GA Series 1

k below is algebraically closed.

Ex 1

Let $\varphi: \mathbb{A}^1(k) \to \mathbb{A}^3(k)$ be a morphism given by $t \to (t^3, t^4, t^5)$ and let $C = \varphi(\mathbb{A}^1(k))$. Show that C is an affine algebraic set and find I(C).

 $E_{\mathbf{v}} = 2$

Show that I(C) from the previous exercise is not generated by 2 elements.

Ex. 3

Show that there exist $f,g \in k[x,y,z]$ such that C=V(f,g), where C is as above.

Ex. 4

Show that $\det[x_{ij}] - 1 \in \mathbb{C}[\{x_{ij}\}_{i,j \in \{1,...,n\}}]$ is irreducible. Conclude that $\mathrm{SL}(n,\mathbb{C})$ is an affine algebraic set. Is $\mathrm{GL}(n,\mathbb{C})$ an affine algebraic set?

Ex. 5

Let $U = \mathbb{A}^n(k) - \{0\}$ for some $n \geq 2$. Show that (U, \mathcal{O}_U) is not isomorphic to an affine algebraic set in the category of locally ringed spaces.