varphi = 0$. Compute $\operatorname{Ext}_R^1(k,k)$.

Exercise 2.

Let A be a torsion \mathbb{Z} -module. Show that

$$\operatorname{Ext}_{\mathbb{Z}}^{1}(A,\mathbb{Z}) = \operatorname{Hom}_{\mathbb{Z}}(A,U(1)),$$

where $U(1) = \{z \in \mathbb{C} : |z| = 1\}.$

Exercise 3.

Let $G = \mathbb{Z}/n\mathbb{Z}$. Let I_G be the augmentation ideal and let σ be the generator of G. Show that the map

$$\mathbb{Z}[G] \to I_G, \quad r \to r(1-\sigma)$$

has the kernel $\mathbb{Z}[G](1 + \sigma + ... + \sigma^{n-1})$. Use this to construct a projective resolution of \mathbb{Z} and to compute $H^i(G, M)$ for all G-modules M.

Exercise 4.

Let A be a \mathbb{Z} -module and let A_t be the submodule of torsion elements in A. Use only A_t to compute $Tor_m^{\mathbb{Z}}(A,\mathbb{Q}/\mathbb{Z})$ for all m>0.

Exercise 5.

Let R be a ring (possibly non-commutative) and let I be a right ideal and J a left ideal in R. Show that $\operatorname{Tor}_1^R(R/I,R/J)\simeq (I\cap J)/IJ$.