MAGIT Exercises, Series 5

Exercise 1.

Show that every \mathbb{Z} -module has an injective resolution.

Exercise 2

Let $f: X \to Y$ be a continuous map of topological spaces and for each presheaf \mathcal{F} on X we define a presheaf $f_*\mathcal{F}$ by

$$f_*\mathcal{F}(V) := \mathcal{F}(f^{-1}(V)).$$

For a presheaf \mathcal{G} on Y we define a presheaf $f^{-1}\mathcal{G}$ by

$$f^{-1}\mathcal{G}(U):=\lim_{V\supset f(U)}\mathcal{G}(V).$$

Let PSh(X) denote the category of presheaves of abelian groups on X (and analogously for Y). Prove that $f_*: PSh(X) \to PSh(Y)$ and $f^{-1}: PSh(Y) \to PSh(X)$ extend naturally to functors and that these functors are adjoint.

Exercise 3.

In the notation of the previous exercise:

- 1. Is f_* always left exact? Is f_* always right exact?
- 2. Is f^{-1} always left exact? Is f^{-1} always right exact?

Exercise 4.

Let k be a fixed field and let \mathcal{C} be the category of k-vector spaces with filtrations. By definition an object of \mathcal{C} is a pair (V, F^{\bullet}) , where V is a k-vector space and F^{\bullet} is a decreasing filtration ... $\subset F^{n+1}V \subset F^nV \subset F^{n-1}V \subset ...$, where $F^nV \subset V$ are k-vector subspaces. A morphism $(V, F^{\bullet}) \to (W, F^{\bullet})$ is a k-linear map $f: V \to W$ such that for all n we have $f(F^nV) \subset F^nW$. Check that \mathcal{C} is an additive category. Does it contain kernels and cokernels? Does it contain images and coimages? Is it abelian?

Exercise 5.

Let \mathcal{A} be an abelian category which has enough injectives and let $\{X_s\}_{s\in S}$ be a set of objects of \mathcal{A} . Show that there exists an abelian subcategory $\mathcal{B}\subset\mathcal{A}$ such that

- 1. the class of objects of \mathcal{B} forms a set containing all X_s ,
- 2. \mathcal{B} has enough injectives,
- 3. an object of \mathcal{B} is injective if and only if it is injective in \mathcal{A} .