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Abstract. For an integer d ≥ 0, let Hold(CPk, CPn) denote the space con-
sisting of all holomorphic maps f : CPk → CPn of degree d. In this paper we

shall study the homotopy type of the space Hold(CPk, CPn).

1. Introduction.

For each integer d ≥ 0, we denote by Hold(CPk, CPn) the space consisting of all
holomorphic maps f : CPk → CPn of degree d. The corresponding space of con-
tinuous maps is denoted by Mapd(CPk, CPn). We also denote by Hol∗d(CPk, CPn)
the subspace of Hold(CPk, CPn) consisting of all maps f ∈ Hold(CPk, CPn) which
preserve the base-points, and the corresponding space of basepoint preserving con-
tinuous maps is denoted by Map∗d(CPk, CPn). The space of holomorphic maps are
of interest both from a classical and modern point of view (e.g. [1], [3], [7]). In this
paper we shall study the topology of spaces Hold(CPk, CPn) and Hol∗d(CPk, CPn)
for the case 1 ≤ k ≤ n from the point of view of homotopy theory. However, since
the case k = 1 was well studied until now until now ([3], [6], [8], [10], [11], [17], [22],
[23]), we shall mainly consider the case 2 ≤ k ≤ n.

2. The case d = 1.

In this section we study the case d = 1.

Proposition 2.1. If 1 ≤ k ≤ n, there is a homotopy equivalence βk,n : Un/Un−k
'→

Hol∗1(CPk, CPn).

Proof. Fro now on, we choose the point zm = [1 : 0 · · · : 0] ∈ CPm as the base point
of CPm and we identify Hol∗d(CPk, CPn) = {f ∈ Hold(CPk, CPn) : f(zk) = zn}.
Define the map β′k,n : GLn(C) → Hol∗1(CPk, CPn) by the matrix multiplication

β′k,n(A)([x0 : x1 : · · · : xk]) = [x0 : x1 · · · : xk : 0 : · · · : 0] ·
(

1 0
0 A

)
for ([x0 : · · · : xk], A) ∈ CPk ×GLn(C).

Since the subgroup GLn−k(C) ⊂ GLn(C) is fixed by this map, this induces
the map β′′k,n : GLn(C)/GLn−k(C) → Hol∗1(CPk, CPn). The direct computation
easily shows that β′′k,n is in fact a homeomorphism. Because Um ⊂ GLm(C) is
a deformation retract, it induces naturally a desired homotopy equivalence βk,n :
Un/Un−k

'→ Hol∗1(CPk, CPn). �
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Corollary 2.2. Let 1 ≤ k < n be integers.
(i) Hol1(CPk, CPn) is simply connected and π2(Hol1(CPk, CPn)) = Z.
(ii) ev∗ : Z = H2(CPn, Z)

∼=→ H2(Hol1(CPk, CPn), Z) = Z is an isomorphism.
(iii) There is a homotopy commutative diagram

Hol1(CPk, CPn) ev−−−−→ CPn

ι1

y ι

y
K(Z, 2) =−−−−→ K(Z, 2)

where the map ι1 : Hol1(CPk, CPn) represents the generator of the homo-
topy set [Hol1(CPk, CPn),K(Z, 2)] ∼= H2(Hol1(CPk, CPn), Z) = Z and the
map ι : CPn → CP∞ = K(Z, 2) denotes the natural inclusion map.

Proof. (i) Consider the homotopy exact sequence of the evaluation fibration se-
quence Hol∗1(CPk, CPn) ⊂→ Hol1(CPk, CPn) ev→ CPn, where ev is deined by ev(f) =
f(zk) for f ∈ Hol1(CPk, CPn). Since πm(Hol∗1(CPk, CPn)) ∼= πm(Un/Un−k) = 0
for m = 1 or 2, we have the isomorphisms{

ev∗ : π2(Hol1(CPk, CPn))
∼=→ π2(CPn) = Z,

ev∗ : π1(Hol1(CPk, CPn))
∼=→ π1(CPn) = 0.

