SPACES OF HOLOMORPHIC MAPS BETWEEN COMPLEX PROJECTIVE SPACES

ANDRZEJ KOZLOWSKI AND KOHHEI YAMAGUCHI

ABSTRACT. For an integer $d \geq 0$, let $\operatorname{Hol}_d(\mathbb{CP}^k, \mathbb{CP}^n)$ denote the space consisting of all holomorphic maps $f: \mathbb{CP}^k \to \mathbb{CP}^n$ of degree d. In this paper we shall study the homotopy type of the space $\operatorname{Hol}_d(\mathbb{CP}^k, \mathbb{CP}^n)$.

1. Introduction.

For each integer $d \geq 0$, we denote by $\operatorname{Hol}_d(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$ the space consisting of all holomorphic maps $f:\mathbb{C}\mathrm{P}^k \to \mathbb{C}\mathrm{P}^n$ of degree d. The corresponding space of continuous maps is denoted by $\operatorname{Map}_d(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$. We also denote by $\operatorname{Hol}_d^*(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$ the subspace of $\operatorname{Hol}_d(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$ consisting of all maps $f \in \operatorname{Hol}_d(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$ which preserve the base-points, and the corresponding space of basepoint preserving continuous maps is denoted by $\operatorname{Map}_d^*(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$. The space of holomorphic maps are of interest both from a classical and modern point of view (e.g. [1], [3], [7]). In this paper we shall study the topology of spaces $\operatorname{Hol}_d(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$ and $\operatorname{Hol}_d^*(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$ for the case $1 \leq k \leq n$ from the point of view of homotopy theory. However, since the case k = 1 was well studied until now until now ([3], [6], [8], [10], [11], [17], [22], [23]), we shall mainly consider the case $2 \leq k \leq n$.

2. The case d=1.

In this section we study the case d = 1.

Proposition 2.1. If $1 \le k \le n$, there is a homotopy equivalence $\beta_{k,n} : U_n/U_{n-k} \xrightarrow{\simeq} \operatorname{Hol}_1^*(\mathbb{CP}^k, \mathbb{CP}^n)$.

Proof. Fro now on, we choose the point $z_m = [1:0\cdots:0] \in \mathbb{C}\mathrm{P}^m$ as the base point of $\mathbb{C}\mathrm{P}^m$ and we identify $\mathrm{Hol}_d^*(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n) = \{f \in \mathrm{Hol}_d(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n) : f(z_k) = z_n\}$. Define the map $\beta'_{k,n} : \mathrm{GL}_n(\mathbb{C}) \to \mathrm{Hol}_1^*(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$ by the matrix multiplication

$$\beta'_{k,n}(A)([x_0:x_1:\dots:x_k]) = [x_0:x_1\dots:x_k:0:\dots:0] \cdot \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & A \end{pmatrix}$$

for $([x_0:\cdots:x_k],A)\in\mathbb{C}\mathrm{P}^k\times\mathrm{GL}_n(\mathbb{C}).$

Since the subgroup $\operatorname{GL}_{n-k}(\mathbb{C}) \subset \operatorname{GL}_n(\mathbb{C})$ is fixed by this map, this induces the map $\beta''_{k,n} : \operatorname{GL}_n(\mathbb{C})/\operatorname{GL}_{n-k}(\mathbb{C}) \to \operatorname{Hol}_1^*(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$. The direct computation easily shows that $\beta''_{k,n}$ is in fact a homeomorphism. Because $U_m \subset \operatorname{GL}_m(\mathbb{C})$ is a deformation retract, it induces naturally a desired homotopy equivalence $\beta_{k,n} : U_n/U_{n-k} \xrightarrow{\sim} \operatorname{Hol}_1^*(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$.

 $^{1991\} Mathematics\ Subject\ Classification.\ Primary\ 55P10;\ Secondary\ 55P35,\ 55P15.$

Key words and phrases. Mapping space, homotopy type, holomorphic map.

Both authors were supported in parts by grants from the Ministry of Education of Japan.

Corollary 2.2. Let $1 \le k < n$ be integers.

