MAGIT Exercises, Series 3

Exercise 1.

Show that if \mathcal{D} is an abelian category, then $Funct(\mathcal{C}, \mathcal{D})$ is abelian.

Exercise 2

Let \mathcal{A} be a preadditive category and let $X, Y \in Ob \mathcal{A}$. Show that

- 1. $f: X \to Y$ is a monomorphism if and only if for every non-zero $g: Z \to X$ we have $fg \neq 0$.
- 2. $f: X \to Y$ is an epimorphism if and only if for every non-zero $g: Y \to Z$ we have $gf \neq 0$.

Exercise 3.

Let Rings be the category of possibly noncommutative rings with 1. Check which of the following functors are representable.

- Rings \rightarrow Set sending a ring R to the set $\{r \in R : r^{2023} = 1\}$.
- Rings \rightarrow Set sending a ring R to the set of nilpotent elements in R (i.e., to $\{r \in R : \exists_{n \geq 1} r^n = 0\}$).
- Rings \rightarrow Set sending a ring R to the set $\{r^{2023}: r \in R\}$.

Exercise 4.

Let \mathcal{A} be an abelian category. Prove that

- 1. the equalizer of morphisms $f, g: X \to Y$ in \mathcal{A} coincides with the kernel of f g.
- 2. the coequalizer of morphisms $f, g: X \to Y$ in \mathcal{A} coincides with the cokernel of f g.

Exercise 5.

Let Ab be the category of abelian groups. Show an example of a morphism $f: X \to Y$ in Ab such that the functor $Z \to \operatorname{coker}(Hom(Z,X) \to Hom(Z,Y))$ is not representable and find coker f. Is the above functor corepresentable?