(ii), (iii); The assertion (ii) easily follows from (i) and (iii) follows from (ii). �

Definition 2.3. Let hn : S2n+1 → CPn ne the standard Hopf fibering with fibre
S1 and we define the space H̃old(CPk, CPn) by

H̃old(CPk, CPn) = {(f, x) ∈ Hold(CPk, CPn)× S2n+1 : ev(f) = hn(x)}.

Then it follows from [[5], (2.1)] and (iii) of corollary 2.2 that there is a homotopy
commutative diagram

Hol∗d(CPk, CPn)
j̃d−−−−→ H̃old(CPk, CPn) ẽv−−−−→ S2n+1

=

y pn

y hn

y
Hol∗d(CPk, CPn)

jd−−−−→ Hold(CPk, CPn) ev−−−−→ CPny ι1

y ι

y
{∗} −−−−→ K(Z, 2) =−−−−→ K(Z, 2)

where ẽv and pn are the first and he second projections, and all horizontal and
vertical sequences are fibration sequences.

Lemma 2.4. If 1 ≤ k < n, the space H̃ol1(CPk, CPn) is a 2-conective covering of
Hol1(CPk, CPn) and there is a fibration sequence (up to homotopy)

(∗)k,n Hol∗1(CPk, CPn)
j̃d−→ H̃ol1(CPk, CPn) ẽv−→ S2n+1.

Proof. The second assertion is clear and the first assertion can be easily obtained
by the diagram chasing of the exact sequences induced from the above diagram. �
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Definition 2.5. Let ∆m ⊂ Um denote the subgroup consisting of all multiples
of Em contained in Um defined by ∆m = {αEm : α ∈ C∗, |α| = 1}, where Em

denotes the (m × m)-identity matrix. Define the homogenous space Xn+1,k+1 by
Xn+1.k+1 = Un+1/(∆k+1 × Un−k). Similarly, let Wn+1,k+1 be the complex Stiefel
manifold of orthogonal (k + 1)-frames in Cn+1 given by Wn+1,k+1 = Un+1/Un−k.

Consider Un+1 action on CPn induced by the matrix multiplication in a usual
way. This action naturally induces map φ′k,n : Un+1 → Hol1(CPk, CPn) which is
defined by

φ′k,n(A)([x0 : x1 : · · · : xk]) = [x0 : x1 · · · : xk : 0 : · · · : 0] ·A

for ([x0 : · · · : xk], A) ∈ CPk × Un+1.
Because the subgroups Un−k ⊂ ∆k+1 ×Un−k ⊂ Un+1 are fixed by this map, the

map φ′k,n induces the maps{
φ′′k,n : Wn+1,k+1 = Un+1/Un−k → Hol1(CPk, CPn)
φk,n : Xn+1,k+1 = Un+1/(∆k × Un−k) → Hol1(CPk, CPn)

such that the diagram

Un+1

φ′
k,n−−−−→ Hol1(CPk, CPn)y =

y
Wn+1,k+1

φ′′
k,n−−−−→ Hol1(CPk, CPn)y =

y
Xn+1,k+1

φk,n−−−−→ Hol1(CPk, CPn)

is commutative, where the left vertical maps are natural projections.
From now on, we assume 1 ≤ k < n and consider the composite of maps

Wn+1,k+1

φ′′
k,n−→ Hol1(CPk, CPn) ι1−→ K(Z, 2). Since ι1◦φ′′k,n ∈ [Wn+1,k+1,K(Z, 2)] ∼=

H2(Wn+1,k+1, Z) = 0, the map ι1◦φ′′k,n is null-homotopic. Hence using the fibration
sequence (∗)k,n, there is a map

φ̃k,n : Wn+1,k+1 → H̃ol1(CPk, CPn)

such that the following diagram is homotopy commutative:

Wn+1,k+1
φ̃k,n−−−−→ H̃ol1(CPk, CPn)

=

y pn

y
Wn+1,k+1

φ′′
k,n−−−−→ Hol1(CPk, CPn)

Remark 2.6. Since H2(Xn+1,k+1, Z) 6= 0, the map φk,n does not necessarily lift to
H̃ol1(CPk, CPn).