- (i) $\operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n)$ is simply connected and $\pi_2(\operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n)) = \mathbb{Z}$.
- (ii) $ev^*: \mathbb{Z} = H^2(\mathbb{C}\mathrm{P}^n, \mathbb{Z}) \xrightarrow{\cong} H^2(\mathrm{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n), \mathbb{Z}) = \mathbb{Z}$ is an isomorphism.
- (iii) There is a homotopy commutative diagram

$$\operatorname{Hol}_{1}(\mathbb{C}\mathrm{P}^{k}, \mathbb{C}\mathrm{P}^{n}) \xrightarrow{ev} \mathbb{C}\mathrm{P}^{n}$$

$$\downarrow \iota_{1} \downarrow \qquad \qquad \downarrow \downarrow$$

$$K(\mathbb{Z}, 2) \xrightarrow{=} K(\mathbb{Z}, 2)$$

where the map $\iota_1: \operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n)$ represents the generator of the homotopy set $[\operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n), K(\mathbb{Z}, 2)] \cong H^2(\operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n), \mathbb{Z}) = \mathbb{Z}$ and the map $\iota: \mathbb{C}\mathrm{P}^n \to \mathbb{C}\mathrm{P}^\infty = K(\mathbb{Z}, 2)$ denotes the natural inclusion map.

Proof. (i) Consider the homotopy exact sequence of the evaluation fibration sequence $\operatorname{Hol}_1^*(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n) \stackrel{\subseteq}{\to} \operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n) \stackrel{ev}{\to} \mathbb{C}\mathrm{P}^n$, where ev is deined by $ev(f) = f(z_k)$ for $f \in \operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$. Since $\pi_m(\operatorname{Hol}_1^*(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)) \cong \pi_m(U_n/U_{n-k}) = 0$ for m = 1 or 2, we have the isomorphisms

$$\begin{cases} ev_* : \pi_2(\operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n)) \xrightarrow{\cong} \pi_2(\mathbb{C}\mathrm{P}^n) = \mathbb{Z}, \\ ev_* : \pi_1(\operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n)) \xrightarrow{\cong} \pi_1(\mathbb{C}\mathrm{P}^n) = 0. \end{cases}$$

(ii), (iii); The assertion (ii) easily follows from (i) and (iii) follows from (ii). \Box

Definition 2.3. Let $h_n: S^{2n+1} \to \mathbb{C}P^n$ ne the standard Hopf fibering with fibre S^1 and we define the space $\tilde{\text{Hol}}_d(\mathbb{C}P^k, \mathbb{C}P^n)$ by

$$\widetilde{\mathrm{Hol}}_d(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n) = \{(f, x) \in \mathrm{Hol}_d(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n) \times S^{2n+1} : ev(f) = h_n(x)\}.$$

Then it follows from [[5], (2.1)] and (iii) of corollary 2.2 that there is a homotopy commutative diagram

$$\begin{split} \operatorname{Hol}_{d}^{*}(\mathbb{C}\mathrm{P}^{k},\mathbb{C}\mathrm{P}^{n}) & \stackrel{\tilde{j}_{d}}{\longrightarrow} \operatorname{\tilde{Hol}}_{d}(\mathbb{C}\mathrm{P}^{k},\mathbb{C}\mathrm{P}^{n}) & \stackrel{\tilde{ev}}{\longrightarrow} & S^{2n+1} \\ &= \Big| \qquad \qquad p_{n} \Big| \qquad \qquad h_{n} \Big| \\ \operatorname{Hol}_{d}^{*}(\mathbb{C}\mathrm{P}^{k},\mathbb{C}\mathrm{P}^{n}) & \stackrel{j_{d}}{\longrightarrow} & \operatorname{Hol}_{d}(\mathbb{C}\mathrm{P}^{k},\mathbb{C}\mathrm{P}^{n}) & \stackrel{ev}{\longrightarrow} & \mathbb{C}\mathrm{P}^{n} \\ & \Big| \qquad \qquad \downarrow \qquad \qquad \downarrow \\ & \Big| \{*\} & \longrightarrow & K(\mathbb{Z},2) & \stackrel{=}{\longrightarrow} & K(\mathbb{Z},2) \end{split}$$

where \tilde{ev} and p_n are the first and he second projections, and all horizontal and vertical sequences are fibration sequences.

