MAGIT Exercises, Series 12

Exercise 1

Let \mathcal{U} be an open covering of Δ^n by $U_i = \{(x_0, ..., x_n) \in \Delta^n : x_i > 0\}$. Show that

$$\check{\mathbf{H}}^m(\mathcal{U},\underline{\mathbb{Z}}) = 0$$

for m > 0.

Exercise 2.

Let X be an arbitrary topological space. Prove that for all n > 0 and for any open covering $\mathcal{U} = \{U_i\}$ such that $U_{i_0} = X$ for some i_0 and for any sheaf of \mathbb{Z}_X -modules M we have $\check{\mathrm{H}}^n(\mathcal{U}, M) = 0$.

Exercise 3.

Let X be a topological space and let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open covering of X. Prove that if $\mathcal{F}|_{U_i}$ is flabby for all i then \mathcal{F} is flabby.

Exercise 4.

Let X be a topological space and let \mathcal{F} be a flabby sheaf of abelian groups on X. Prove that for any open covering \mathcal{U} and all m > 0 we have $\check{\mathbf{H}}^m(\mathcal{U}, \mathcal{F}) = 0$.

Exercise 5.

Let F be a sheaf of abelian groups on I = [0, 1]. Assume that for every open (connected) interval $U \subset I$ the map $F(I) \to F(U)$ is surjective.

1. Prove that if

$$0 \to F \to G \to H \to 0$$

is an exact sequence of sheaves of abelian groups then for every open interval $U \subset I$ the map $G(U) \to H(U)$ is surjective.

- 2. Prove that $H^i(I, F) = 0$ for i > 0.
- 3. Is F necessarily flabby?