Theorem 2.7. If 1 ≤ k < n, φ̃k,n : Wn+1,k+1
'→ H̃ol1(CPk, CPn) is a homotopy

equivalence.
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Proof. It follows from the definitions of the maps βk,n, and φ̃k,n that the following
diagram is homotopy commutative

Un/Un−k
q1−−−−→ Un+1/Un−k = Wn+1,k+1

q2−−−−→ Un+1/Un

βk,n

y' φ̃k,n

y β

y∼=
Hol∗1(CPk, CPn)

j̃1−−−−→ H̃ol1(CPk, CPn) ẽv−−−−→ S2n+1

where two horizontal sequences are fibration sequences, β is a natural homeomor-
phism and qm (m = 1, 2) are natural projections. Then it follows from the homotopy
exact sequences of the above fibrations that φ̃k,n is a homotopy equivalence. �

Theorem 2.8. If 1 ≤ k ≤ n, the map φk,n : Xn+1,k+1
'→ Hol1(CPk, CPn) is a

homotopy equivalence.

Proof. If k = n = 1, X2,2 = U2/∆2
∼= RP3 ∼= PSL2(C) and the assertion is clear.

Next consider the case 1 ≤ k < n. Then there is a homotopy commutative diagram

∆k+1
q′
1−−−−→ Wn+1,k+1

q′
2−−−−→ Un+1/(∆k+1 × Un−k) = Xn+1,k+1

β′
y∼= φ̃k,n

y' φk,n

y
S1 −−−−→ H̃ol1(CPk, CPn)

pn−−−−→ Hol1(CPk, CPn)

where two horizontal sequences are fibration sequences, β′ is a natural homeomor-
phism and q′m (m = 1, 2) are natural projections. Then it follows from the homotopy
exact sequences of the above fibrations that φk,n is a homotopy equivalence.

Finally we prove the assertion for the case k = n ≥ 2.

[I suppose that the assertion is true for the case k = n ≥ 2. But I
do not know how to prove this in this case. If k = n ≥ 2, probably
Hol1(CPn, CPn) is not simply connected and it seems useless to consider
the space H̃ol1(CPn, CPn). Moreover, if so π1(Hol1(CPn, CPn)) = Z/(n+1)Z.
(See corollary 2.9.)

More generally, I suppose that π1(Hold(CPn, CPn)) = Z/(n + 1)dnZ for
any d ≥ 1!] �

Corollary 2.9. If k = n, then π1(Hol1(CPn, CPn)) = Z/(n + 1)Z.

Proof. π1(Hol1(CPn, CPn)) ∼= π1(Un+1/∆n+1) = Z/(n + 1)Z. �

Corollary 2.10. Let 1 ≤ k ≤ n and let{
ik,n : Hol∗1(CPk, CPn) → Map∗1(CPk, CPn)
jk,n : Hol1(CPk, CPn) → Map1(CPk, CPn)

be inclusion maps. Then ik,n and jk,n are homotopy equivalences up to dimension
D(n; k) = 4n− 4k + 1.

Proof. Consider the composite of maps jk,n ◦ φk,n:

Xn+1,k+1
φk,n−−−−→
'

Hol1(CPk, CPn)
jk,n−−−−→ Map1(CPk, CPn).
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We remark that Sasao ([16], (1.1)) proved that the map jk,n ◦ φk,n is a homotopy
equivalence up to dimension D(n; k). Because φk,n is a homotopy equivalence, jk,n

is a homotopy equivalence up to dimension D(n; k).
Next, consider the comutative diagram

Hol∗1(CPk, CPn) −−−−→ Hol1(CPk, CPn) ev−−−−→ CPn

ik,n

y jk,n

y =

y
Map∗1(CPk, CPn) −−−−→ Map1(CPk, CPn) ev−−−−→ CPn

where two horizontal sequences are evaluation fibrations. Then because jk,n is a
homotopy equivalence up to dimension D(n; k), ik,n is also a homotopy equivalence
up to dimension D(n; k). �
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