Lemma 2.4. If $1 \le k < n$, the space $\tilde{\text{Hol}}_1(\mathbb{C}\text{P}^k, \mathbb{C}\text{P}^n)$ is a 2-conective covering of $\text{Hol}_1(\mathbb{C}\text{P}^k, \mathbb{C}\text{P}^n)$ and there is a fibration sequence (up to homotopy)

$$(*)_{k,n} \qquad \operatorname{Hol}_1^*(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n) \xrightarrow{\tilde{j}_d} \tilde{\operatorname{Hol}}_1(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n) \xrightarrow{\tilde{ev}} S^{2n+1}.$$

Proof. The second assertion is clear and the first assertion can be easily obtained by the diagram chasing of the exact sequences induced from the above diagram. \Box

Definition 2.5. Let $\Delta_m \subset U_m$ denote the subgroup consisting of all multiples of E_m contained in U_m defined by $\Delta_m = \{\alpha E_m : \alpha \in \mathbb{C}^*, |\alpha| = 1\}$, where E_m denotes the $(m \times m)$ -identity matrix. Define the homogenous space $X_{n+1,k+1}$ by $X_{n+1,k+1} = U_{n+1}/(\Delta_{k+1} \times U_{n-k})$. Similarly, let $W_{n+1,k+1}$ be the complex Stiefel manifold of orthogonal (k+1)-frames in \mathbb{C}^{n+1} given by $W_{n+1,k+1} = U_{n+1}/U_{n-k}$.

Consider U_{n+1} action on $\mathbb{C}P^n$ induced by the matrix multiplication in a usual way. This action naturally induces map $\phi'_{k,n}:U_{n+1}\to \mathrm{Hol}_1(\mathbb{C}P^k,\mathbb{C}P^n)$ which is defined by

$$\phi'_{k,n}(A)([x_0:x_1:\cdots:x_k]) = [x_0:x_1\cdots:x_k:0:\cdots:0]\cdot A$$

for $([x_0:\cdots:x_k],A)\in\mathbb{C}\mathrm{P}^k\times U_{n+1}$.

Because the subgroups $U_{n-k} \subset \Delta_{k+1} \times U_{n-k} \subset U_{n+1}$ are fixed by this map, the map $\phi'_{k,n}$ induces the maps

$$\begin{cases} \phi_{k,n}'': W_{n+1,k+1} = U_{n+1}/U_{n-k} \to \operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n) \\ \phi_{k,n}: X_{n+1,k+1} = U_{n+1}/(\Delta_k \times U_{n-k}) \to \operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n) \end{cases}$$

such that the diagram

$$U_{n+1} \xrightarrow{\phi'_{k,n}} \operatorname{Hol}_{1}(\mathbb{C}\mathrm{P}^{k}, \mathbb{C}\mathrm{P}^{n})$$

$$\downarrow \qquad \qquad = \downarrow$$

$$W_{n+1,k+1} \xrightarrow{\phi''_{k,n}} \operatorname{Hol}_{1}(\mathbb{C}\mathrm{P}^{k}, \mathbb{C}\mathrm{P}^{n})$$

$$\downarrow \qquad \qquad = \downarrow$$

$$X_{n+1,k+1} \xrightarrow{\phi_{k,n}} \operatorname{Hol}_{1}(\mathbb{C}\mathrm{P}^{k}, \mathbb{C}\mathrm{P}^{n})$$

is commutative, where the left vertical maps are natural projections.

From now on, we assume $1 \leq k < n$ and consider the composite of maps $W_{n+1,k+1} \stackrel{\phi_{k,n}''}{\longrightarrow} \operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n) \stackrel{\iota_1}{\longrightarrow} K(\mathbb{Z},2)$. Since $\iota_1 \circ \phi_{k,n}'' \in [W_{n+1,k+1},K(\mathbb{Z},2)] \cong H^2(W_{n+1,k+1},\mathbb{Z}) = 0$, the map $\iota_1 \circ \phi_{k,n}''$ is null-homotopic. Hence using the fibration sequence $(*)_{k,n}$, there is a map

$$\tilde{\phi}_{k,n}: W_{n+1,k+1} \to \tilde{\operatorname{Hol}}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n)$$

such that the following diagram is homotopy commutative:

$$W_{n+1,k+1} \xrightarrow{\tilde{\phi}_{k,n}} \tilde{\operatorname{Hol}}_{1}(\mathbb{C}\mathrm{P}^{k}, \mathbb{C}\mathrm{P}^{n})$$

$$= \downarrow \qquad \qquad p_{n} \downarrow$$

$$W_{n+1,k+1} \xrightarrow{\phi''_{k,n}} \operatorname{Hol}_{1}(\mathbb{C}\mathrm{P}^{k}, \mathbb{C}\mathrm{P}^{n})$$

Remark 2.6. Since $H^2(X_{n+1,k+1},\mathbb{Z}) \neq 0$, the map $\phi_{k,n}$ does not necessarily lift to $\tilde{\text{Hol}}_1(\mathbb{C}\mathrm{P}^k,\mathbb{C}\mathrm{P}^n)$.

