MAGIT Exercises, Series 4

Exercise 1.

Let X be a topological space. Prove that the sequence of maps

$$\dots \to S_2(X) \to S_1(X) \to S_0(X) \to 0$$

defined in lecture IV is a complex.

Exercise 2.

Compute the singular homology groups of a point.

Exercise 3

Prove that if $f: X \to Y$ is a continuous map of topological spaces then we have an induced map of singular chain complexes $S_{\bullet}(X) \to S_{\bullet}(Y)$. Prove that this induces a homomorphism of the corresponding singular homology modules. Check that in this way we get a functor $H_n(\cdot, R): Top \to Mod - R$.

Exercise 4

Show that the inverse limit functor \varprojlim on diagrams $\mathbb{N} \to \mathrm{Ab}$ is not right exact.

Exercise 5.

Let \mathcal{A} be an abelian category. Show that the category of short exact sequences in \mathcal{A} need not be abelian. Is the category of chain complexes in \mathcal{A} that are zero in degrees < 0 abelian? Is the category of chain complexes in \mathcal{A} that are zero in large negative degrees abelian?