Theorem 2.7. If $1 \leq k < n$, $\tilde{\phi}_{k,n} : W_{n+1,k+1} \stackrel{\simeq}{\to} \tilde{\text{Hol}}_1(\mathbb{CP}^k, \mathbb{CP}^n)$ is a homotopy equivalence.

Proof. It follows from the definitions of the maps $\beta_{k,n}$, and $\tilde{\phi}_{k,n}$ that the following diagram is homotopy commutative

$$U_{n}/U_{n-k} \xrightarrow{q_{1}} U_{n+1}/U_{n-k} = W_{n+1,k+1} \xrightarrow{q_{2}} U_{n+1}/U_{n}$$

$$\beta_{k,n} \downarrow \simeq \qquad \qquad \tilde{\phi}_{k,n} \downarrow \qquad \qquad \beta \downarrow \cong$$

$$\text{Hol}_{1}^{*}(\mathbb{C}\text{P}^{k}, \mathbb{C}\text{P}^{n}) \xrightarrow{\tilde{j}_{1}} \qquad \text{Hol}_{1}(\mathbb{C}\text{P}^{k}, \mathbb{C}\text{P}^{n}) \xrightarrow{e\tilde{v}} S^{2n+1}$$

where two horizontal sequences are fibration sequences, β is a natural homeomorphism and q_m (m=1,2) are natural projections. Then it follows from the homotopy exact sequences of the above fibrations that $\tilde{\phi}_{k,n}$ is a homotopy equivalence.

Theorem 2.8. If $1 \leq k \leq n$, the map $\phi_{k,n} : X_{n+1,k+1} \xrightarrow{\simeq} \operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n)$ is a homotopy equivalence.

Proof. If $k=n=1, X_{2,2}=U_2/\Delta_2\cong \mathbb{R}\mathrm{P}^3\cong \mathrm{PSL}_2(\mathbb{C})$ and the assertion is clear. Next consider the case $1\leq k< n$. Then there is a homotopy commutative diagram

where two horizontal sequences are fibration sequences, β' is a natural homeomorphism and q'_m (m=1,2) are natural projections. Then it follows from the homotopy exact sequences of the above fibrations that $\phi_{k,n}$ is a homotopy equivalence.

Finally we prove the assertion for the case $k = n \ge 2$.

[I suppose that the assertion is true for the case $k=n\geq 2$. But I do not know how to prove this in this case. If $k=n\geq 2$, probably $\operatorname{Hol}_1(\mathbb{C}\mathrm{P}^n,\mathbb{C}\mathrm{P}^n)$ is not simply connected and it seems useless to consider the space $\operatorname{Hol}_1(\mathbb{C}\mathrm{P}^n,\mathbb{C}\mathrm{P}^n)$. Moreover, if so $\pi_1(\operatorname{Hol}_1(\mathbb{C}\mathrm{P}^n,\mathbb{C}\mathrm{P}^n))=\mathbb{Z}/(n+1)\mathbb{Z}$. (See corollary 2.9.)

More generally, I suppose that $\pi_1(\operatorname{Hol}_d(\mathbb{C}\mathrm{P}^n,\mathbb{C}\mathrm{P}^n)) = \mathbb{Z}/(n+1)d^n\mathbb{Z}$ for any $d \geq 1!$

Corollary 2.9. If k = n, then $\pi_1(\operatorname{Hol}_1(\mathbb{CP}^n, \mathbb{CP}^n)) = \mathbb{Z}/(n+1)\mathbb{Z}$.

Proof.
$$\pi_1(\operatorname{Hol}_1(\mathbb{C}P^n, \mathbb{C}P^n)) \cong \pi_1(U_{n+1}/\Delta_{n+1}) = \mathbb{Z}/(n+1)\mathbb{Z}.$$

Corollary 2.10. Let $1 \le k \le n$ and let

$$\begin{cases} i_{k,n}: \operatorname{Hol}_1^*(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n) \to \operatorname{Map}_1^*(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n) \\ j_{k,n}: \operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n) \to \operatorname{Map}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n) \end{cases}$$

be inclusion maps. Then $i_{k,n}$ and $j_{k,n}$ are homotopy equivalences up to dimension D(n;k) = 4n - 4k + 1.

Proof. Consider the composite of maps $j_{k,n} \circ \phi_{k,n}$:

$$X_{n+1,k+1} \xrightarrow{\phi_{k,n}} \operatorname{Hol}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n) \xrightarrow{j_{k,n}} \operatorname{Map}_1(\mathbb{C}\mathrm{P}^k, \mathbb{C}\mathrm{P}^n).$$

We remark that Sasao ([16], (1.1)) proved that the map $j_{k,n} \circ \phi_{k,n}$ is a homotopy equivalence up to dimension D(n;k). Because $\phi_{k,n}$ is a homotopy equivalence, $j_{k,n}$ is a homotopy equivalence up to dimension D(n;k).

Next, consider the comutative diagram

where two horizontal sequences are evaluation fibrations. Then because $j_{k,n}$ is a homotopy equivalence up to dimension D(n;k), $i_{k,n}$ is also a homotopy equivalence up to dimension D(n;k).

References

- M. F. Atiyah and N. J. Hitchin, The geometry and dynamics of magnetic monoples, Princeton Univ. Press, 1988.
- A. L. Blakers and W. S. Massay, The homotopy groups of triads (III), Ann. of Math. 58 (1953), 409–417.
- 3. F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram, *The topology of rational functions and divisors of surfaces*, Acta Math. **166** (1991), 163–221.
- 4. F. R. Cohen, T. I. Lada and J. P. May, *The homology of iterated loop spaces*, Lecture Notes in Math. (Springer-Verlag) **533**, 1976.
- F. R. Cohen, J. C. Moore and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. 110 (1979) 549–565.
- 6. R. L. Cohen and D. Shimamoto, Rational functions, labelled configurations and Hilbert schemes, J. London Math. Soc. 43 (1991), 509–528.
- S. K. Donaldson, Nahm's equations and the classification of monopoles, Commun. Math. Phys. 96 (1984), 387–407.
- 8. M. A. Guest, A. Kozlowski, M. Murayama and K. Yamaguchi, *The homotopy type of spaces of rational functions*, J. Math. Kyoto Univ. **35** (1995), 631–638.
- M. A. Guest, A. Kozlowski, and K. Yamaguchi, The topology of spaces of coprime polynomials, Math. Z. 217 (1994), 435–446.
- M. A. Guest, A. Kozlowski, and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math. 116 (1999), 93–117.
- M. A. Guest, A. Kozlowski, and K. Yamaguchi, Stable splitting of the space of polynomials with roots of bounded multiplicity, J. Math. Kyoto Univ. 38 (1998), 351–366.
- 12. M. A. Guest, The topology of the space of rational curves on a toric variety, Acta Math. 174 (1995), 119–145.
- I. M. James, On the homotopy groups of certain pairs and triads, Quart. J. Math. 5 (1954), 260–270.
- A. Kozlowski and K. Yamaguchi, Topology of complements of discriminants and resultants,
 J. Math. Soc. Japan 52 (2000), 949–959.
- J. Mostovoy, Spaces of rational loops on a real projective space, Trans. Amer. Math. Soc. 353 (2001), 1959–1970.
- 16. S. Sasao, The homotopy of $Map(\mathbb{C}P^m, \mathbb{C}P^n)$, J. London Math. Soc. 8 (1974), 193–197.
- 17. G. B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72.
- 18. H. Toda, Composition methods in homotopy groups of spheres, Princeton Univ. Press 49,
- 19. G. W. Whitehead, On products in homotopy groups, Ann. of Math. 47 (1946), 460-475.
- 20. K. Yamaguchi, Complements of resultants and homotopy types, J. Math. Kyoto Univ. 39 (1999), 675–684.

- K. Yamaguchi, Spaces of holomorphic maps with bounded multiplicity, Quart. J. Math. 52 (2001), 249–259.
- 22. K. Yamaguchi, $Universal\ coverings\ of\ spaces\ of\ holomorphic\ maps,$ (to appear) Kyushu J. Math.
- 23. K. Yamaguchi, Connective coverings of spaces of holomorphic maps, preprint.

Department of Mathematics, Toyama International University, Kaminikawa, Toyama, Tokyo 930-1262, Japan

 $E ext{-}mail\ address: andrzej@tuins.ac.jp}$

Department of Information Mathematics, University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan

 $E\text{-}mail\ address{:}\ \texttt{kohhei@im.uec.ac.jp}$